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LSTM based on Adaptive Convolutional Network for Time Series 

Classification 

Yujuan Li and Yonghong Wu 

School of Science, Wuhan University of Technology, Wuhan 430070, China 

Abstract: Deep learning technology is the most effective method to solve time series 

classification tasks. The existing algorithms based on deep learning usually obtain features with 

fixed step convolution, so they cannot effectively extract and focus on important multi-scale 

features. Based on the complexity and long-term dependence of time series data, an end-to-end 

model called as Adaptive Convolutional Network Long-Short-Term Memory (ACN-LSTM) is 

proposed in this paper. This network is composed of two branches: long-short-term memory 

and adaptive convolution neural network. The LSTM uses memory cells and gate mechanism 

to control the transmission of sequence information and fully extract the correlation 

information of time series to enhance the discriminative power of the network. The ACN 

obtains the local characteristics of time series by stacking one-dimensional convolutional 

neural block. Then the multi-scale convolutional neural block is used to capture different scales 

of information, which is consist of concatenated convolutional layers with different kernel size. 

Meanwhile, in order to adaptively adjust the feature information between layers, an inter-layer 

adaptive channel feature adjustment mechanism is proposed. The ACN-LSTM not only fully 

extracts long-term time correlation information, but also fuses adaptively and pays attention to 

important multi-scale features to achieve more accurate classification results. The experiment 

results with 65 UCR standard datasets illustrate that the proposed ACN-LSTM achieves highest 

arithmetic mean rank and geometric mean rank, compared with other methods, which are 2.815 

and 2.322, respectively, and also achieves the lowest mean error with 0.127, which indicates 

that ACN-LSTM is effective in univariate time series classification. 

Keywords: Time series classification; Adaptive selection; Long-Short-Term Memory (LSTM); 

Attention mechanism; Deep neural network  



1.Introduction 

In the era of big data, time series data widely exists in various fields including engineering, 

finance, medicine, human activity recognition [1]. Time series data mining has been an 

increasingly important research field. One of its main tasks is time series classification (TSC), 

where the goal is to build a classifier that can predict the category labels of time series. Since 

time series data is real-valued serial data, characterized by high dimensionality, variable length, 

multi-noise, complex relationship between variables [2]. Therefore, hundreds of methods have 

been done to classify time series data [3].  

Conventional TSC methods mainly rely on distance similarity or features. Methods based 

on distance usually performs pre-defined similarity measurements on raw time series and uses 

existing classifiers such as KNN and SVM. The accuracy of such kind of classification methods 

is generally determined by the similarity measurement. One of the well-known distance-based 

methods is dynamic time warping (DTW) combined with KNN classifier. This method has 

been proved to be a very strong baseline [3]. For methods based on distance, the key part is to 

extract a set of representative features from a large number of labeled time series data. For 

example, Time series feature bag (TSBF) [4] extracts interval features by selecting random 

subsequences, and then applies random forest classifier to predict time series labels; BOSS [5] 

forms word histograms according to word distribution and uses distance of word histograms to 

obtain classification results. The histograms represent substructures of a time series that built 

on Symbolic Fourier Approximation (SFA) [6]; The fast shapelet method [7] uses symbolic 

approximation aggregation (SAX) [8] to convert the original sequence samples into discrete low 

dimensional feature subsequences, and filter out the subsequences with poor resolution in the 

low dimensional space. This above feature-based methods can reduce the influence of some 

redundant components, so that the accuracy of the classification results is further improved.  

Ensemble algorithms aways combine different classifiers to obtain a higher accuracy. 

Elastic ensemble (PROP) [9] combines 11 elastic distance measures with 1-NN-based classifiers 

to construct 11 sub-classifiers, then applies the weighted voting scheme to the sub-classifiers 

to obtain classification results. The Collective of Transformation-Based Ensembles (COTE) [10] 

integrates 35 different classifiers, and performs weighted summation based on the sub-



classifiers results. Extended by this, the Hierarchical Vote Collective of Transformation-based 

Ensembles (Hive-COTE) [11] divides sub-classifier into different modules according to their 

types and then gets weighted summation based on different modules. 

Although the time series classification methods have achieved remarkable results, they 

also have some shortcomings. For distance-based methods, they require huge feature 

engineering or data preprocessing. Besides, there are some shortcomings, such as low accuracy, 

sensitive to noise, and unable to make full use of the attributes of time series data. For feature-

based approaches, the regular way is to separate the feature extraction from the classification 

process, which leads to the complexity of the classification. For ensemble-based approaches, 

it achieves relatively high classification accuracy. However, due to its high complexity, it is not 

widely used in practical problems. 

The deep CNN is widely used in various fields [12], such as human action recognition [13] 

and speech emotion recognition [14], furthermore, researchers have applied it to time series 

classification. Fully convolutional network (FCN) [15] uses convolution layer to replace the last 

full connection layer of deep multilayer perceptron (MLP) [16], and adds batch standardization 

layer and global pooling layer to prevent the network from over fitting, which enhance the 

feature extraction ability of the network. Based on convolutional neural network, multi-scale 

convolutional neural networks (MCNN) [17] performs identity mapping, smoothing and down-

sampling to extract the multi-scale features of time series data, respectively, and solve the 

problem of feature loss. However, its classification performance largely depends on the 

selection of super parameters and the quality of data preprocessing [18][19]. What’s more, 

attention mechanism has increasingly attracted huge research attention. For example, the Multi-

scale Attention Convolutional Neural Network (MACNN) [20], an end-to-end network 

combining multi-scale feature extraction and attention mechanism, designs a multi-scale 

convolution module based on convolution neural network. The network produces different 

ranges of receptive domains by stacking multi-scale modules to obtain the temporal feature 

information on different scales. 

In the TSC task, time-related information is the most important features to distinguish 

different categories [21]. However, the networks above mentioned can only process the input 

time series information independently but cannot obtain the implied serial dependencies in the 



time domain. In addition, most of the existing methods treat channel features equally without 

distinguishing the importance difference between feature channels. Under the condition of 

limited computational resources, if the network treats different channel features as equally 

important, it may result in the waste of resources. If the important features are ignored, it may 

seriously affect the classification performance of the network. To improve the feature extraction 

capability of the network, LSTM-FCN [19] has been proposed. It uses LSTM to extract 

correlation information of temporal data and uses FCN as a feature extraction module to extract 

temporal high-dimensional features. The RTFN [22] extends this method by proposing LSTM 

combined with CNN, jump connection structure and self-attentive mechanism to extract multi-

scale temporal features. 

