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Abstract

The existing randomized autoencoders (RAEs) are generally designed for vectorization data

resulting in destroying the original structure information inevitably when dealing with multi-

dimension data such as image and video. To address this issue, a one-side matrix randomized

AE (OMRAE) is developed that takes the two-dimensional (2D) data as inputs directly by the lin-

ear mapping on one-side of inputs with matrix multiplication. For multichannel 2D (M2D) data,

a multichannel OMRAE (OMMRAE) is proposed by training the output weights to rebuild each

channel of inputs respectively. In this way, the structural information of each channel and the

interaction between channels are explored. Then, a double-side structure using 2 OMMRAEs to

simultaneously extracts the row and column structure information of M2D is developed. At last,

a novel hierarchical matrix randomized neural networks is constructed for one-class classification

(HMRNN-OC) where each layer passes information by bilinear mapping derived from DMM-

RAE. Experiments are conducted on 2 benchmark datasets for the effectiveness demonstration.

Comparisons to several state-of-the-art AEs reveal that the proposed OMMRAE/DMMRAE can

obtain better performance with a compact network size.

Keywords: Randomized Autoencoder, Matrix Representation, Matrix Neural Network,

One-class classification.

1. Introduction1

Recently, the randomized autoencoder (RAE) especially for the randomized neural network2

(RNN) [1–4] based autoencoder (RNN-AE) has attracted much attention due to its advantages of3

fast learning speed, ease of implementation and less human-intervention [5–16]. The RNN-AE4

can be tracked to [5] that uses random hidden-layer parameters without tuning and only trains the5

output weight for representation learning. Owing to that, RNN-AE showed superior performance6

to many other methods on generalization capacity and training speed. Subsequently, the ℓ1-7

norm penalty based sparse RNN-AE (RNN-SAE) [6], the kernel RNN-AE (RNN-KAE) [7] using8

kernel function, the graph RNN-AE (GRNN-AE) [8, 9] by regularizing the graph Laplacian9

manifold, etc, were continually developed. The recent improvements of RAE focus on imposing10

constraints on the encoded features to obtain the desired feature distribution [12–14].11
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However, the aforementioned RAEs are generally designed for one-dimensional (1D) vec-12

tors. The two-dimensional (2D) data (e.g., the grey-scale images and the time-frequency spec-13

trograms) and the multichannel 2D (M2D) data (e.g., color images and videos) are more common14

in real-world applications. To cope with the conventional RAEs, the 2D/M2D data have to be15

transformed into 1D vector resulting in the inevitable destruction of the original structure in-16

formation. Moreover, the direct transformation from the 2D/M2D data may lead to the curse of17

dimensionality dilemma. To address the aforementioned issue, a one-side matrix randomized AE18

(OMRAE) is developed that takes the two-dimensional (2D) data as inputs directly by the linear19

mapping on one-side of inputs with matrix multiplication. For multichannel 2D (M2D) data, a20

novel multichannel OMRAE (OMMRAE) is proposed by training the output weights to rebuild21

each channel of inputs respectively. Compared with the existing vectorization based RAEs, the22

proposed OMMRAE can reserve the structure information of each channel and meanwhile the23

interactions between channels are explored. The OMRAE and OMMRAE only use unilateral24

linear transformation on the 2D/M2D inputs and the encoded outputs are obtained by a linear25

transformation only on the one-hand side. Thus, a double-size multichannel MRAE (DMM-26

RAE) by parallelly using two OMMRAEs on both side is further proposed to address the issue27

of OMMRAE that only performs feature learning with a unilateral projection scheme.28

As discussed in [13, 14, 17, 18], the RAEs achieved encouraging performance on the one-29

class classification (OCC) applications, and even perform better than many deep learning based30

OCC algorithms [14]. Considering the successes of the RAEs on OCC, in this paper, a novel hier-31

archical matrix randomized neural networks is constructed for one-class classification (HMRNN-32

OC) where each layer passes information by bilinear mapping derived from DMMRAE. Experi-33

ments are conducted on 2 benchmark datasets for the effectiveness demonstration. Comparisons34

to several state-of-the-art AEs reveal that the proposed OMMRAE/DMMRAE can obtain better35

performance with a compact network size. The contributions of the paper are summarized as36

follows.37

1. A novel OMMRAE is proposed for M2D data feature learning by multichannel interaction38

mechanism and thus the structural information of each channel and the interaction between39

channels are explored.40

2. A DMMRAE by using two OMMRAEs parallelly on both side is further developed to41

address the issue of OMMRAE that only performs feature learning with a unilateral pro-42

jection scheme.43

3. A HMRNN-OC framework built in stacking DMMRAEs is developed for OCC, and the44

experimental results demonstrate the effectiveness of the proposed algorithms compared45

with several state-of-the-art AE algorithms and OCC algorithms on benchmark datasets.46

