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Abstract
Approaches for visualizing and explaining the decision process of convolutional neural net-
works (CNNs) have recently received increasing attention. Particularly popular approaches
are so-called saliency methods, which aim to assign a valence to each input pixel based on its
importance and influence on the classification via saliency maps. In our paper, we contribute
by a novel analyzing approach build on adversarial examples to investigate the explanatory
power of saliency methods exemplified by layer-wise relevance propagation (LRP). Based
on the hypothesis that distinct decisions, such as an image’s classification and the classifica-
tion of its corresponding adversarial examples, should yield to dissimilar saliency maps to
provide transparent rationales, we break down relevance scores of images and corresponding
adversarial examples and analyze them using a comprehensive statistical evaluation. It turns
out that different relevance decomposition rules of LRP do not lead to clearly distinguishable
saliency maps for images and corresponding adversarial examples, neither in terms of their
contour lines, nor in terms of the statistical analysis.

Keywords Deep learning · Layer-wise relevance propagation · Adversarial examples ·
Explainable artificial intelligence · Saliency maps

1 Introduction

Deep learning (DL) has achieved impressive performance in a lot of application areas, espe-
cially in object recognition [34]. However, their nested non-linear structure combined with
millions of parameters makes deep learning a black-box method that arrives at decisions in
a non-transparent manner. Therefore, the explainability of DL models [9, 13, 21, 33, 35] and
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the development of associated techniques to visualize, explain, and interpret the behavior of
DL algorithms have recently received increasing attention [3, 8, 16, 19, 22, 24, 25, 28, 30,
31, 36, 38, 40]. Apart from methods optimizing activations [10, 25, 36] and inverting input
representations [8, 22], visualizing and explaining the decision process of convolutional neu-
ral networks (CNNs) by saliency methods is an intensively discussed approach [1, 3, 16, 19,
20, 24, 28, 30, 31, 38–40].

Saliency methods attempt to explain an algorithm’s decision by assigning pixel-level
values that reflect the importance of input components in terms of their contribution to the
classification result. Therefore, saliency methods generally lead to so-called saliency maps
[30] (also known as input contribution heatmaps or feature importance maps), which try to
explain the decision process of CNNs through

i. Input Modification, i.e., assigning a relevance to a pixel based on the drop in prediction
probability caused by the pixel’s perturbation [20, 38, 39],

ii. Class Activation, i.e., combining the activation pattern of a higher-level layer with further
information, such as the network’s output [40],

iii. Backpropagation, i.e., tracing the contribution of the output nodes backwards through
the network to the input nodes [3, 16, 38].

A particularly common backpropagation approach is layer-wise relevance propagation
(LRP) introduced by Lapuschkin [3, 19]. Layer-wise relevance propagation relies on the
assumption that the total amount of relevance is preserved when decomposing the classi-
fication decision backwards to the pixel-wise relevance scores. This so-called layer-wise
conservation principle postulates that the sum of relevance assigned to neurons in a CNN
layer remains the same for two adjacent layers. Despite the popularity of using saliencymeth-
ods to explain DL models, a significant number of papers have been published addressing
more intensively the stability and robustness of saliencymethods [1, 3, 12, 15, 18, 19, 23, 28].
Therefore, our work aims to explore the use of adversarial examples as a further tool to help
evaluating the robustness and explanatory power of techniques devoted to the explainability
of DL models, exemplified by LRP.

1.1 RelatedWork on the Explanatory Power of Saliency Methods

In the work of Samek et al. [28], the amount of changed classification probability is presented
as possible measure to evaluate the explanation of the decision process provided by LRP. For
the investigation of the explanatory power of LRP, they suggest replacing the input variables
considered most relevant with samples from a probability distribution, such as the Uniform
or Dirichlet distribution. In this case, a large decrease in classification probability caused
by a perturbation of the input variables with the highest relevance scores is considered to
be an indicator of a suitable explanation. A similar idea is followed by Bach et al. [3] who
evaluated the impact of single value perturbations on the detection result by flipping pixels
with highly positive and highly negative relevance scores, as well as pixels with relevance
scores close to zero. Lapuschkin [19] presents a more generalized approach by employing
an iterative greedy procedure to evaluate the expected behavior of LRP.