In the TSC task, time-related information is the most important features to distinguish 

different categories [21]. However, the networks above mentioned can only process the input 

time series information independently but cannot obtain the implied serial dependencies in the 

time domain. In addition, most of the existing methods treat channel features equally without 

distinguishing the importance difference between feature channels. Under the condition of 

limited computational resources. Under the condition of limited computational resources, if the 

network treats different channel features as equally important, it may result in the waste of 

resources, and if the features that contribute more to the classification are ignored, it may 

seriously affect the classification performance of the network. To improve the feature extraction 

capability of the network, LSTM-FCN [19] has been proposed, which uses LSTM to extract 

correlation information of temporal data and uses FCN as a feature extraction module to extract 

temporal high-dimensional features. RTFN [22] extends this method by proposing LSTM 

combined with CNN, jump connection structure and self-attentive mechanism to extract multi-

scale temporal features. 

The approaches mentioned above also have some drawbacks as follows: 1) The existing 

network structure does not adequately excavate the time-related information. 2) The step size 

of extracted sequence features is fixed, which makes it impossible to extract multi-scale 

features effectively. 3) The models based on deep learning performs the same processing on 

different channels and do not consider the importance between feature channels, which limits 

the ability of feature presentation.  



To solve these problems, a network ACN-LSTM based on adaptive convolution and 

channel attention mechanism is proposed in this paper. Its architecture focuses on two branches, 

one based on long-short-term memory, and the other one based on CNN named adaptive 

convolutional network (ACN). LSTM employs gating mechanism and memory cells to control 

the transmission of sequence information, which is conducive to the network learning the 

correlation information of time series. In ACN, stacked convolutional neural block is used to 

capture the local features from the input. Multi-scale block produces different sizes of the 

receptive field to capture different scales of information. Then the fused extracted features are 

introduced into the adaptive channel feature adjustment mechanism (ACFM) to learn the 

importance of each channel feature automatically. Finally, multi-scale features with attention 

weights and temporal correlation information are fused to output the classification results.  

The main contributions of this paper are as follows: 

(1) A time series classification network structure based on adaptive convolution and 

channel attention mechanism is proposed in this paper, which can enhance the 

accuracy classification and generalization for TSC. 

(2) The adaptive channel feature adjustment mechanism (ACFM) is introduced, which 

automatically learns the attention weight to evaluate the importance of different 

channel features, and adaptively adjusts the feature information according to the 

channel weight. 

(3) The influence of attention mechanism in adaptive channel feature adjustment 

mechanism is explained by using class activation map. 

The rest of the paper is structured as follows. The background works are reviewed in 

Section 2. The architecture of the proposed model is described in Section 3. the performance 

of the proposed model with some comparable models is analyzed and discussed by experiments 

and simulation in Section 4. The main conclusions are drawn in Section 5. 
  



2. Background works 

2.1 Deep learning for TSC 

In recent years, Inspired by the development of deep learning in the field of image 

classification, researchers are prompted to explore deep learning-based methods to solve the 

problems in TSC [20]. There are two kinds of deep learning algorithms for time series 

classification: single-network-based and dual-network-based [22]. Single-network-based 

algorithms usually use one network to extract features, which focus on significant important 

features of data. The residual neural network (ResNet) [16] identities mapping by adding 

shortcut to alleviate the performance degradation of deep convolution neural. Inception-Time 
[23] is an improved method based on GoogleNet [24], and then applied to the field of time series 

classification. It designs an inception module to extract potential hierarchical features of 

multiple time spans. OS-CNN [25] uses the full-scale module that can adapt the network 

parameters according to the sequence length to capture the multi-scale local features.  

Dual-network-based algorithms consist of a network for extracting local features and a 

network for extracting the correlation between sequences. The network used for local feature 

extraction is usually based on convolution structure, while the network focusing on extracting 

the relationship between features is usually based on LSTM. As a parallel depth architecture, 

LSTM-FCN [19] uses LSTM to extract the correlation information and employ FCN to extract 

high-dimensional features. RTFN [22] uses LSTM in combination with CNN, jump connection 

structure and self-attention mechanism to extract multi-scale temporal features. ResNet-

Transformer [26] is composed of ResNet based feature network and transformer based relational 

network, which solves the long-term dependency problem of the structure based on recurrent 

neural network. The parallel network structure algorithm usually achieves better classification 

performance than the single network structure algorithm [18][26]. 

2.2 Long-Short-Term Memory 

Long-short-term memory network improves the Recurrent Neural Network (RNN) [27] 

with the defect of vanishing gradient problem. LSTM incorporates gating function and memory 

cells to control the transmission of sequence information, and can automatically store and 

delete the current time state information. Therefore, it can extract the complex feature 



relationship of long sequences and alleviate the vanishing gradient problem in RNN. The 

LSTM unit is shown in Fig. 1.  

 

Fig. 1 Structure of LSTM unit 

An LSTM unit includes a hidden vector h  and a memory vector c , which is to control 

state updates and outputs. The computation at time step t  is defined as follows [28]: 

-1( + + )t xi t hi t ii W x W h b                                                            (1) 

-1( + + )t xf t hf t ff W x W h b                                                          (2) 

-1( + + )t xo t ho t oo W x W h b                                                        (3) 

-1( + + )t xc t hc t ctanh%c W x W h b                                                    (4) 

-1 tt t t t  %e ec f c i c                                                            (5) 

( )t t ttanh h o c                                                                   (6) 

where t
x  denotes the information input at the time t , c  denotes the cell state, saving the 

sequence information extracted by the network; i  denotes an input gate, which controls the 

amount of information input from the current t
x  to the memory cell; f  denotes forget gate, 

which controls the amount of information from 1t
c    to t

c . o   denotes output gate that 

controls the amount of information that t
c   transmitted to the hidden layer t

h  ; hi
W  , 

hf
W  , 

ho
W , hc

W  are recurrent weight matrices, xi
W , 

xf
W , xo

W , xc
W  are projection matrices and 



i
b  , 

f
b  , o

b  , c
b   are the bias vectors. ( )    indicates the sigmoid function; ( )tanh   denotes 

hyperbolic tangent function; e  denotes Hadamard product. 

2.3 Attention Mechanism  

The attention mechanism is a tool to enhance the presentation ability of the network by 

focusing on important features and suppressing unnecessary features. So that, it can efficiently 

allocate computing resources to obtain the most important feature presentation [29][30]. The 

current attention mechanism can be roughly classified into spatial attention and channel 

attention. Spatial Transformer Networks (STN) [31] is a spatial attention network, which 

transforms the spatial information of the original sample to another space and retains its key 

information, so that the network can automatically select the most relevant area of the image 

and realize the extraction of local important information of the sample. 

