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Abstract
The success of deep learning has brought breakthroughs in many fields. However, the
increased performance of deep learning models is often accompanied by an increase in their
depth and width, which conflicts with the storage, energy consumption, and computational
power of edge devices. Knowledge distillation, as an effective model compression method,
can transfer knowledge from complex teacher models to student models. Self-distillation
is a special type of knowledge distillation, which does not to require a pre-trained teacher
model. However, existing self-distillation methods rarely consider how to effectively use the
early features of the model. Furthermore, most self-distillation methods use features from
the deepest layers of the network to guide the training of the branches of the network, which
we find is not the optimal choice. In this paper, we found that the feature maps obtained by
early feature fusion do not serve as a good teacher to guide their own training. Based on
this, we propose a selective feature fusion module and further obtain a new self-distillation
method, knowledge fusion distillation. Extensive experiments on three datasets have demon-
strated that our method has comparable performance to state-of-the-art distillation methods.
In addition, the performance of the network can be further enhanced when fused features are
integrated into the network.
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1 Introduction

Deep neural networks [5] have been widely used for object detection [20, 30], wind speed
prediction [3], cyber-attacks detection [19], etc. However, in some real-time applications
such as autonomous driving and video analysis, the accuracy and response time of deep
neural networks are strictly required. In addition, large networks are difficult to deploy on
edge devices due to the storage and computational burden. Many efforts have been proposed
to solve this problem. For example, Bhosale and Patnaik [2] designed a lightweight neural
network, LDC-Net, to detect COVID-19 cases, with encouraging results on the Raspberry Pi.
In addition to this, various techniques have been proposed to solve this problem, including
pruning [41], quantization and [38] knowledge distillation [8, 25, 40]

Self-distillation, as a special formof knowledge distillation, uses the network’s ownknowl-
edge to guide its own training, thereby boosting the performance of the model. When the
performance of a small network reaches the same level as that of a large network, the large
network can be replaced by the small network. In the deployment phase, small models are
used for inference, thus model compression and inference acceleration are achieved [2]. Self-
distillation can also be seen as a means of significantly improving network performance [35].
Zhang et al. [35] first proposed a self-distillation framework, BYOT (be your own teacher),
which uses the knowledge provided by the deepest layer of networks to guide itself for train-
ing. It solves the slow training problem of traditional knowledge distillation. Further, Zhang
et al. [36] introduced an attention mechanism, which significantly improves the accuracy of
branches. Zhang et al. [37] redesigned the branches and the attention mechanism to further
improve the accuracy of branches and reduce the computational complexity. Ji et al. [15]
proposed a new self-distillation framework which exploits the BiFPN [26] to fuse features.
The fused features are used for self-distillation. However, there are some slight downsides
to these efforts: (1) [35–37] all utilized the features from the deepest layer to guide stu-
dents in training. We found that the deepest layer of the network does not provide the best
distillation knowledge. Although the feature of the deepest layer contains rich semantic infor-
mation, it lacks the spatial information that is equally important. (2) [15] used BiFPN for
self-distillation. However, BiFPN is a late feature fusion (LFF) method. The network cannot
directly benefit from LFF. In contrast, early feature fusion (EFF) can integrate the fused
feature maps into the network to further improve the performance of the network. However,
since features from early stages contain weak semantic information [18], it is challenging to
efficiently fuse features from different stages.

Based on the above mentioned, in this paper, we have investigated how to provide better
knowledge for branches through EFF and proposed a new distillation method, KFD. Specif-
ically, we found that dense feature connections conflict with the self-distillation framework
as features in the early stages contain weak semantic information (as shown in Table 1). To
solve this problem,we have proposed a SelectiveDense Feature ConnectionModule (SDFC).
Based on SDFC, a new self-distillation framework, KFD is proposed. The advantages of KFD
are as follows: (1) The combination of dense feature connections and SDFC provides better
knowledge for self-distillation; (2) the fused feature maps can be integrated into the network
to further enhance the performance of the network. Extensive experiments have shown that
KFD has comparable performance to the state-of-the-art distillation methods. In addition,
the performance of the network can be further enhanced when fused features are integrated
into the network.