The work of Ghorbani et al. [12], on the other hand, shows for various gradient-based
methods and DeepLIFT that the same object classification for two extremely similar images
can be explained by different saliency maps. They perform slight modifications to the input
images to ensure a similar classification of the modified images and the originals, however,
leading to a substantial difference in saliencymaps. Similarly, Kindermans et. al. [18] analyze
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the invariance of saliency map generating methods to transformations of the input data which
have no impact on the prediction outcome. Instead of modifying input images, Heo et al. [15]
adversarially manipulate the classification model, leaving the model accuracy unchanged
while achieving a dramatic change in explanation. Therefore, they are able to perform model
manipulations that result in modified models classifying an input object with nearly the
same classification probability as the original model. However, the saliency maps differ
significantly in dependence of the underlying model. Further, Adebayo et al. [1] present a
sanity check for saliency methods comprising model randomization and data randomization
tests. Based on their observations, they find that some saliencymethods (e.g., gradient�input)
can be interpreted as implicitly implemented techniques analogous to edge detection tending
to detect edges rather than explain decisions.

Similarities in saliency maps of marginally perturbed images intentionally designed to
cause a major shift in classification (also known as adversarial examples [29]) and the
corresponding originals are also observed by other authors, such as Gu and Tresp [14] and
Brama et al. [5]. Aiming to use saliency maps of adversarial examples to develop defense
strategies against adversarial attacks [29, 37], Brama et al. [5] use binarized saliency maps
based on the 5% of the highest scoring pixels (i.e., pixels most relevant for the classification
result) to reveal class-discriminating information and illustrate similarities. Neither the work
by Brama et al. [5] nor the work by Gu and Tresp [14] exceeds a visual comparison of contour
lines within the saliency maps. This applies to the work of Montavon et al. [24] as well.
However, visual inspection is insufficient to assesswhether an explanation ismodel-sensitive,
as Adebayo et. al. demonstrate in [1].

1.2 Contribution

In this paper, we investigate the use of minimally invasive classification shift perturbations,
more precisely adversarial examples [29, 37], to evaluate the robustness and stability of the
explanations obtained from saliency maps exemplified by LRP. Our approach focuses on a
relevance score-independent input modification causing a completely different classification,
and therefore clearly separates from [3, 19, 28], whichmeasures the variation in classification
probabilities following relevance score-dependent perturbation of input variables. This also
distinguishes our approach from the approach taken by Ghorbani et al. [12], where the input
image is perturbed as well, yet without changing the classification decision. Moreover, the
approach of Ghorbani et al. [12] is motivated by the expectation that, given a reproducible
and consistent explanatory pattern, a minor input change should not affect the classification
decision, and hence the saliency map.

In contrast, we present a novel method to analyze the explanatory power of LRP by
breaking down LRP-relevance scores of images and corresponding adversarial examples
based on the hypothesis that distinct decisions should yield to dissimilar saliency maps even
for small changes of the input variables to provide comprehensible rationales. In other words:
To explain a turn in a classifier’s original decision, the decision turn should result in a variation
in the saliencymap for a significant proportion of the input variables consideredmost relevant
for achieving the original decision.

Furthermore, we present a novel approach to statistically compare LRP-based saliency
maps using relevance score distributions and relevance score rankings. We provide a com-
prehensive statistical analysis of LRP-based saliency maps of images and corresponding
adversarial examples in terms of changes in relevance score distribution and variations in
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Fig. 1 Procedure of analyzing the explanatory power of LRP using adversarial examples. First, the adversarial
examples are created based on the original data (cf. Sect. 3.2). Then, the relevance scores are generated for
original images and the adversarial examples using LRP (cf. Sect. 3.3). Finally, the relevance scores are
comprehensively analyzed, compared, and evaluated using established statistical methods (cf. Sect. 3.4)

the scores of components marked highly relevant by LRP before and after image pertur-
bation. Consequently, our approach extends current analysis of the explanatory power of
saliency maps [3, 5, 14] by going beyond a rather subjective visual comparison of contour
lines. Using multiple relevance decomposition rules of LRP, we demonstrate that differ-
ent decomposition rules do not produce clearly distinguishable saliency maps for images
and corresponding adversarial examples, neither regarding their contour lines, nor regarding
the statistical measures mentioned above. Finally, we assess the suitability of our presented
approach as potential evaluation tool for the adequacy of saliency methods and thus as exten-
sion of existing methods [1, 12, 15, 18] by analyzing whether the differences in saliency
maps for pairs of images and adversarial examples are significant to explain the difference
in classification.