Channel attention mechanism has been applied to some network models, such as SE 

network [32]. It integrates the information of the channel dimension, obtains the importance 

weight of each feature channel automatically. Then the generated weight is multiplied by the 

original feature channel one by one, so as to achieve the purpose of "feature recalibration". 

Moreover, SK network [33] is a dynamic selection mechanism for convolution kernel in CNN, 

which enables the network to adaptively adjust the size of receptive field according to the input 

information. Convolutional Block Attention Module (CBAM) [34] applies channel and spatial 

attention module to obtain attention map, and then multiplies the attention map with the input 

feature map for adaptive feature optimization.  



3. Method 

3.1 Overview architecture 

The structure of the ACN-LSTM consists of LSTM-based network and adaptive 

convolutional network, as shown in Fig. 2. The ACN branch is used to extract the depth local 

feature information of the network, and the LSTM-based branch is used to extract the relation 

information in time series data. Then, the feature joint layer is used to connect the multi-scale 

attention features and correlation information extracted by the two branches, input SoftMax to 

calculate the posterior probability of each category, and output the classification results. 

Supervision is provided at the output layer of the network, and the network parameters are 

learned according to the cross-entropy loss function. 

 

Fig. 2 Structure of the ACN-LSTM 

3.2 LSTM-based network 

In LSTM-based network, the dimension shuffle layer converts univariate time series 

samples with length of N into N-dimensional multivariable time series with a single time step. 

Therefore, it avoids over fitting for short series and the acquisition of long-term correlation for 

long series. The dimension shuffle operation can significantly improve the training speed of 

LSTM [19].  

LSTM controls the transmission of information and extracts time-related information. 

Then it inputs the extracted features into the dropout layer [35], and removes neurons according 

to a certain probability p  during network training, which can prevent over fitting of the model 



and increase the robustness of the model. After the dropout operation is added, the network 

calculation formula is as follows: 

   ~ Bernoulli
l

j
r p                                                                (7) 

°     
*

l
l l

rx x                                                                     (8) 

    °   1 1 1
l

l l l
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z b

   w x                                                              (9) 

    1 1l l

i i
y f z

                                                                     (10) 

where Bernoulli denotes Bernoulli distribution. Parameters p   denote the probability of 

removing neurons.  l
jr  take the probability p  and 1 p  to get 1 and 0, respectively, which 

is used to adjust the input x  of the neural network.  1l

i


w  and  1l

i
b

  denote the weight vector 

and bias term of the ith  neuron on the layer 1l  , respectively. ( )f   is the Rectified Linear 

Unit activation function.  

3.3 Adaptive convolutional network 

The subsequence of time-series data contains complex information, and the loss of 

subsequence characteristics of the network often causes data misclassification. ACN is used 

for depth local feature information extraction and multi-scale features. There are two 

convolutional neural blocks to obtain local important features from the input data and extract 

deeper information; One multi-scale convolutional neural block is used to extract the multi-

scale features of the network. Adaptive channel feature adjustment mechanism (ACFM) is used 

to enable the network to adaptively adjust the size of convolution kernel according to the length 

of input.  

 

Fig. 3 Adaptive Convolutional Network 



The structure of the adaptive convolutional network is shown in Fig.3. The first two layers 

of the network are one-dimensional Convolutional Neural block, namely "Conv1D", which can 

obtain local important features from the input and extract deeper information by stacking. It 

uses the multi-scale convolutional neural block to extract the multi-scale features, fuse more 

abundant local information, and make full use of the hidden information in the sequence. 

Finally, an inter channel adaptive feature adjustment mechanism (ACFM) is embedded 

between layers. It learns the depth presentation of features from shallow features, and 

adaptively adjusts feature information by using time information and channel correlation. 

3.2.1 Convolutional Neural Block (Conv1D) 

A Conv1D block consists of a 1-dimensional CNN module, batch normalization module 

[36], and ReLU activation function [37]. 
( )

,

l

i t
a  denotes the eigenvalue obtained by CNN on the 

ith filter at time t , 
&

( )
B N

f   is the activation value by batch normalization as follows:  
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where   1l l
l F d F

W R   denotes the weight tensor of CNN at the layer l ,   l
l F

b R  denotes the 

bias, d denotes the size of convolution kernel, and E denotes the activation value. 

Then it is introduced into the activation layer, and the rectified linear unit (ReLU) is used 

as the activation function, which can enhance the nonlinear presentation relationship of the 

network and produce a relatively sparse learning parameter matrix to reduce the computational 

complexity of the network. To improve the performance and robustness of the model, combined 

with BN operation and ReLU activation function, the output of one-dimensional convolution 

module is as follows: 

1 Re &
( ( ( )))

conv D LU B N conv
f f f f x                                          

(13) 

3.2.2 Multi-scale convolutional neural block 



Multi-scale convolution is to extract the multiscale features of sequences by using three 

convolution kernels with different scales on the basis of convolution neural network. In the 

multi-scale convolution module, set the convolution kernel of three steps for CNN, set the step 

size, and extract the short, medium and long-term features of time series correspondingly. Input 

multi-scale features into the concatenate layer for feature fusion, combined with BN operation 

and ReLU activation function, the output is: 

Re & short midium long
( ( ( )))

LU B N concat
f f f O O O    Y                                      (14) 

where , ,
shart medium long

O O O   denote the feature map extracted by the convolution kernel size

1 2 3
, ,d d d , respectively; ( )

concat
f  denotes the feature connection operation. 

3.2.3 Adaptive channel feature adjustment mechanism 

Inspired by the application of channel attention mechanism in computer vision [38], the 

adaptive channel feature adjustment mechanism (ACFM) is proposed in this paper, which 

learns the depth presentation of features from shallow features and uses time information and 

channel correlation to automatically correct features, such that the network can adaptively 

allocate the size of convolution kernel according to the sequence length to extract multi-scale 

features. The structure of ACFM is shown in Fig. 4. It uses the average pooling layer to obtain 

the global information of all channels, then reduces the number of channels, fuses the feature 

information between channels, calculates the channel attention weights of different convolution 

cores through the SoftMax function, and weights the generated weights with the original 

feature channels channel by channel to achieve the purpose of "feature recalibration", enhance 

useful features and suppress less useful features. 