The contributions of this paper are summarized as follows:
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• Weuse early feature fusion to provide better knowledge for self-distillation. To the best of
our knowledge, this is the first work to combine early feature fusion with self-distillation.

• We have found that early feature fusion degrades the performance of self-distillation and
propose SDFC to solve this problem. Based on SDFC, a new self-distillation framework,
KFD, is proposed, which can provide rich knowledge for branches.

• We have conducted extensive experiments to demonstrate the ability of KFD to improve
model performance and compress models. In addition, the performance of the network
can be further enhanced when fused features are integrated into the network.

2 RelatedWork

Knowledge distillation As a common method of model compression, knowledge distillation
allows the knowledge of large models to be transferred to small models. Knowledge dis-
tillation was first proposed by Hinton et al. [8], who they trained student networks using
logits from teacher networks. Since then, various efforts have defined different distillation
knowledge. Romero et al. [23] used intermediate features of the teacher network to guide
the training of the student network. Zagoruyko and Komodakis [34] used attention maps as
distillation knowledge. Yim et al. [32] used the inter-layer relationship of the feature map for
knowledge distillation. However, there are obvious limitations of conventional knowledge
distillation: (1) the training of small models depends on a pre-trained large model; and (2)
the model capacity gap between the student and the teacher affects the training of the small
model.

Some efforts have been done to improve the latter. For example, Mirzadeh et al. [21]
introduced a teaching assistant network to compensate for the impact of the gap in model
capacity between teachers and students on training. In addition, an early-stop strategy was
proposed tomitigate this problem [4]. Zhang et al. [35]made improvements on both problems.
They proposed a self-distillation framework, BYOT, which allows the deep structure of the
network to guide the shallow structure of the network for training. Since there is only one
network in the training process, the training time is significantly reduced. Zhang et al. [36]
combined self-distillation and attentionmechanisms to significantly improve the performance
of branches. Zhang et al. [37] redesigned the branches and the attention mechanism to further
improve the performance of branches and reduce the computational complexity.

Multi-scale attention mechanisms The significance of attention mechanisms has been exten-
sively studied. It draws on human attention thinking and can enhance important feature
information and suppress less important ones. Wang et al. [27] constructed an end-to-end
convolutional neural network with a bottom-up top-down attention mechanism. SE-Net [12]
enhances the channel-level feature using global average pooling and fully connected layers.
BAM [22] and CBAM [28] further emphasize feature information in the channel and spatial
dimensions. SKNet [17] uses a channel-level attention mechanism to select the appropriate
convolutional kernel for different samples. CA-Block [9] further encodes the spatial infor-
mation along the horizontal and vertical directions separately, thus capturing the positional
relationships of the features. These efforts integrate attention mechanisms into the backbone
to improve network performance. In this paper, we use the attentionmechanism to selectively
fuse features, which suppresses the noise of features from the shallow layers of the network.
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Fig. 1 Comparison of various self-distillation methods. The black line is the forward path; the green line is
response-based distillation; the blue line is feature-based distillation. a Using the feature and the prediction
from the deepest layer for self-distillation [35–37]; b Feature maps of the network are fed into BiFPN to
generate refined feature maps. The refined feature maps are then used for classification to obtain predictions.
Finally, features and the prediction are used to self-distillation [15]; cOur proposedmethod. Featuremaps from
different stages are fused by dense feature connections as well as SDFC. The fused feature maps are used for
classification to obtain predictions. Finally, the fused feature maps and predictions are used for self-distillation

Fig. 2 Selective dense feature connection module

3 Method

3.1 Selective Dense Feature ConnectionModule

It is well known that the features extracted from deep layers of the network contain rich
semantic information, which facilitates the determination of what the samples are. The fea-
tures extracted from the early stages of the network contain rich spatial information, which
is also beneficial for classification. However, the features from the early stages of the net-
work contain weak semantic information [18], which is not favorable for classification. To
effectively fuse the feature maps from different stages, we propose a selective dense feature
connection module. Some details about SDFC are as follows.