The saliency maps and adversarial examples underlying our analyses are generated based
on a simple CNN architecture using CIFAR-10 [4] data and the L-BFGS attack [6, 29, 37].
A schematic representation of our approach is shown in Fig. 1. The related source code, as
well as the generated adversarial examples can be found in [7].

1.3 Outline

The remaining paper is organized as follows. Section 2 gives a brief introduction to the
fundamental principles and applied methodologies underlying the analysis of this work.
In Sect. 3, the experimental setup for generating the adversarial examples, as well as the
relevance scores and the procedure of their analysis are described, including the underlying
dataset and the applied CNN architecture. Finally, the most significant results of the analysis
are summarized in Sect. 4, followed by a brief discussion and a conclusion (Sect. 5).

2 Fundamental Principles

This section briefly outlines the basic principles of layer-wise relevance propagation and
adversarial examples including general definitions and generation techniques.

2.1 Layer-wise Relevance Propagation

Layer-wise relevance propagation represents a methodical approach aiming to increase the
transparency and interpretability of individual classification decisions. LRP strives to identify
important components by decomposing the classifier’s output into individual contributions of
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Fig. 2 Principle procedure of layer-wise relevance propagation, showing the idea of redistributing the relevance
score Rl+1

j , j ∈ {1, . . . , nl+1}, of the j-th component of layer l+1 (right) in dependence of the corresponding
input components’ forward contributions (left)

the input components. The application of LRP is based on the assumption that the classifier
is decomposable into nL ∈ N individual size nl ∈ N layers and therefore, the classification
function f : R

n −→ C can be represented as composition of the functions f l with l ∈
{1, . . . , nL}, i.e., f = f nL ◦ ... ◦ f 1, whereby C denotes the set of available classes. The
classification function is required to create mappings between intermediate representations
of the input data X ∈ R

n , which are generally denoted by zl ∈ R
nl . Themapping between the

i-th component of layer l and the j-th component of layer l + 1 is defined by zl,l+1
i→ j , so that

zl+1
j =

nl∑

i=1

zl,l+1
i→ j (1)

holds for all j ∈ {
1, . . . , nl+1

}
(see Fig. 2).

Using layer-wise relevance propagation, the degree of a component’s influence on the final
decision score is measured by the relevance score R which constitutes a relative measure of a
component’s contribution to the network’s outcome. The sign of R indicates the direction of
the contribution, whereby R > 0 implicates a positive and R < 0 a contradictory contribution
to the classifier’s outcome, i.e., a contribution that contradicts the final decision score. A
component with a relevance score close to zero is expected to be irrelevant with regard to the
decision made by the classifier.

Proceeding from themodel’s final layer nL with an initial relevance score of RnL = f (X),
LRP successively propagates the relevances backwards through the network until the input
layer is reached. Considering a multi-class classification problem solved via deep neural
networks, the classifier’s prediction usually results in a vector containing probabilities for
each existing class. In this case, the relevance score RnL is initialized with the value of the
class that is supposed to be explained. Under the assumption that the relevance Rl+1

j of each

component zl+1
j of layer l + 1 (cf. Eq. 1) has already been identified, the relevances of the

previous layer’s components zli is given by
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Table 1 Relevance message based on commonly used decomposition rules

Relevance decomposition rule Relevance message

Basic decomposition rule (LRP-0) Rl,l+1
i← j = zl,l+1

i→ j

zl+1
j

Rl+1
j

ε-Rule (LRP-ε) Rl,l+1
i← j = zl,l+1

i→ j

zl+1
j +ε·sgn

(
zl+1
j

) Rl+1
j with ε > 0

αβ-Rule (LRP-αβ) Rl,l+1
i← j =

⎛

⎝α

(
zl,l+1
i→ j

)+
(
zl+1
j

)+ + β

(
zl,l+1
i→ j

)−
(
zl+1
j

)−

⎞

⎠ Rl+1
j with α ≥ 1,

β ∈ R, α + β = 1

Rl
i =

nl+1∑

j=1

Rl,l+1
i← j (2)

(cf. Fig. 2). The relevance message Rl,l+1
i← j , directed from component j to component i ,

describes the ratio of the relevance score Rl+1
j that can be traced back to the i-th component

of layer l and can be determined, for example, according to the decomposition rules listed in
Table 1. The signum function occurring in Table 1 is defined as follows:

sgn
(
zl+1
j

)
=

{
1 if zl+1

j ≥ 0

−1 otherwise .