2. The proposed OMMRAE and DMMRAE47

2.1. OMRAE48

For 2D data such as grey-scale images and time-frequency spectrograms, the OMRAE uti-49

lizes the rule of matrix multiplication to conduct linear mapping directly on the one-side of50

original 2D inputs. Give the 2D dataset
{
Xi ∈ R

D1×D2 , i = 1, · · · ,N
}

where D1 and D2 are the51

dimensions of the 2D data. OMRAE first randomly generates the input weight W ∈ RL×D1 and52

bias B ∈ R
L×D2 where L is the number of the hidden neurons, and then the matrix projection is53

conducted on 2D input Xi and the hidden-layer output of i-th sample is derived as54

Hi = g(WXi + B)T , i = 1, · · · ,N, (1)
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Figure 1: The architecture of the OMMRAE.

with Hi ∈ R
D2×L. The loss function of OMRAE is constructed as55

min
β

J(β) =
C

2

N∑

i=1

∥∥∥Hiβ − XT
i

∥∥∥2
F
+

1

2
∥β∥2F . (2)

Here β ∈ RL×D1 is the output weight to be optimized, and it can be analytically derived by setting56

the derivative to 0 as57

β =


N∑

i=1

HT
i Hi +

I

C


−1 N∑

i=1

HT
i XT

i . (3)

The encoded output of OMRAE can be obtained by Yi = βXi, Yi ∈ R
L×D2 . It can be readily seen58

from (1) that OMRAE only conducts unilateral mapping on the input and the encoded output is59

also obtained using the unilateral linear mapping. In this way, the column structure information60

is extracted.61

2.2. OMMRAE62

The effective feature representation can be obtained by OMRAE from original 2D data di-63

rectly, but it fails to deal with M2D data. For M2D data, the OMRAE is extended to OMMRAE64

by rebuilding all channels simultaneously from hidden-layer outputs. Fig. 1 shows the detailed65

architecture of OMMRAE. Give the M2D dataset Xi ∈ R
D1×D2×K , i = 1, · · · ,N, where K is the66

number of channels and X
(k)

i
∈ RD1×D2 is the k-th channel. OMMRAE randomly generates the K67

input weights and biases (W(k),B(k)), k = 1, · · · ,K for each channel, and the hidden-layer output68

of OMMRAE is obtained by69

Ĥ
(k)

i
= g(W(k)X

(k)

i
+ B(k))T , i = 1, · · · ,N. (4)
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Hi =

K∑

k=1

Ĥ
(k)

i
, i = 1, · · · ,N. (5)

It can be seen that the Hi integrates all information and the proposed OMMRAE tries to re-70

construct all channels of the original M2D input from the integrated Hi. It is believed that the71

obtained output weights can learn more intrinsic features from M2D data. Specially, the loss72

function can be expressed as73

min
β(k)

J(β(k)) =
C

2

K∑

k=1

N∑

i=1

∥∥∥Hiβ
(k) − X

(k)T

i

∥∥∥2
F
+

K∑

k=1

1

2

∥∥∥β(k)
∥∥∥2

F
(6)

Similarly, the analytical weight can be obtained as74

β(k) = (

N∑

i=1

HT
i Hi +

I

C
)−1

N∑

i=1

HT
i X

(k)T

i
(7)

The encoded output of i-th sample is yi =
K∑

k=1

β(k)X
(k)

i
∈ R

L×D2 . As shown in (7), OMMRAE75

trains the output weight β(k) by rebuilding each channel of M2D inputs, thus fully mining the76

structural information of each channel. Algorithm 1 summarizes the pseudo code of OMMRAE.77

Algorithm 1 OMMRAE

Given:

Xi, (i = 1, · · · ,N), L, C, g(•).