As shown in Fig. 2, we first simply fuse n feature maps at different scales by an element-
level summation to obtain the feature map M:

M =
n∑

i=1

Fi (1)

Then, channel-level global average pooling is used to embed the channel information into
the spatial dimension to obtain a spatial-level attention map Fs. Specifically, the attention
map Fs is calculated through the channel dimension:

Fs = Avg(M) = 1

C

C∑

i=1

M(i, h, w) (2)

Finally, two fully connected layers and a softmax operation are used to generate the
respective weights of the features at different scales:
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Fig. 3 Knowledge fusion distillation (F1234 is the final multi-scale feature map, which is used to guide the
training of branches; the blue line represents feature-based distillation; the green line represents response-based
distillation; k refers to kernel, s refers to stride, and p refers to padding.)

Weight = Sof tmax(FC2(δ(Bn(FC1(Fs))))) (3)

where δ for ReLU [6], Bn for Batch Normalization [14], and FC for the fully connected layer.
In addition, to reduce the computational complexity, the first fully connected layer maps the
feature Fs to dimension d:

d = max(H ∗ W/r , L) (4)

where L denotes the minimum value of d and r is the reduction ratio (L=16, r=16 in our
experimental setup).

In summary, SDFC reweights the feature maps to be fused using the two fully connected
layers and the spatial information of the feature maps. It emphasizes the important feature
maps and suppresses the less important ones. The feature maps obtained by SDFC can be
considered as a fusion of effective features from different stages. Therefore, the fused feature
map can provide better guidance to the network.

3.2 Knowledge Fusion Distillation

3.2.1 KFD Framework

The main purpose of KFD is to obtain a feature map containing multi-scale features through
EFF,which can provide better knowledge for the network itself. As shown in Fig. 4, EFF fuses
the feature maps of different stages in the forward propagation of the network; LFF fuses
the feature maps from different stages by upsampling the feature map of the deepest layer of
the network. Compared with LFF, the feature maps obtained with EFF can be integrated into
the network to further improve the performance of the network. As shown in Fig. 3, extra
branches are added in different stages of the network, which include an attention mechanism,
a feature alignment layer, and a classifier. Dense feature connections and SDFC are used to
fuse features from different stages. Eventually, the richest feature map is transferred to a
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Fig. 4 Early feature fusion and late feature fusion. (FFM refers to fused feature maps)

fully connected layer to obtain the probability distribution. Then, the feature map and the
probability distribution are used to guide the training of branches.All branches can be dropped
without introducing additional computational complexity.

In the KFD framework, each branch is subject to three supervised information except for
the deepest branch and the additional feature fusion branch.

The first supervised information is the cross-entropy loss, which is calculated with qi and
Y. Note that qi is the the softmax layer’s output of the i th classifier and Y is the ground truth
labels. In addition, α is used to adjust the supervised information.

The second supervised information is the Kullback–Leibler divergence between qi and
qk . As shown in Fig. 3, qk is the softmax layer’s output of classifier 5.

The last supervised information is a hint from the feature map containing multi-scale
features. Hint refers to the output of the hidden layer in the teacher model, which guides the
student network to generate more accurate feature maps. Note that β is used to adjust the
supervised information, Fi refers to the feature map of the i th branch, and Fk is the richest
feature map.

In summary, the loss function of the whole network consists of the loss functions of all
classifiers, which can be written as (the recommended hyper-parameters α and β are 0.1 and
5e−5):

loss =
n∑

i

(1 − α) · CrossEntropy(qi , Y ) +
n−2∑

i

(α · K L(qi , qk) + β · ‖Fi − Fk‖22)(5)

Fk = SDFC(F1, ..., Fn) (6)

3.2.2 Implementation Details

Dense feature connections In order to maintain the consistency of the feature map, it is
necessary to adjust the channel and size of the feature map. Although average pooling has
low computational complexity, it can corrupt feature information (as shown in Sect. 4.2).
Therefore, we use 3×3 convolution to adjust both channel and the feature map size.