 

Fig. 4 Detail of the adaptive feature adjustment mechanism 



First, the feature output by the multi-scale convolution module is used as the input of 

ACFM for global pooling operation to obtain the global description 1c
Y R

% ： 

_ ( )avg poolf%Y Y                                                                 (15) 

1

1
( )

fL

n n

if

y y i
L 

 %                                                                (16) 

where _
( )

avg pool
f  denotes global average pooling operation, which fuses the global information 

of the time series feature map and generates the global distribution of channel features, such 

that the network can use the information extracted from the global perception domain. The 

characteristic graph fL CRY is transformed into a real valued vector matrix 1 CY% R .  

Then pass it into the full connect layer, and use the ReLU function as the activation 

function. In the full connection layer, the number of characteristic channels is compressed into 

input 
1

r   to reduce the dimension, r   denotes the dimension reduction factor. The full 

connection layer fuses the global feature information of the channels, and uses the global 

information to obtain the nonlinear correlation between the channels. The operation is as 

follows: 

°
Re ( )LUz f WY                                                                (17) 

where Re LU
f  is ReLU function, 

C
C

rR


W  denotes the weight coefficient of neurons in the 

full connection layer. 

The channel attention weight , ,
c c c

a b c  adaptively select the characteristic information of 

different scales. The channel attention weight corresponding to each convolution block is 

obtained through SoftMax as follows:  

, ,
c c c

c c c c c c c c c

A z B z C z

c c cA z B z C z A z B z C z A z B z C z

e e e
a b c

e e e e e e e e e
  

     
                      (18) 

where , , C d
A B C R

  , , ,a b c  donate the attention weight coefficients of three convolution 

kernels with different scales, respectively. 

Finally, multiply the three features output 
short midium long

O O O   by the multiscale convolution 



module and the weight output , ,
c c c

a b c by the corresponding attention module element by 

element to obtain the output f of ACFM, and input it into the subsequent network layer. The 

calculation formula of characteristic attention weight is as follows: 

g , 1
c short c medium c lon c c c

F a O b O c O a b c                                     (19) 

If the feature is more important, its corresponding attention weight is closer to 1; On the 

contrary, the attention weight is closer to 0. The network can judge the importance of features 

according to the weight, allocate more computing resources for important features, and 

suppress unimportant features to improve the quality of feature presentation generated by the 

network. 

  



4. Experiments 

This section introduces the datasets and evaluation indicators used in the experiment, 

shows the selection of network architecture, network parameter settings, and describes the 

relevant settings of the experiment. Finally, it makes a comparative experiment with 9 most 

advanced time series classification models. 

4.1 Dataset and Evaluation 

4.1.1 Dataset 

ACN-LSTM uses 65 UCR univariate time series datasets used by Xiao et al. [22] in the 

comparative experiment, involving six fields: ECG, image, motion, sensor, simulated, and 

Spectro [39]. The sequence length ranges from 24 to 2709, covering short, medium and long 

sequence datasets. The number of samples in the dataset ranges from 20 to 4500, and the 

number of categories between 2 and 60. All datasets have been normalized to zero mean and 

unit variance, thus, there is no additional data preprocessing. These datasets are presentative of 

real time series data, and the experimental results can prove the performance and generalization 

ability of the model. 

4.1.2 Evaluation 

In this paper, three time series classification evaluation indicators are selected to evaluate 

each model, and Wilcoxon signed rank test and Nemenyi test are used to compare the 

performance differences between this model and other models. The definitions are as follows: 

（1）Arithmetic Mean Rank (AMR) refers to the arithmetic mean value of the accuracy 

ranking of the target model on all datasets. The lower the value, the better the comprehensive 

performance of the model. The calculation formula is as follows: 

AMR

1

1 N

i

i

E r
N 

                                                                     (20) 

（2）Geometric Mean Rank (GMR) denotes the geometric average of the accuracy ranking 

of the target model on all datasets, and measures the comprehensive performance of the model 

on the datasets together with AMR. If a model has a large GMR value, it means that the 

accuracy of the model ranks low on multiple datasets. The calculation formula is as follows: 



GMR
1

N

N
i

i

E r


                                                                       (21) 

（3）Mean Error (ME) indicates the accuracy of the target model on all datasets. The lower 

the value, the better the model performance. The calculation formula is: 

ME

1

1
( (1 ))

N

i

i

E a
N 

                                                               (22) 

where E denotes the evaluation index,
ia , ir  denotes the top-1 accuracy and accuracy ranking 

of the target model on the dataset, and N  denotes the total number of datasets. 

（4）Wilcoxon signed-rank test (WST) is a nonparametric statistical test, which compares 

the accuracy ranking of other models on each dataset to test whether the performance of this 

model is significantly better than that of other comparison models. Its original and alternative 

assumptions are as follows: 

0 mod

mod

:

:
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i
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


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
 

M denotes the median of the accuracy of the model on all datasets, and i  denotes the ith  

other model. 

（5）Friedman test is a nonparametric test that uses rank to test whether there is a significant 

difference in the accuracy of multiple models. The original and alternative assumptions are as 

follows: 

0 There is no significant difference in the accuracy of all models

There is a significant difference in the accuracy of all mo s: l

:

de1
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H  

The variable Friedman statistic F is calculated as follows: 
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where k and N  refer to the number of methods and datasets, respectively; i
r  refers to the 

value of AMR of ith   model, which i
r   is distributed according to the F distribution with 

1

2

k   and 
2 1

12

k 
 degrees of freedom. 



（6）Nemenyi test. If the assumption that there is no significant difference in the accuracy 

of all models is rejected, it indicates that there is a significant difference in performance 

between models. The Nemenyi follow-up test can further distinguish the advantages and 

disadvantages of models. Calculate the critical difference (CD) according to the corresponding 

confidence, and the calculation formula is as follows: 
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where CD denotes the critical difference, k denotes the number of models, N denotes the total 

number of datasets, and q  is the critical value of Tukey distribution. Under the experimental 

conditions in this paper, the confidence level  = 0.05, q = 3.102. If the difference between 

the average rankings of the two algorithms exceeds the critical difference, the assumption that 

“there is a significant difference in the accuracy of two models” is rejected. 

4.2 Experiment settings 

In this paper, 7 time series datasets with different sequence lengths involving multiple 

fields from UCR are used to choose optimal parameters. The details of these 7 datasets are 

shown in Tab. 1. 