Steps:

1. Randomly generate (W(k),B(k)),

2. Compute the hidden-layer output by (5),

3. Calculate
N∑

i=1

HT
i

Hi,
N∑

i=1

HT
i

x
(k)T

i
,

4. Obtain the output weight β(k) by (7),

5. Derive the encoded output yi.

2.3. DMMRAE78

Both the OMRAE and OMMRAE are constructed only by a unilateral transformation, and79

the encoded outputs are also obtained by the unilateral linear mapping. In this way, OMMRAE80

performs feature learning on the column vectors of the M2D data but omits the correlation infor-81

mation among the row vectors. The disadvantages are arising as more hidden neurons are needed82

for feature representation, leading to a high computation complexity. To remedy this drawback,83

two OMMRAEs are conducted in parallel to perform feature learning on the row and column84

vectors simultaneously, resulting the DMMRAE. Algorithm 2 summarizes the pseudo code of85

DMMRAE. It is worthy pointing that the DMMRAE is actually an ensemble strategy training 286

OMMRAEs with inputs Xi ∈ R
D1×D2 and inputs X̂i ∈ R

D2×D1 , where
{
X̂i|X̂

(k)

i
= X

(k)T

i

}
, respec-87

tively. The resulting output weights β
(k)

(l)
∈ RL×D1 and β

(k)

(r)
∈ RL×D2 are used to obtain the encoded88
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outputs by multiplying Xi left and right, respectively89

yi =

K∑

k=1

β
(k)

(l)
X

(k)

i
β

(k)T

(r)
∈ RL×L. (8)

From the above derivation, it can be found that the proposed OMMRAEs can effectively re-90

duce the dimension of the output weight, which is critical to real implementations with a compact91

network size. For example, for a dataset X ∈ RD1×D2 , in feature learning and optimization, the92

dimensions of the output weight of OMMRAEs is only L × D1 or L × D2 while the dimensions93

of the output weight of the conventional vectorization based AE is up to L × D1 × D2.94

Algorithm 2 DMMRAE

Given:

M2D data Xi, the number of hidden-layer neurons L, the regularization parameter C, the activa-

tion function g(•).

Steps:

1. Transpose input data
{
X̂i|X̂

(k)

i
= X

(k)T

i

}
for M2D data.

2. Train the OMMRAE by Algorithm 1 with the inputs Xi and obtain the left-hand side

encoded weight β
(k)

(l)
.

3. Train the OMMRAE by Algorithm 1 with the X̂i and obtain the right-hand side encoded

weight β
(k)

(r)
.

4. Derive the encoded outputs by (8).

2.4. HMRNN-OC95

The proposed algorithms are applied for OCC [14, 18, 19] for performance evaluation. The96

proposed DMMRAEs are embedded into the HMRNN-OC framework and the pseudo code of97

the resulting method is shown in Algorithm 3.98

3. Experiments99

Experiments on 2 common benchmark image datasets, COIL100 and CIFAR10, are con-100

ducted for effectiveness evaluation. Particularly, for CIFAR10, one category is chosen as the101

target and the rest are considered as outliers in OCC. For COIL100, we combined several classes102

with similar object shapes together to formulate the OCC problem. All categories will be tra-103

versed by the same rule in the experiments.104

The specifications of all datasets are given below (samples are visualized in Fig. 2)105

1. COIL1001 is a color image database with 100 objects. Each object is captured in 72106

different positions by rotating the object position. The size of each image is 128×128,107

and the dataset contains 5000 training and 2200 test samples. Due to the small number108

of samples in each class, we combined several classes with similar object shapes together109

to formulate the OCC problem. For example, we group round jars and medicine bottles110

together because they both look like cylinders.111

2. CIFAR102 is an object recognition dataset including 50000 training samples and 10000112

1https://www.kaggle.com/jessicali9530/coil100
2https://www.cs.toronto.edu/ kriz/cifar.html
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Algorithm 3 HMRNN-OC with DMMRAE.

Given:

Xi, i = 1, · · · ,N, stacked DMMRAEs number J,
(
C j, L j

)
, j = 1, · · · , J,

Training stage:

1. for j = 1 : J

(a) Compute β
(k)

(l) j
and β

(k)

(r) j
by Algorithm (2).

(b) Compute the hidden-layer output y
i j

by

yi j = g(

K∑

k=1

β
(k)

(l) j
y

(k)

i( j−1)
β

(k)T

(r) j
), j = 1, 2, . . . , J

2. Calculate the output weight β =
(

I
C
+ ŶŶT

)−1
Ŷt, where Ŷ = [cs(y

1J
), · · · , cs(y

NJ
)]T and

t = [t, · · · , t]T ∈ RN×1.

3. Derive training errors by ε(Xi) =
∣∣∣cs(yi J)Tβ − t

∣∣∣.
4. Select the threshold η by rejecting a percentage of training samples as outliers.

Testing stage:

A testing sample Xp

1. for j = 1 : J,

y
p j
= g(

K∑
k=1

β
(k)

(l) j
X

(k)

p( j−1)
β

(k)T

(r) j
).