AttentionmechanismAsshown inFig. 3,weuse the bottom-up top-downattentionmechanism
[27], which consists of convolution, deconvolution, and a sigmoid operation.

Feature align layer As shown in Fig. 3, to reduce the computational complexity, we refer
to the Bottleneck structure [7], which uses 1×1 convolution to reduce the computational
complexity.
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Table 1 Comparison of
self-distillation in three cases
(SD-DFC refers to
self-distillation with dense
feature connections; SD refers to
self-distillation; SD-SDFC refers
to self-distillation with SDFC;
The numbers in the table are the
accuracy for classifier4)

Distillation SD SD-DFC SD-SDFC

Resnet18 78.99 79.34 (+0.35) 79.48 (+0.49)

Resnet34 79.91 79.76 (−0.15) 80.31 (+0.55)

Resnet50 80.37 80.54 (−0.27) 81.07 (+0.53)

Bolded numbers are the accuracy that higher than the SD

4 Experiments

We have evaluated the KFD framework on five convolutional neural networks (ResNet [7],
WideResNet [33], MobileNet [10], ResNeXt [29], VGG [24]) and three datasets (CIFAR10
[16], CIFAR100 [16], Tiny-ImageNet). These networks include deep networks, wide net-
works, and lightweight networks. Learning rate decay and some methods to prevent models
overfitting (data augmentation, l2 regularization and early stopping) were used in the training
process. All experiments were implemented by Pytorch on Tesla P100.

SGD with learning rate decay and momentum are utilized to optimize neural networks.
On the CIFAR10 and CIFAR100 datasets, neural networks were trained for 200 epochs and
the learning rate was divided by 10 at the 75th, 130th, and 180th epoch. Batch size and
initial learning rate are set to 128 and 0.1, respectively. On the Tiny-ImageNet dataset, neural
networks were trained for 100 epochs, and the learning rate was divided by 10 at the 30th,
60th, and 90th epoch. Batch size and initial learning rate are set to 64 and 0.1, respectively.

The hyper-parameters used in the experiments are as follows. (1) The hyper-parameters
α, β and T for this paper are set to 0.1, 5e−5 and 3 respectively; (2) The hyper-parameters
L and r for SDFC are set to 16 and 16 respectively; (3) The hyper-parameters in the other
distillation methods are set to the numbers recommended in the corresponding papers. For
example, α, β and T are set to 1, 8 and 4 in DKD [39]; α, β and T are set to 0.1, 1e-6 and 3
in BYOT [35].

The following metrics are used in the experiments: (1) Accuracy: probability of correct
prediction in all samples, which indicates the performance of the model; (2) FLOPs (floating
point operations per second): it measures the complexity of the model; (3) Storage: the size
of the model, which measures howmuch storage the model takes up; (4) Inference speed: the
time taken to infer the test dataset of CIFAR100 when models are deployed on Tesla P100;
(5) Noise level: The noise level refers to the value of σ in Gaussian noise (the larger the
σ , the higher the noise level). Please note that all numbers from Table 1 to Table 9 refer to
accuracy. The figures in Tables 10 and 11 include Accuracy, FLOPs, Storage and Inference
speed. The numbers in Tables 12 and 13 indicate the accuracy and the noise level.

4.1 Why Dense Feature Connections Lower the Performance of the Self-Distillation?

As shown in Table 1, as the depth of the model increases, the improvement of self-distillation
with dense feature connections based on self-distillation gradually decreases from 0.35% to
−0.27%. In contrast, self-distillation with SDFC performs well for models with different
depths. This illustrates that the feature maps from the early stages of the network contain
noise. This makes sense because the feature maps from the early stages of the network
contain weak semantic information according to Lin et al. [18], which is not conducive to
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Table 2 Comparison of different downsamplingmethod (The numbers in the table are the accuracy for different
classifiers)