Tab. 1 Information of 8 time series datasets 

Name Class Length Train Test 

Chlorine 3 166 467 3840 

MoteStrain 2 84 20 1252 

CinCECG 4 1639 40 1380 

CricketX 12 300 390 390 

FacesUCR 14 131 200 2050 

ItalyPower 2 24 67 1029 

MALLAT 8 1024 55 2345 

The ACN branch of ACN-LSTM can extract important multi-scale time series features. 

However, due to the unequal length of the sample sequence of the dataset used in this paper, it 

is necessary to set up a suitable sensing domain to adapt to most datasets when extracting short, 



medium and long-term features. Therefore, the core size of the first convolution layer of the 

ACN branch is set to 8 and the number of convolution cores is set to 64; The core size of the 

second convolution layer is set to 5, and the number of convolution cores is 128; The multiscale 

convolution kernel in ACN is fixed to 3, 5 and 11, respectively, and the convolution sliding 

step is fixed to 1 in [19][20][32]. 

To further determine the optimal hyperparameter combination of the setup model, the 

hyperparameter search method and initialization hyperparameter combination in [32] are used 

in this paper: first, set the initial values of batch size, number of training rounds, dimension 

reduction factor and rejection rate as [32, 2000, 16, 0.8]. Then the greedy strategy based on the 

combination of super parameters is used to search the optimal parameter value. Specifically, 

the last three parameters are fixed, the different values of the first parameter are tested, and the 

value that makes the model reach the lowest error rate is selected as the optimal value of the 

parameter. Then fix the first, third and fourth parameters, select the optimal value of the second 

parameter, and so on. The parameters with the optimal value are fixed as the optimal value in 

the next parameter search experiment. 

Set the network parameter search space according to [19][20], and select the batch size, 

rejection rate, dimension reduction factor and number of training rounds in [32, 64, 128, 256], 

[0.5, 0.6, 0.7, 0.8, 0.9], [8, 16, 32] and [1000, 1500, 2000, 2500], respectively. Then, by using 

3x cross validation and manually changing the value of the hyperparameter, the performance 

of different combinations of hyperparameters is evaluated. Tab. 2 shows the average error rate 

of each network parameter combination. 

Tab. 2 Mean error of each parameter set 

Batch size Training epoch Reduction factor dropout Averaged validation error 

32 1500 16 0.8 0.145 

64 1500 16 0.8 0.142 

128 1500 16 0.8 0.131 

256 1500 16 0.8 0.139 

128 1000 16 0.8 0.138 

128 1500 16 0.8 0.131 



128 2000 16 0.8 0.131 

128 2500 16 0.8 0.131 

128 2000 8 0.8 0.132 

128 2000 16 0.8 0.131 

128 2000 32 0.8 0.134 

128 2000 16 0.5 0.136 

128 2000 16 0.6 0.134 

128 2000 16 0.7 0.136 

128 2000 16 0.8 0.131 

128 2000 16 0.9 0.134 

According to the experimental results of parameter selection in Tab. 2. It is found that in 

the given network parameter space, the minimum average error rate of the model is 0.131. 

Among them, the obtained performance of the model is the same when the number of training 

rounds is 2000 and 2500. Under the principle of saving computing resources, 2000 is chosen 

as the optimal value of the number of training rounds. 

The parameter selection of the model is as follows: the batch size is set to 128, the initial 

learning rate is set to 1e-3, the epoch is set to 2000, and the Adam optimizer [39] is used for 

training. If the accuracy of the model on the test set is not improved for 100 consecutive rounds, 

the learning rate will be reduced to the original 
31 2  one until it is reduced to 1e-4. The size 

of the three convolution cores of ACN is set to 3, 5 and 11, respectively; the convolution sliding 

step is set to 1, and the number of convolution cores is set to 128. The dimension reduction 

factor in the attention module is set to 16. The number of memory cells of LSTM is selected 

from 8, 64, 128, and the deletion rate of deletion layer is set to 0.8. 

4.3 Experiments Results and Analysis 

The code of ACN-LSTM model is written using the deep learning framework Keras [40] 

and trained on NVIDIA GeForce GTX 1650 GPU. Since the neural network uses random initial 

weights, 10 experiments are carried out to average the error caused by the initial weights. 

Conduct experiments on 65 datasets in UCR, and compare them with 9 methods: 

Distance-based methods: DTW[4]; Feature-based methods: TSBF[6], BOSS[7]; ensemble-based 



methods: PROP[12], COTE[13]; Neural network methods: FCN [17], ResNet[22], OS-CNN[26], 

Inception-Time[28]。 

4.3.1 Top-1 accuracy  

To evaluate the performance of ACN-LSTM and other models on all datasets, calculate the 

arithmetic mean rank (AMR), geometric mean rank (GMR) and average error rate (me) of 

evaluation indicators according to (20), (21) and (22), evaluate the performance of each method, 

and use “best” to denote the number of models that obtain the highest accuracy on the dataset. 

Use Wilcoxon signed rank test (WST) to measure whether there is a significant difference 

between the accuracy of ACN-LSTM and other models. AMR meets the conditions of 

Friedman test, thus, Friedman test and Nemenyi test are used to compare the accuracy 

performance of all models. Tab. 3 shows the top-1 accuracy and the values of 4 evaluation 

indicators obtained by ACN-LSTM and 9 comparison models on 65 univariate time series 

datasets. 