2. Compute the output Op = cs(yiJ)Tβ

3. Derive ε(Xp) =
∣∣∣Op − t

∣∣∣ and perform the OCC


ε(Xp) ≤ η → target

ε(Xp) > η → outlier
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testing samples from 4 vehicle and 6 animal classes, and each sample is 32 × 32 color113

images. consists of images from 10 classes. Out of the considered datasets, CIFAR10114

is the most challenging dataset due to it diverse content and complexity. Specifically,115

it should be noted that all other datasets are very well aligned, without a background.116

In comparison, CIFAR10 is not an aligned dataset and it contains objects of the given117

class across very different settings. As a result, one-class novelty detection results for this118

dataset are comparatively weaker for all methods. Out of the baseline methods, [21] has119

done considerably better than other methods.120

(a) CIFAR10 (b) COIL100

Figure 2: Visualization of benchmark datasets.

We compared the performances to several existed state-of-the-art (SOTA) AEs, namely,121

RNN-AE [5], sparse feature encoding based RNN (RNN-SAE) [6], random sparse matrix based122

AE (SMA) [20], and stacked convolutional AE (CoAE) [21]. For traditional scalar/vector AEs,123

the hidden nodes L and the regularized parameter C were optimized on the grid {100, 500, 700,124

1000, } × {10−3, 100, 103}. For our proposed AEs, the hidden nodes L and the regularized pa-125

rameter C were optimized on the grid {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200} ×126 {
10−3, 100, 103

}
. In each case, one AE was embedded in HLS-OC for feature learning. The regu-127

larized parameter in the last OCC layer of HLS-OC was optimized on the grid { 10−5, 10−3, 100,128

103, 105 }, and the threshold η was set to exclude the 10% of samples with the largest training129

error as outliers. The performance of each algorithm was quantified by AUC [22].130

3.1. Sensitive analysis of hyper-parameters131

Fig. 3 shows the parameter sensitivities of OMMRAE and RNN-AE on the number of hidden132

layer neurons and regularization parameters (L,C). As can be seen, the proposed MMAREs are133

generally less sensitivity to the number of hidden layer neurons and the regularization parameters134

than RNN-AE. For OMMRAE, the overall performance becomes stable and convincing when135

L ≥ 100. We use the HLS-OC algorithm embedded with a MMRAE to conduct optimization136

respectively in the parameter grid established above.137
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(a) OMMRAE on CIFAR10 (b) RNN-AE on CIFAR10

(c) OMMRAE on COIL100 (d) RNN-AE on COIL100

Figure 3: Visualization of the parameters optimization on the COIL100 and CIFAR10 datasets, obtained by grid opti-

mization in OMMRAE (left) and RNN-AE (right).

3.2. Compared with typical AE algorithms138

Table 1 compares the AUC obtained by the 4 SOTA AEs between the proposed OMMRAE139

and DMMRAE algorithms. All methods have been applied to the HLS-OC framework with a140

single AE for feature learning. The best results are marked in bold in the table. As highlighted,141

the proposed matrix AEs can effectively improve the classification performance and have a high142

accuracy in many categories. Among all 15 testing cases, OMMRAE and DMMRAE wins the143

highest AUC on 10 cases, while RNN-SMA, RNN-AE, and RNN-SAE only offer the best results144

on 2, 1, and 2 cases, respectively. Besides, the comparison between OMMRAE and DMMRAE145

shows that DMMRAE performs overwhelmingly better than OMMRAE, as adopting double-side146

MMRAE wins the highest AUC on 9 cases.147

In Fig. 4, the ROC curves are also depicted to visually demonstrate the advantages of the148

proposed matrix AEs in feature learning. It is clearly observed that: 1) in Fig. 4 (a) and (b),149

our proposed MMRAEs generally achieve the best performance among all compared AEs, 2)150

among our proposed MMRAEs, adopting the double-side feature learning (namely DMMRAE)151

performs normally better than the single-side feature learning (namely OMMRAE).152

Network complexity is an important factor for real implementation. Comparing with conven-153

tional vector/scalar AEs, a key merit of MMRAEs is the compact network structure to achieve a154

comparable or better performance than SOTA AEs. Fig. 5 shows the comparison of used num-155

ber of hidden nodes to achieve the best performance for our proposed OMMRAE/DMMRAE156

and the comparesed SOTA AEs. The comparisons are presented on the experiments of 3 cate-157

gory data from CIFAR10 and COIL100, respectively. As clearly depicted, for both CIFAR10 and158

COIL100 datasets, to achieve the best performance, the needed hidden nodes by our proposed159
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OMMRAE/DMMRAE is generally far less than conventional AEs. In summary, MMRAEs not160

only improve the overall accuracy, but also effectively reduce the network size to guarantee a161

compact network structure.162

Table 1: AUC (%) Comparisons with SOTA AE algorithms.