Model Downsample Classifier1 Classifier2 Classifier3 Classifier4

Resnet18 1×1 Conv + Avgpool 70.37 75.88 78.48 78.94

3×3 Conv 70.63 76.43 79.07 79.48

Resnet34 1×1 Conv + Avgpool 71.96 77.95 79.97 80.12

3×3 Conv 71.61 78.09 80.17 80.31

Resnet50 1×1 Conv + Avgpool 70.56 76.64 79.93 80.53

3×3 Conv 71.96 77.65 80.63 81.07

Bolded numbers are the higher accuracy obtained with distillation when different downsampling methods are
used

Table 3 Comparison of integrate or not (The numbers in the table are the accuracy for different classifiers)

Model Integrate Classifier1 Classifier2 Classifier3 Classifier4 Ensemble

Resnet18 � 70.63 76.43 79.07 79.48 79.95

� 71.05 77.64 79.31 79.71 80.39

Resnet50 � 71.96 77.65 80.63 81.07 81.29

� 72.66 78.82 81.36 81.58 82

Resnet101 � 71.82 78.35 81.41 81.63 81.91

� 72.37 78.54 81.77 82.08 82.4

Bolded numbers are the higher accuracy

classification. Therefore, SDFC is necessary to emphasize the important features and suppress
the unimportant ones.

4.2 The choice of DownsamplingMethod

In this subsection, we compare different downsampling methods. In method 1, the 1x1 conv
is used to adjust the channels and the average pooling is used to reduce the size of the feature
map. In method 2, a 3x3 conv is used to adjust both the channel and the size of the feature
map. As shown in Table 2, the method 2 performes better on 3 Resnet models. It makes sense,
since average pooling can destroy spatial features [1, 13].

4.3 What ifWe Integrate the Fused Features Into the Backbone?

One of the most significant advantages of early feature fusion is that the fused features can be
integrated into the backbone. In Table 3, we show the distillation effect when fused features
are integrated into the network (to reduce the number of parameters and FLOPs, the 3×3
DWConv [11] is used to replace the 3×3 Conv). It can be observed that the performance of all
classifiers is further improved after the fused feature maps are integrated into the backbone.
This is due to two reasons: (1) efficient feature reuse and (2) feature connections enhance
gradient propagation.
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Table 4 Comparison of SDFC and SKNet on CIFAR100 (The numbers in the table are the accuracy for
different classifiers or ensemble; Ensemble means that all classifiers are used to predict)

Model Fusion method Classifier1 Classifier2 Classifier3 Classifier4 Ensemble

Resnet18 SDFC 70.63 76.43 79.07 79.48 79.95

SKNet 70.29 76.29 79.01 79.32 79.78

Resnet34 SDFC 71.61 78.09 80.17 80.31 81.27

SKNet 71.6 77.56 79.99 80.25 80.8

Resnet50 SDFC 71.96 77.65 80.63 81.07 81.29

SKNet 71.08 76.87 80.03 80.06 80.77

Bolded numbers are the higher accuracy

4.4 Comparison of SDFC with SKNet for Distillation on CIFAR100

SKNet [17] uses channel-level information to fuse different features adaptively. However, as
shown in Table 4, the distillation becomes less effective as the network becomes deeper. We
believe that this is due to the fact that features from the early stages contain weak semantic
information [18]. Therefore, what really matters for features of the early stages is the spatial
information. So we propose SDFC (as shown in Fig. 2). We summarize the experiments on
3 Resnet models and demonstrate the excellence of SDFC at Table 4.

4.5 What has Attenion LearnedWhen Different Features are Used for Distillation?

To demonstrate more intuitively that the feature map obtained by SDFC is better knowledge,
we summarize the visualization experiments. As shown in Fig. 5, the images on the first
row are the feature maps for different stages of WRN-38-2. It can be observed that feature
maps from the shallow layer are rich in detailed features and feature maps from the deep
layer are rich in abstract features. Next, we use different feature maps for distillation (the
feature map from the deepest layer and the feature map obtained by SDFC ) and compare the
results. Specifically, we have visualized the output of attention on different branches. It can
be observed that the results of distillation with the fused feature map contain richer feature.