Positive forward contributions
(
zl,l+1
i→ j

)+
and and negative forward contributions

(
zl,l+1
i→ j

)−

are defined by

(
zl,l+1
i→ j

)+ =
{
zl,l+1
i→ j if zl,l+1

i→ j ≥ 0

0 otherwise
(3)

and

(
zl,l+1
i→ j

)− =
⎧
⎨

⎩
0 if zl,l+1

i→ j ≥ 0

zl,l+1
i→ j otherwise .

(4)

Further decomposition rules, as well as a detailed description of the aforementioned
decomposition rules can be found in [3], [19] and [24].

2.2 Adversarial Examples

Adversarial examples are especially common in the area of image classification and object
recognition, intentionally designed to deceive machine learning models and provoke mis-
classifications with high probabilities. They are characterized by a close resemblance to the
training data and cannot be differentiated from regular input images by human observers (see
Fig. 3).
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Fig. 3 Results of the L-BFGS attack targeting the classes airplane, automobile, bird, cat, deer, dog, frog, ship
and truck based on an image X ∈ R

n (bottom row, third from the left) originally assigned to the class horse.
All adversarial examples show a classification probability pc′ over 99 % towards the attack’s corresponding
target class c′ ∈ C

Based on a pre-trained classifier f : Rn −→ C, the generation of adversarial examples
can be mathematically defined as constrained optimization problem. Given a set of potential
classes C as well as a reference image X ∈ R

n belonging to the class c ∈ C, the optimization
problem reads as follows:

min
η

‖η‖p

s.t. f (X ′) = c′

f (X) = c

c′ 
= c

L ≤ X ′ ≤ U

(5)

with η = X − X ′ meaning the discrepancy between the reference image and the adversarial
example X ′ ∈ R

n . The parameters L,U ∈ R
n represent the component-wise lower and

upper bounds on the pixel values of the adversarial example belonging to the target class
c′ ∈ C. The determination of the minimal perturbation η∗, that is needed to provoke a
misclassification of the reference image, is a complex, nontrivial problem. There is a wide
range of algorithms, so called adversarial attacks, which enable the approximate solution
of this problem. Adversarial attacks, such as the Fast Gradient Sign method or the L-BFGS
attack (see Sect. 3.2), are usually based on different algorithmic approaches and assumptions.
An extensive survey of existing adversarial attacks is given by [29] and [37].

3 Experimental Settings

3.1 Dataset and Network Architecture

The generation of the adversarial examples forming the foundation of the analysis covered
within this paper and the training of the underlying classifier is based on the dataset CIFAR-
10. In the research area of machine learning, CIFAR-10 is a commonly used benchmark
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dataset of RGB images characterized by a comparatively low image resolution (32 × 32).
The dataset comprises 60,000 images (50,000 training and 10,000 test samples) belonging
to the classes airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck, which
consist of 6,000 samples each. The available classes are denoted by ci ∈ C for i ∈ {1, . . . , 10}
and thus, C = {ci | i ∈ {1, . . . , 10}} holds.

In the field of image classification, there are already a considerable amount of CNN archi-
tectures that achieve excellent results on CIFAR-10 [4]. These CNNs are generally very deep
and equipped with innovative architectural elements (e.g., skip connections [17]). To circum-
vent potential dependencies on specific architectural design and ensure a straightforward and
transparent analysis of relevant features, we deliberately selected a CNN characterized by a
more simple and less deep network architecture. The network’s architectural design is based
solely on fundamental structural elements, such as convolutional, max-pooling, and fully-
connected layers, whose configuration is inspired by the state-of-the-art classifier VGG [17]
(cf. Table 2). Unlike VGG networks, our CNN architecture features a significantly smaller
number of trainable parameters. VGG16 [31], for instance, includes approximately 138 mil-
lion trainable parameters, while our CNN only consists of 307,936 trainable parameters (cf.
Table 2). The CIFAR-10-based training and evaluation of the selected network leads to a
training accuracy of 90.87 % and a validation accuracy of 89.02 %. Therefore, 8,902 test
images and 47,552 training images are correctly classified.