Tab. 3 The comparison of Top-1 accuracy rates on 65 datasets 

Dataset DTW TSBF BOSS PROP COTE FCN ResNet 
OS-

CNN 

Inception-

Time 

ACN-

LSTM 

Adiac 0.604 0.769 0.764 0.664 0.79 0.844 0.826 0.838 0.841 0.808 

ArrowHead 0.663 0.754 0.834 0.811 0.811 0.843 0.817 0.84 0.845 0.897 

Beef 0.633 0.566 0.8 0.633 0.866 0.697 0.767 0.833 0.7 0.767 

BeetleFly 0.7 0.8 0.9 0.75 0.8 0.86 0.8 0.8 0.8 0.85 

BirdChicken 0.75 0.9 0.95 0.8 0.9 0.95 0.9 0.9 0.95 0.95 

Car 0.733 0.783 0.833 0.833 0.9 0.905 0.933 0.933 0.883 0.933 

CBF 0.997 0.987 0.997 0.997 0.995 0.994 0.994 0.998 0.998 0.999 

ChlorineConcentration 0.648 0.692 0.66 0.656 0.727 0.814 0.828 0.849 0.876 0.828 

CinCECGTorso 0.651 0.712 0.886 0.942 0.994 0.824 0.826 0.83 0.853 0.896 

Coffee 1 1 1 1 1 1 1 1 1 1 

Computers 0.7 0.756 0.756 0.708 0.740 0.822 0.815 0.822 0.807 0.813 

CricketX 0.754 0.705 0.735 0.812 0.807 0.792 0.821 0.846 0.853 0.813 

CricketY 0.744 0.735 0.753 0.805 0.825 0.787 0.805 0.869 0.851 0.826 



CricketZ 0.754 0.715 0.746 0.782 0.815 0.811 0.813 0.861 0.861 0.823 

DiatomSizeReduction 0.967 0.898 0.931 0.944 0.928 0.687 0.931 0.98 0.934 0.928 

DistalPhalanxAgeGroup 0.77 0.782 0.77 0.728 0.76 0.71 0.798 0.755 0.733 0.823 

DistalPhalanxCorrect 0.717 0.712 0.739 0.69 0.748 0.76 0.771 0.771 0.782 0.798 

Earthquakes 0.719 0.748 0.748 0.741 0.748 0.727 0.786 0.683 0.741 0.78 

ECG200 0.77 0.84 0.87 0.88 0.88 0.889 0.87 0.91 0.93 0.92 

ECG5000 0.75 0.939 0.941 0.938 0.946 0.940 0.931 0.94 0.94 0.945 

ECGFiveDays 0.768 0.876 1 0.819 0.998 0.987 0.955 1 1 1 

ElectricDevices 0.601 0.703 0.725 0.663 0.713 0.702 0.718 0.718 0.729 0.727 

FaceUCR 0.83 1 1 0.909 0.897 0.928 0.932 0.943 0.954 0.955 

FordA 0.555 0.85 0.914 0.737 0.956 0.904 0.928 0.958 0.961 0.93 

FordB 0.62 0.598 0.82 0.661 0.803 0.878 0.9 0.813 0.861 0.897 

Gun_Point 0.907 0.986 1 0.993 1 1 0.993 1 0.987 1 

Ham 0.467 0.761 0.666 0.571 0.647 0.718 0.781 0.714 0.714 0.733 

HandOutlines 0.881 0.854 0.911 0.889 0.918 0.806 0.861 0.956 0.954 0.957 

Haptics 0.377 0.49 0.461 0.392 0.522 0.48 0.506 0.512 0.548 0.494 

Herring 0.531 0.64 0.546 0.578 0.625 0.608 0.594 0.609 0.671 0.734 

ItalyPowerDemand 0.95 0.883 0.908 0.962 0.961 0.961 0.96 0.947 0.965 0.968 

Lightning2 0.869 0.737 0.836 0.885 0.868 0.739 0.754 0.819 0.77 0.803 

Lightning7 0.726 0.726 0.684 0.767 0.808 0.827 0.836 0.808 0.835 0.849 

MALLAT 0.934 0.96 0.938 0.939 0.953 0.967 0.979 0.963 0.955 0.961 

Meat 0.933 0.933 0.9 0.933 0.916 0.853 1 0.983 0.933 0.933 

MedicalImages 0.737 0.705 0.718 0.742 0.757 0.779 0.772 0.768 0.794 0.814 

MiddlePhalanxAgeGroup 0.5 0.814 0.565 0.783 0.804 0.553 0.76 0.538 0.551 0.728 

MiddlePhalanxCorrect 0.698 0.577 0.77 0.558 0.636 0.801 0.793 0.807 0.817 0.837 

MiddlePhalanxTW 0.506 0.597 0.526 0.512 0.571 0.512 0.607 0.564 0.512 0.604 

MoteStrain 0.835 0.903 0.878 0.882 0.936 0.937 0.895 0.939 0.886 0.916 

OliveOil 0.833 0.833 0.866 0.866 0.9 0.723 0.867 0.833 0.833 0.833 

Plane 1 1 1 1 1 1 1 1 1 1 



ProximalPhalanxAgeGroup 0.805 0.872 0.848 0.807 0.869 0.831 0.849 0.843 0.848 0.850 

ProximalPhalanxCorrect 0.784 0.848 0.834 0.804 0.853 0.903 0.918 0.9 0.931 0.911 

ProximalPhalanxTW 0.756 0.809 0.815 0.765 0.78 0.767 0.807 0.775 0.775 0.9 

RefrigerationDevices 0.564 0.472 0.725 0.676 0.742 0.533 0.528 0.558 0.564 0.592 

ScreenType 0.397 0.50933 0.586 0.554 0.651 0.667 0.707 0.661 0.657 0.509 

ShapeletSim 0.65 0.961 1 0.816 0.961 0.724 1 0.827 0.955 0.989 

ShapesAll 0.768 0.185 0.908 0.866 0.891 0.895 0.912 0.923 0.928 0.961 

SonyAIBORobot1 0.725 0.795 0.632 0.703 0.845 0.96 0.985 0.978 0.868 0.953 

SonyAIBORobot2 0.831 0.777 0.859 0.878 0.951 0.979 0.962 0.961 0.946 0.974 

Strawberry 0.941 0.954 0.976 0.945 0.951 0.972 0.958 0.981 0.983 0.974 

SwedishLeaf 0.792 0.915 0.921 0.915 0.955 0.969 0.958 0.969 0.977 0.962 

Symbols 0.95 0.945 0.966 0.959 0.963 0.955 0.872 0.976 0.98 0.984 

SyntheticControl 0.993 0.993 0.966 1 1 0.985 1 1 0.996 1 

ToeSegmentation1 0.772 0.78 0.938 0.828 0.973 0.961 0.965 0.956 0.964 0.997 

ToeSegmentation2 0.838 0.8 0.961 0.892 0.915 0.88 0.862 0.938 0.938 0.965 

Trace 1 0.98 1 0.99 1 1 1 1 1 1 

TwoLeadECG 0.904 0.976 0.993 1 1 0.871 1 0.999 0.995 1 

UWaveX 0.728 0.83 0.762 0.805 0.821 0.817 0.787 0.817 0.824 0.843 

UWaveY 0.634 0.736 0.685 0.725 0.758 0.754 0.668 0.749 0.767 0.778 

UWaveZ 0.658 0.772 0.694 0.723 0.75 0.639 0.755 0.757 0.764 0.789 

UWaveAll 0.892 0.926 0.938 0.968 0.964 0.726 0.868 0.941 0.951 0.966 

Wafer 0.98 0.995 0.994 0.997 0.999 0.997 0.997 0.998 0.998 0.999 

Wine 0.574 0.611 0.74 0.574 0.648 0.587 0.796 0.555 0.611 0.833 

WordSynonyms 0.649 0.688 0.637 0.774 0.757 0.564 0.632 0.747 0.733 0.759 

ME 0.249 0.207 0.173 0.196 0.150 0.176 0.149 0.147 0.146 0.127 

AMR 8.592 7.046 5.992 6.862 4.815 5.869 4.792 4.254 3.962 2.815 

GMR 8.238 6.266 5.325 6.184 4.270 5.148 3.978 3.714 3.303 2.322 

Best 3 5 9 7 13 8 15 12 16 29 

Compared with 9 temporal classification methods, the ACN-LSTM model in this paper 