4.6 Results on CIFAR10

Table 5 shows results of the experiments on CIFAR10. The numbers highlighted in bold are
the highest accuracy. It can be observed that (1) the average accuracy is increased by 1.29%,
and (2) all the second branches of the neural networks have higher accuracy than the baseline,
which can achieve model compression as well as inference acceleration to some extent.

4.7 Results on CIFAR100

Table 6 shows the results of the experiments on CIFAR100. The numbers highlighted in
bold are the highest accuracy. It can be observed that (1) the average accuracy is increased
by 4.17%; (2) the accuracy of the third branch of all the neural networks is higher than the
baseline and (3) KFD is valid for lightweight networks, deep networks and wide networks.
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(a) Original image

(b) baseline-stage1 (c) baseline-stage2 (d) baseline-stage3

(e) Attention1-DL (f) Attention2-DL (g) Attention3-DL

(h) Attention1-SDFC (i) Attention2-SDFC (j) Attention3-SDFC

Fig. 5 Feature maps for different stages (Attention-DL is the feature map obtained by distillation with the
feature map from the deepest layer; Attention-SDFC is the feature map obtained by distillation with the fused
feature map; Baseline refers to the effect of a network that has not been distilled)
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Table 5 Results on CIFAR10 (Baseline refers to the effect of a network that has not been distilled; Ensemble
refers to all classifiers being used for prediction; The numbers in the table are the accuracy for different
classifiers or ensemble)

model Baseline Classifier1 Classifier2 Classifier3 Classifier4 Ensemble

Resnet18 94.25 92.21 94.55 95.39 95.56 95.54

Resnet50 94.53 92.61 95.1 95.64 95.76 95.91

WRN-38-2 94.54 92.48 94.87 95.63 95.71 95.66

WRN-26-2 94.16 92.35 94.28 95.12 95.35 95.25

VGG 93 93.27 94.22 94.18 94.15 94.4

Bolded numbers are the highest accuracy

Table 6 Results on CIFAR100 (Baseline refers to the effect of a network that has not been distilled; Ensemble
refers to all classifiers being used for prediction; The numbers in the table are the accuracy for different
classifiers or ensemble)

Model Baseline Classifier1 Classifier2 Classifier3 Classifier4 Ensemble

Resnet18 77.09 70.63 76.43 79.07 79.48 79.95

Resnet50 77.68 71.96 77.65 80.63 81.07 81.29

Resnet101 77.98 71.82 78.35 81.41 81.63 81.91

WRN38-2 78.29 71.76 78.24 81.11 81.44 81.62

WRN50-2 78.48 73.13 78.28 80.92 81.64 82.43

MobilenetV3 60.69 58.67 66.29 68.12 65.8 69.7

ResNeXt50-32-4 79.42 72.83 78.81 80.97 81.14 81.73

VGG-19 72.25 72.68 75.54 75.45 75.04 76.65

Bolded numbers are the highest accuracy

Table 7 Results on Tiny-ImageNet (Baseline refers to the effect of a network that has not been distilled;
Ensemble refers to all classifiers being used for prediction; The numbers in the table are the accuracy for
different classifiers or ensemble)

Model Baseline Classifier1 Classifier2 Classifier3 Classifier4 Ensemble

Resnet18 60.59 52.19 58.69 61.76 62.77 64.75

Resnet34 62.01 53.77 61.24 63.85 64.45 66.47

Resnet50 64.32 55.69 62.24 65.55 66.48 68.04

WRN-26-2 63.88 55.43 61.33 63.97 66.36 66.71

WRN38-2 65.46 55.15 62.01 66 68.02 68.26

ResNeXt26-32-4 63.93 55.84 61.59 63.79 65.93 67.05

VGG-19 57.75 56.2 62.37 63.43 61.77 65.36

Bolded numbers are the highest accuracy

4.8 Results on Tiny-ImageNet

Table 7 shows the results of the experiments on Tiny-ImageNet. The numbers highlighted in
bold are the highest accuracy. It can be observed that (1) the average accuracy is increased
by 4.1% and (2) the accuracy of the third branch of almost all the neural networks is higher
than the baseline.
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Table 8 Comparison on CIFAR10 (KFI refers to the effect of the fused features being integrated into the
backbone; Baseline refers to the effect of a student network that has not been distilled; KFI† refers to the result
of the ensemble, i.e. all classifiers are used to predict; The numbers in the table are the accuracy for different
distillation methods)