3.2 Generation of Adversarial Examples

The generation of the adversarial examples is based on 8,902 correctly classified images of
the CIFAR-10’s test dataset using the L-BFGS attack (cf. Sect. 2.2). The L-BFGS attack is an
iterative white-box attack based on the limited memory BFGS method for bound constrained
optimization (short L-BFGS-B), a numerical optimization algorithm described in detail by
Byrd et al. [6]. Since the L-BFGS attack is a targeted adversarial attack, the attack’s desired
target class c′ ∈ C needs to be specified in advance. To reach a wide variety of adversarial
examples for later analysis, every class of CIFAR-10 is chosen once to be the attack’s target
class. Therefore, the attack is executed nine times for each correctly classified image X ∈ R

n ,
i.e., for all targets c′ ∈ C with c′ 
= y. In this case, the parameter y = c for c ∈ C denotes the
image’s true label. The implementation of the L-BFGS attack provided by the Python library
Foolbox 2.4.0 [11, 26] was used to create the adversarial examples. Further information
regarding the algorithmic specification of the attack’s implementation can be found in [32].

3.3 Generation of Relevance Scores

The relevance scores for both, adversarial examples and original images (cf. Fig. 1), are deter-
mined according to the basic relevance decomposition rule (LRP-0), the ε-rule (LRP-ε), as
well as the αβ-rule (LRP-αβ) (cf. Table 1) implemented in Python 3.6.10 using Tensor-
flow 2.1.0. The advanced decomposition rules LRP-ε and LRP-αβ are executed for different
parameter values, i.e., for ε ∈ {0.0001, 0.01, 0.1, 1} and α ∈ {1, 2}, to evaluate the param-
eters’ effects on the final relevance scores as well. Given the tensorial representation of the
input images, the application of the relevance decomposition rules according to Sect. 3.3
results in 3072 relevance scores per adversarial example or original image, respectively.

To allow a clear distinction between relevant and irrelevant input components, especially
when passing on off-manifold data like adversarial examples, the softmax pre-activation val-
ues are used as initial relevance scores, instead of utilizing the classifier’s final probabilistic
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Table 2 Detailed specification of the CNN architecture

No. Layer type Output dim. Trainable parameters

No. Biases No. Weights

1 Convolution2D (32,32,32) 32 864

2 BatchNormalization (32,32,32) 0 64

3 Activation (ReLU) (32,32,32) 0 0

4 Convolution2D (32,32,32) 32 9,216

5 BatchNormalization (32,32,32) 0 64

6 Activation (ReLU) (32,32,32) 0 0

7 MaxPooling2D (16,16,32) 0 0

8 Dropout (0.2) (16,16,32) 0 0

9 Convolution2D (16,16,64) 64 18,432

10 BatchNormalization (16,16,64) 0 128

11 Activation (ReLU) (16,16,64) 0 0

12 Convolution2D (16,16,64) 64 36,864

13 BatchNormalization (16,16,64) 0 128

14 Activation (ReLU) (16,16,64) 0 0

15 MaxPooling2D (8,8,64) 0 0

16 Dropout (0.3) (8,8,64) 0 0

17 Convolution2D (8,8,128) 128 73,728

18 BatchNormalization (8,8,128) 0 256

19 Activation (ReLU) (8,8,128) 0 0

20 Convolution2D (8,8,128) 128 147,456

21 BatchNormalization (8,8,128) 0 256

22 Activation (ReLU) (8,8,128) 0 0

23 MaxPooling2D (4,4,128) 0 0

24 Dropout (0.4) (4,4,128) 0 0

25 Flatten (,2048) 0 0

26 Dense (,10) 10 20,480

27 Activation (Softmax) (,10) 0 0

outcome pc ∈ [0, 1], c ∈ C. To avoid incredible large relevance scores and enable compa-
rability while maintaining the relevance scores’ ratio and signs within each image, the final
relevance scores are normalized separately in dependence of the underlying image using the
maximum norm. As opposed to [24], there is no composition of different decomposition
rules in dependence of a layer’s position within the architecture of the CNN.