Dataset CoAE [21] RNN-AE [5] RNN-SAE [6] RNN-SMA [20] OMMRAE DMMRAE

CIFAR10-1 71.04 ± 2.58 73.64 ± 0.60. 75.18 ± 1.58 74.23 ± 0.27 77.83 ± 1.14 76.20 ± 0.54

CIFAR10-2 61.78 ± 3.86 65.13 ± 0.35 66.05 ± 0.63 63.35 ± 0.72 70.73 ± 2.55 71.47 ± 0.21

CIFAR10-3 52.13 ± 1.70 57.65 ± 0.65 59.31 ± 1.33 58.87 ± 1.20 57.89 ± 1.54 60.20 ± 0.29

CIFAR10-4 52.92 ± 2.62 59.03 ± 0.55 59.6 ± 0.27 62.79 ± 0.49 60.37 ± 0.13 61.95 ± 0.87

CIFAR10-5 52.26 ± 3.02 69.98 ± 0.56 68.27 ± 0.40 70.19 ± 0.39 69.90 ± 0.78 70.56 ± 0.38

CIFAR10-6 61.14 ± 4.57 61.22 ± 0.49 61.68 ± 0.14 67.90 ± 1.20 64.15 ± 3.00 64.21 ± 0.70

CIFAR10-7 53.61 ± 2.14 73.71 ± 0.25 72.17 ± 0.20 74.38 ± 0.51 75.13 ± 2.11 76.09 ± 0.16

CIFAR10-8 55.06 ± 0.75 60.72 ± 0.45 61.76 ± 0.58 62.72 ± 0.53 64.09 ± 0.94 67.36 ± 0.29

CIFAR10-9 71.09 ± 5.09 78.67 ± 0.29 77.89 ± 0.17 78.37 ± 0.75 77.94 ± 0.27 64.01 ± 0.65

CIFAR10-10 61.79 ± 5.30 75.79 ± 0.05 77.38 ± 0.12 75.2 ± 0.70 77.42 ±0.14 77.85 ± 0.44

Average 59.28 ± 3.16 67.55 ± 0.42 67.93 ± 0.54 68.80 ± 0.68 69.55 ± 1.26 69.19 ± 0.43

COIL100-1 78.05 ± 3.20 77.37 ± 1.39 81.51 ± 1.72 79.90 ± 1.38 86.26 ± 0.48 88.70 ± 2.37

COIL100-2 80.72 ± 7.60 98.17 ± 0.18 98.19 ± 0.73 97.97 ± 0.69 97.61 ± 0.28 97.81 ± 0.47

COIL100-3 86.12 ± 4.82 92.25 ± 1.23 94.26 ± 1.09 92.03 ± 1.20 94.05 ± 0.78 95.08 ± 0.45

COIL100-4 79.76 ± 5.01 84.97 ± 1.96 85.23 ± 1.61 82.58 ± 2.47 87.75 ± 2.28 89.99 ± 1.53

COIL100-5 75.21 ± 9.51 88.71 ± 1.59 92.71 ± 1.07 92.05 ± 1.82 89.54 ± 2.65 91.17 ± 1.38

Average 79.97 ± 6.03 88.29 ± 1.27 90.38 ± 1.24 88.91 ± 1.51 91.04 ± 1.29 92.55 ± 1.24

DMMRAE

OMMRAE

(a) Comparison in CIFAR10

DMMRAE

OMMRAE

(b) Comparison in COIL100

Figure 4: ROC Comparisons with SOTA AEs.

4. Conclusions163

Unlike the conventional scalar/vector based autoencoder that performs feature learning on164

matrix or high-dimensional data generally relying on concatenating data by paying the price of165

breaking the structural information, the proposed multichannel matrix randomized autoencoder166

(MMRAE) can effectively exploiting the structural information and reduce the number of pa-167

rameters in feature learning. The further extended double-side MMRAE is flexible learning both168
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Figure 5: Hidden nodes comparisons with SOTA AE algorithms to achieve the best performance.

the column and row structure information in matrix data. Experiments on 2 benchmark datasets169

show that the proposed MMRAEs are not only effective in classification accuracy but also have170

a compact network size. The future work will focus on constrained modeling based MMRAEs171

by exploiting the feature correlation within the same class as well as cross-classes..172
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