Teacher Student Baseline BYOT SCAN AdaIN SD DKD KFD KFI KFI†

Resnet34 Resnet18 94.25 95.33 95.15 95.16 95.21 95.22 95.56 95.84 95.86

Resnet101 Resnet50 94.53 95.15 95.63 95.5 95.53 95.09 95.76 96.02 96.08

WRN-50-2 WRN-38-2 94.54 94.98 95.62 95.41 95.49 95.29 95.71 95.92 96.3

WRN-50-2 WRN-26-2 94.16 95 95.2 95.15 95.04 95.03 95.35 95.73 95.84

Resnet34 VGG 93 93.83 93.98 93.86 93.85 93.12 94.15 95.3 95.44

Bolded numbers are the accuray proposed in this paper that higher than other distillation methods

Table 9 Comparison on CIFAR100 (KFI refers to the effect of the fused features being integrated into the
backbone; Baseline refers to the effect of a student network that has not been distilled; KFI† refers to the result
of the ensemble, i.e. all classifiers are used to predict; The numbers in the table are the accuracy for different
distillation methods)

Teacher Student Baseline BYOT SCAN AdaIN SD DKD KFD KFI KFI†

Resnet34 Resnet18 77.09 78.64 78.99 78.63 78.71 80.09 79.48 79.71 80.39

Resnet101 Resnet50 77.24 80.56 80.45 80.1 79.57 79.66 81.07 81.58 82

WRN-50-2 WRN-38-2 78.29 80.98 80.58 80.53 79.72 80.5 81.44 82 82.35

WRN-50-2 WRN-26-2 77.96 78.83 80.2 80.03 79.44 79.84 80.34 81.48 81.83

Resnet34 VGG 72.25 74.34 74.43 74.38 73.4 72.74 75.04 76.25 77.63

Bolded numbers are the accuray proposed in this paper that higher than other distillation methods

4.9 Comparison with Other DistillationMethods

In this subsection, we have compared KFD with other distillation methods over the last few
years on the CIFAR10 and CIFAR100 datasets, which include BYOT [35], SCAN (scalable
neural networks) [36], AdaIN (adaptive instance normalization) [31], SD (self-distillation)
[37] and DKD (decoupled knowledge distillation) [39]. Among them, BYOT, SCAN and SD
are self-distillation methods, the teacher and student configurations are for AdaIN and DKD.
Of these, DKD is the state-of-the-art distillation method. As shown in Tables 8 and 9, it can
be observed that (1) KFD becomes more effective as the depth of the network increases; (2)
For very deep networks, KFD outperforms the state-of-the-art distillation method currently
available, DKD; (3) even in networks that are not very deep (e.g., Resnet18, VGG), KFD has
comparable performance with the current state-of-the-art methods.

4.10 Model Compression and Inference Acceleration

In addition to improving the performance of the network, KFD can be used for model com-
pression. This can be achieved in two ways: (1) using KFD to improve the performance of
branches and then dropping the rest of the network (as shown in Table 10); (2) Using KFD
to enhance the performance of small networks, then replacing large networks with small
networks (as shown in Table 11).

As shown in Table 10, we have highlighted the figures of the branch that with the least
number of parameters for a higher accuracy than the baseline. It can be observed that in the
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Table 10 Model compression and inference acceleration on CIFAR100

Indicator Baseline Classifier1 Classifier2 Classifier3 Classifier4

Resnet18 Accuracy 77.06 70.63 76.43 79.07 79.48

FLOPs 0.55G 0.45× 0.67× 0.9× 1×
Storage 11M 0.12× 0.13× 0.42× 1×

VGG Accuracy 72.25 72.68 75.54 75.45 75.04

FLOPs 0.4G 0.27× 0.6x 0.95× 1×
Storage 21.72M 0.08× 0.2x 0.79× 1×

Resnet101 Accuracy 77.98 71.82 78.35 81.41 81.63

FLOPs 2.52G 0.59× 0.71× 1.38× 1×
Storage 42M 0.08× 0.2× 1.29× 1×

Bold numbers are indicators of the first branch with higher accuracy than baseline