3.4 Analysis of the Relevance Scores

The analysis is conducted based on the relevance scores of 77,402 generated adversarial
examples, as well as the relevance scores of the correctly classified test images of CIFAR-10
(cf. Sect. 3.3). For our investigations, we applied established methods of descriptive statistics
and exploratory data analysis, such as expected values, standard deviations, quantile values
and ranges, as well as visual evaluation and verification via histograms and saliency maps.
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Table 3 Quantiles of the adversarial examples’ relevance scores obtained by applying LRP-0, LRP-ε and
LRP-αβ

Quantile Relevance decomposition rule

LRP-0 LRP-ε LRP-αβ

ε = 0.0001 ε = 0.01 ε = 0.1 ε = 1 α = 1 α = 2

0.001 −0.6375 −0.6418 −0.7014 −0.5862 −0.4517 0.0000 −0.3164

0.005 −0.3570 −0.3677 −0.4848 −0.3413 −0.2265 0.0000 −0.1628

0.010 −0.2363 −0.2739 −0.3935 −0.2541 −0.1529 0.0001 −0.1092

0.100 −0.0553 −0.0593 −0.1200 −0.0514 −0.0162 0.0017 −0.0103

0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0181 0.0000

0.900 0.0553 0.0593 0.1197 0.0516 0.0197 0.1353 0.0183

0.990 0.2665 0.2775 0.4012 0.2648 0.2604 0.4758 0.2634

0.995 0.3635 0.3746 0.4984 0.3605 0.4005 0.5960 0.4058

0.999 0.6508 0.6569 0.7356 0.6364 0.7581 0.8526 0.7696

Table 4 Quantiles of the original images’ relevance scores obtained by applying LRP-0, LRP-ε and LRP-αβ

Quantile Relevance decomposition rule

LRP-0 LRP-ε LRP-αβ

ε = 0.0001 ε = 0.01 ε = 0.1 ε = 1 α = 1 α = 2

0.001 −0.6565 −0.6555 −0.7047 −0.5982 −0.4414 −0.2043 −0.3217

0.005 −0.3749 −0.3798 −0.4669 −0.3482 −0.2276 −0.0385 −0.1703

0.010 −0.2769 −0.2828 −0.3709 −0.2595 −0.1562 −0.0072 −0.1161

0.100 −0.0581 −0.0611 −0.1055 −0.0520 −0.0174 0.0016 −0.0115

0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0189 0.0000

0.900 0.0583 0.0613 0.1001 0.0537 0.0231 0.1486 0.0223

0.990 0.2770 0.2830 0.3743 0.2817 0.3059 0.5140 0.3034

0.995 0.3744 0.3795 0.4714 0.3807 0.4556 0.6335 0.4518

0.999 0.6530 0.6549 0.7089 0.6521 0.7976 0.8729 0.7997

The statistical analysis is performed separately for relevance scores above and below zero,
due to the different interpretation of positive and negative relevance scores (cf. Sect. 2.1).

Input components with high positive or particularly contradictory contributions to the
classifier’s outcome, i.e., components with high absolute relevance scores, are of particular
interest in the context of our analyses. If the hypothesis that different classification decisions
must lead to distinct saliency maps to provide reasonable explanations holds, there should
be a significant discrepancy between adversarial examples and original images, especially
in extreme value ranges. Therefore, the focus is on the components with the most extreme
relevance scores in each sample, as well as the largest 1 % of the positive relevance scores
and the smallest 1 % of the negative relevance scores. This selection is due to the determined
quantile values shown in Table 3 and Table 4 . In addition to the analysis of significantly
influential components of adversarial examples and original images, non-influential compo-
nents, i.e., components with relevance scores close to zero, are examined as well. Due to
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Fig. 4 Description of the procedure for generating the relevance ranking based on the relevance scores of
original images and corresponding adversarial examples (see input). Step 1: The relevance scores (here LRP
Score) are sorted for each image and associated adversarial examples individually in descending order. The
pixel with the highest score is ranked first, while the pixel with the lowest score is ranked last. A pixel can be
identified by its position in the image frame (here Pixel Pos.). Step 2: The position of each pixel in the original
relevance ranking and the adversarial relevance ranking is compared, resulting in a positional relevance shift
for each pixel (here Pos. Shift)

their comparatively low relevance scores, components with a positive score below 0.001 and
a negative score above −0.001 are assumed to be irrelevant for the classification.