achieves the highest top-1 accuracy on 29 datasets. Moreover, the me, AMR and GMR 

evaluation indexes obtained from 65 UCR univariate time series datasets are better than the 

other 9 models. The specific values of the three evaluation indicators are 0.127, 2.815 and 2.322, 

respectively. Compared with other model architectures for extracting multi-scale feature 

classification, for example, inception time extracts multi-scale features by stacking CNN based 

feature extraction modules to generate different receptive domains, and OS-CNN adaptively 

allocates convolution kernel size to extract multi-scale features according to sequence length. 

Compared with inception time, ACN-LSTM reduced me index by 1.9%, and AMR and GMR 

increased by 1.147 and 0.981, respectively; Compared with OS-CNN model, me decreased by 

2%, and AMR and GMR increased by 1.439 and 1.392, respectively. Due to the fact that ACN-

LSTM combines the attention mechanism on the basis of multi-scale convolution, the model 

is more effective in fusing multi-scale information and paying attention to important features. 

For more comparisons, the number of datasets with better, the same or worse performance 

than ACN-LSTM is counted. When the average accuracy of model A is 0.01 higher or lower 

than that of model B, we judge that model A is significantly better or worse than model B in 

the dataset. In this paper, Wilcoxon signed rank test (WST) is used to measure the significance 

of the difference between ACN-LSTM and the other nine methods. The significance p value is 

shown in Tab. 4. If the p value of the test is less than 0.05, the original hypothesis is rejected, 

which indicates that the median of the top-1 accuracy ranking of the two models on all datasets 

is not equal, that is, the classification performance of the two models is significantly different. 

On the contrary, if the original hypothesis is accepted, the performance of the two models is 

similar. 

Tab. 4 Pairwise comparison of all models against ACN-LSTM 

Length DTW TSBF BOSS PROP COTE FCN ResNet 
OS-

CNN 

Inception-

Time 

Worse 2 4 7 7 10 3 9 14 10 

Better 57 51 42 45 36 45 32 31 33 

tie 6 10 16 13 19 17 24 20 22 

p(WST) 3.44E-11 7.98E-10 2.63E-07 2.45E-08 2.95E-04 2.67E-08 1.13E-04 0.006729 7.21E-04 



Tab. 4 shows ACN-LSTM achieves higher accuracy on most datasets compared with the 

time series classification models. Compared with OS-CNN and Inception-Time, which also use 

multi-scale convolution, ACN-LSTM has achieved better performance on 31 and 33 datasets, 

respectively, and the accuracy of the two multi-scale models is the same on 20 and 22 datasets, 

respectively. Tab. 4 shows the p value corresponding to Wilcoxon signed rank test, which 

proves that ACN-LSTM is the most accurate classifier and achieves better performance than 

other methods. 

To further evaluate the performance of all methods, we use Friedman test to compare 

multiple classifiers. When = 0.05, the critical value of F (9576) is 1.896, and the value of F 

calculated according to formulas (23) and (24) is 29.920>1.896. Therefore, the original 

assumption that "there is no significant difference in the accuracy of all models" is rejected. 

Then calculate the critical difference according to (25) for Nemenyi subsequent test to further 

judge the performance of each model. According to the critical difference diagram between the 

models shown in Fig.5, it is concluded that the overall classification performance of ACN-

LSTM is significantly better than ResNet, COTE, FCN, BOSS, PROP, TSBF and DTW without 

multi-scale convolution and attention mechanism, and better than inception time and OS-CNN 

using multi-scale convolution. 

 

Fig. 5 Critical difference diagram based on the average arithmetic ranks  

Fig.6 shows the paired comparison scatter of all models and ACN-LSTM. Each point 

denotes the accuracy of two classifiers on a dataset. The farther the point is from the diagonal, 

the greater the difference in accuracy. The point above the diagonal indicates that the proposed 

model is more accurate than the comparison method, and vice versa. Fig.6 shows that most of 

the points are above the diagonal, and there is a big gap between ACN-LSTM and the 

comparison method on many datasets, which proves that ACN-LSTM is superior to other 



methods. 

 

Fig. 6 . Scatter plots of pairwise comparison of all models against ACN-LSTM 

Tab.5 shows the comparison of average top-1 accuracy on datasets with different sequence 

lengths. It is seen from Tab. 5 that COTE performs better than DTW, TSBF, boss and prop on 

short, medium and long sequence datasets, while OS-CNN and inception time perform better 

than COTE on short and small datasets, which proves the feasibility of applying the method 

based on deep learning to TSC tasks. ACN-LSTM achieves the highest accuracy when 

classifying on short and medium sequence datasets, while COTE method achieves the highest 

accuracy on long sequence datasets, but it is similar to the classification ability of ACN-LSTM 

model. When the sequence length is long, features can only be extracted on a relatively short 

length, which leads to limited improvement in the classification accuracy of ACN-LSTM for 

long datasets. COTE is an integrated method based on multiple algorithms, which has more 

advantages for the analysis of complex problems, which shows that this model is more 

conducive to dealing with short and medium length datasets. 

Tab. 5 Average Top-1 Accuracy of Different models grouped by Serial Length 



Length DTW TSBF BOSS PROP COTE FCN ResNet 
OS-

CNN 

Inception-

Time 

ACN-

LSTM 

<200 0.782  0.836  0.834  0.821  0.864  0.863  0.883  0.876  0.872  0.895  

200-500 0.752  0.804  0.839  0.808  0.857  0.816  0.859  0.865  0.868  0.886  

>500 0.698  0.698  0.795  0.768  0.814  0.767  0.785  0.794  0.802  0.813  

Tab. 6 shows the comparison of average top-1 accuracy on datasets in different fields. It 

is seen from Tab. 6 that ACN-LSTM achieves the best performance in different domains except 

for device and motion datasets.  