Table 11 Model compression and inference acceleration on CIFAR100

Dataset Indicators Distilled resnet18 Resnet34 Resnet50

CIFAR100 Accuracy 79.48 77.48 77.68

Inference Speed 3.99 s 5.59 s 9.24 s

Storage 11.22M 21.32M 23.7M

Bolded numbers are the highest accuray, the fastest inference speed and the smallest storage

Table 12 Robustness analysis
(the model is resnet18 distilled
with KFD; the distilled resnet18
is trained and tested on
CIFAR100 with different noise
levels)

Noise-level 0.003 0.005 0.007 0.009

Accuracy 79.41 79.24 78.93 78.91 (−0.5)

Bolded numbers are the decreased numbers when the noise level is
increased

average case, the accuracy is improved by 0.93%, the storage is reduced by 76% and the
FLOPs are reduced by 37%. Among them, the FLOPs and storage of VGG are reduced by
73% and 92%, respectively, without loss of accuracy.

Table 11 shows how much inference costs can be reduced when Resnet34 and Resnet50
are replaced by distilled Resnet18. Inference speed is the speed of inference on the test dataset
of CIFAR100 when the model is deployed on the Tesla P100. It can be observed that: (1)
the accuracy of the distilled Resnet18 is 2% and 1.8% higher than Resnet34 and Resnet50
respectively; (2) the inference speed of Resnet18 on Tesla P100 is 1.4x and 2.31x faster than
Resnet34 and Resnet50 respectively; (3) the storage occupancy of Resnet18 is 0.52x and
0.47x of Resnet34 and Resnet50 respectively.

4.11 Robustness Analysis

To demonstrate the robustness of KFD, we have conducted two sets of experiments: (1) We
add Gaussian noise to CIFAR100 and train Resnet18 with KFD. Then, the noise level is
gradually increased from 0.003 to 0.009. As shown in Table 12, the accuracy of Resnet18
distilled with KFD drops by no more than 0.6% when the noise level is increased from 0.003
to 0.009; (2) We have trained Resnet18 with KFD on CIFAR100 with a noise level of 0.003.
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Table 13 Robustness analysis (the model is resnet18 distilled with KFD; it is trained on CIFAR100 with a
noise level of 0.003 and tested on CIFAR100 with different noise levels)

Noise-level 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Accuracy 79.41 79.22 79.15 79 78.7 78.45 78.05 (−1.33)

Bolded numbers are the decreased numbers when the noise level is increased

Then, the noise level of the test dataset of CIFAR100 is gradually increased. As shown in
Table 13, the accuracy of the distilled Resnet18 decreases by no more than 1.5% when the
noise level is increased from 0.003 to 0.009.

5 Conclusion

In this paper, we have found that dense feature connections conflict with the self-distillation
framework and proposed the SDFC module to solve this problem. Based on this, we fur-
ther propose a distillation method, KFD. We have demonstrated the effectiveness of SDFC
through comparative experiments as well as visualization experiments. In addition, we have
conducted extensive experiments on three datasets and five models to demonstrate that KFD
has comparable performance to the state-of-the-art distillation methods.

Limitations The noticeable limitation is discussed as follows. In KFD, the accuracy is further
improved when all classifiers are used for prediction. However, this brings additional storage
occupation and computational complexity.

Future work Future research directions are as follows: (1) In KFD, only the final fused
feature map (F1234 in Fig. 3) is used for self-distillation, we will next investigate whether
the intermediate fused featuremaps (F12, F123 in Fig. 3) can further improve the performance
of self-distillation; (2) The performance of the network is constantly improving during the
training process. Thus, how to dynamically adjust the hyper-parameters is also a future
research direction for us.
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