Almost all datasets of the device category are long sequences. Compared with data in 

other fields, all existing methods have higher error rates on these datasets, which means that 

TSC tasks in the device domain are more complex. COTE has the highest accuracy, indicating 

that COTE is more suitable for such complex classification tasks, and ACN-LSTM is more 

suitable for short and medium length sequences. 

Tab. 6 Average Top-1 Accuracy of Different models grouped by domain 

Domain DTW TSBF BOSS PROP COTE FCN ResNet 
OS-

CNN 

Inception-

Time 

ACN-

LSTM 

Device 0.566  0.610  0.698  0.650  0.712  0.681  0.692  0.690  0.689  0.660  

ECG 0.763  0.885  0.937  0.879  0.941  0.939  0.919  0.950  0.955  0.957  

Image 0.720  0.751  0.796  0.756  0.797  0.780  0.814  0.806  0.812  0.850  

Motion 0.657  0.661  0.674  0.698  0.742  0.718  0.736  0.772  0.778  0.739  

Sensor 0.768  0.802  0.847  0.838  0.892  0.876  0.887  0.882  0.885  0.900  

Simulated 0.822  0.869  0.880  0.871  0.908  0.865  0.902  0.906  0.910  0.936  

Spectro 0.758  0.815  0.842  0.784  0.857  0.817  0.867  0.883  0.837  0.888  

Based on the above experimental results, ACN-LSTM has achieved better comprehensive 

performance than the comparison method on 65 experimental datasets, which shows that the 

combination of multi-scale convolution and attention mechanism can make the network 

achieve better classification performance. Therefore, compared with other models based on 

deep learning, ACN-LSTM has more advantages in solving univariate time series classification 

tasks. 



4.3.2 Convergence comparison 

For convergence evaluation, the dataset with obvious differences between two different 

models is select, and then the error rate of each epoch to observe the convergence process is 

recorded. Fig. 7 shows that for the dataset Arrow Head, compared with other models, the 

models ACN-LSTM and OS-CNN proposed in this paper have lower error rate and faster 

convergence speed, and ACN-LSTM can achieve a lower error rate at the beginning of training, 

and the convergence effect is better. Since there is no attention module in inception time, the 

error rate is relatively high, and the convergence is unstable. For FCN and RESNET models, 

the convergence is good, but the accuracy is relatively low, which may explain the high average 

error rate caused by the insufficient complexity of the model. For ECGFiveDays, the models 

ACN-LSTM and OS-CNN proposed in this paper have lower error rate and faster convergence 

speed. 

 
Fig. 7 Convergence process of different deep learning models  

4.3.3 Performance of binary classification 

Binary classification is a basic problem of TSC task, and 25 of the 65 data sets selected 

are binary classification tasks. Therefore, to observe the performance difference of each model 

in binary classification, the ROC curve of each model on ham data set is drawn, and AUC-

ROC is used to evaluate the performance. As shown in Fig.8, ACN-LSTM achieves the 

maximum AUC-ROC value, which indicates that ACN-LSTM is the best deep learning model 



for binary classification. 

 

Fig. 8 ROC curves of different deep learning models.  

4.4 Visualization 

Class activation map (CAM) [41] was first applied in the field of image classification, 

aiming to find the region that contributes the most in the image. Later, Wang [42] and Fawaz [43] 

introduced one-dimensional CAM for visualization to find the subsequences of time series that 

contribute the most to classification. 

Let ( )
m

A t be the result of the last convolution t time, where [ ],, 1[1 , ]m M t T  . c

m
 is 

the weight between the m  filter and the output neuron of class c . Due to the use of the global 

average layer, the input of the cth class of neurons c
z is calculated as follows: 

( ) ( )c c

c m m m m

m t t m

z A t A t                                                 (26) 

Finally, the result of time t  is as follows: 

( ) ( )c

c m m

m

CAM t A t                                                      (27) 

Therefore, the value of ( )
c

CAM t  indicates the importance of activation at time t, and the 

timestamp t generates the classification result c. By simply sampling CAM up to the size of the 

original time series, the most important subsequences are identified.  



CAM is applied to datasets Gun to understand the impact of multiscale convolution and 

attention mechanisms. Since shapelet found and interpreted the discriminant subsequence of 

gun dataset, which is to understand the visualization results and prove the effectiveness of 

ACN-LSTM. 

 

Fig. 9 CAM results of different models on the Gun Point dataset  

Fig. 9 shows the CAM results of FCN, RESNET, OS-CNN and ACN-LSTM models on 

gun dataset in turn. It is found from the figure that the discriminative regions of all models are 

concentrated on the right side of the whole sequence, which shows that the right side of the 

time series plays a role in decision-making. The darker color length of FCN and RESNET 



models is much shorter than that of ACN-LSTM, which indicates that FCN and RESNET 

cannot capture the characteristics of the whole region due to single-scale convolution, while 

multi-scale convolution generates receptive fields of different sizes to capture information of 

different scales, which solves the limitations of single-scale convolution. Since the right part 

of the time series plays a decisive role in distinguishing it, compared with the OS-CNN model 

without attention mechanism, it is seen from the CAM diagram of ACN-LSTM that the right 

part of the time series is the only discriminative area, eliminating the influence of redundant 

information, which shows that, due to the combination of multi-scale convolution and attention 

mechanism, the discrimination region is larger and more accurate. The above comprehensive 

comparison and evaluation shows that the TSC task method based on deep learning is feasible, 

and ACN-LSTM has specific and superior performance. 

  



5. Conclusions and future work 

To improve the classification accuracy of univariate time series, an LSTM network 

structure ACN-LSTM based on adaptive convolution and attention mechanism is proposed in 

this paper. The network is a parallel architecture composed of two branches, combined with 

LSTM, multi-scale convolution module and channel adaptive feature adjustment module. 

LSTM controls the transmission of sequence information, such that the network can effectively 

learn the time-related information. The multi-scale convolution module extracts the features of 

time series data with different scales by generating multiple sensing domains to obtain richer 

feature presentation. The channel adaptive feature adjustment module fuses the channel feature 

information to make the network focus on important features. The experiment and evaluation 

results on 65 UCR datasets show that ACN-LSTM has better performance than the other 9 

methods. However, the classification effect of ACN-LSTM on long time series is not 

significantly improved. We have not yet applied ACN-LSTM to the multivariable time series 

classification dataset. In future work, we will further study the model architecture to solve the 

multivariable and long series time series classification problems based on ACN-LSTM. 
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