Furthermore, we establish a ranking describing the relevance shift between components
of original images and components of adversarial examples triggered by the application of
the adversarial attack (cf. Fig. 4). Therefore, the input components of each image are sorted
separately and in descending order according to their relevance score, without distinguishing
between positive and negative values. The relevance shift of each component is defined
by the difference between the position of a component in the relevance ranking based on
the original image and the position of a component in the relevance ranking based on the
corresponding adversarial example. Hence, a positive shift indicates a positional degradation
and a negative shift a positional enhancement of a component when looking at adversarial
examples. A shift of zero implies that the position of a component remains unchanged.
When analyzing the positional shift of individual components, we focus primarily on the
components with the largest or the largest 1 % of the positive relevance scores, similar to
the statistical evaluation. Additionally, we investigate the change in position for the most
relevant 10 % of the components. In the following, the relevance ranking for components of
adversarial examples is referred to as adversarial relevance ranking and the ranking based
on components of original images is referred to as original relevance ranking.

4 Results

4.1 Classification Accuracy

The application of the L-BFGS attack according to the experimental setup sketched above
(cf. Sect. 3.2) results in a total of 77,402 adversarial examples which corresponds to a success
rate of 96.61 %. The vast majority of adversarial examples, more precisely 99 %, show a
classification probability pc′ above 93.37% towards their respective target class c′ ∈ C. Only
in 0.5 % of the cases, pc′ ≤ 54.82 % holds. Hence, in these cases, the adversarial attack
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Fig. 5 Results of the application of LRP-ε and LRP-αβ to correctly classified images of CIFAR-10 belonging
to the classes automobile, bird, cat, horse and truck

is not able to create powerful adversarial examples which convincingly fool the underlying
CNN. In 0.1 % of the cases, pc′ is even lower than 26.62 %.

A closer look at these low-probability adversarial examples (i.e., pc′ ≤ 54.82%) revealed,
that most of them result from images originally assigned to the classes dog and cat. It can also
be observed that 39 out of 84 low-probability adversarial examples, that result from the L-
BFGS attack targeting the class cat, are originally assigned to the class dog. A similar picture
was found while examining the adversarial examples of the target class dog. This observation
is not surprising since these classes seem to be generally mistaken by the underlying CNN,
due to their close visual appearance. Furthermore, it was striking to see that regardless of
the image’s true label y = c with c ∈ C and the attack’s target class c′ ∈ C, the remaining
probability 1 − pc′ was typically assigned to one or two other classes at a lower but similar
level. In this context, the second highest probability was almost always assigned to the
image’s true class c. Despite the images’ low resolution of 32×32, the adversarial examples
cannot be distinguished from their original image by human observers, as Fig. 3 compellingly
illustrates.

4.2 Relevance Scores

4.2.1 Visual Evaluation

The visual verification and direct comparison between the input contribution heatmaps of an
original image and its corresponding adversarial examples reveal no significant differences
(cf. Figs. 5and 6). Despite strongly divergent classification decisions and high classification
accuracy, there is almost no difference between components of adversarial examples marked
relevant and relevant components of original images. Even though individual pixels undergo
minor changes in the absolute magnitude of their relevance scores and some previously
insignificant pixels seems to become relevant as a result of the adversarial attack, the majority
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Fig. 6 Results of the application
of LRP-ε and LRP-αβ to
adversarial examples
belonging to the target classes c′ ∈
{automobile, bird, cat, horse, truck}
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of pixels appear to have a strong impact on both, the classification of the adversarial example
and the classification of the original image.

This can be observed especially for input contribution heatmaps derived from relevance
scores obtained by applying LRP-αβ with α = 1 (cf. Figs. 5 and 6). Even tough some
background components seem to become relevant for the classifier’s outcome through the
changes induced by the adversarial attack, the contours of the original objects are clearly
visible in the input contribution heatmaps of the adversarial examples. This implies that
components marked relevant for original images seem to be relevant for adversarial examples
as well, albeit leading to a significantly different classification decision with a high accuracy
towards the pre-defined target class (here automobile, bird, cat, horse and truck). In some
cases the negative relevance scores even overpower the positive ones (e.g. Fig. 6 original
class bird, target class cat) replicating the original object’s contour lines. Thus, the heatmaps
seem to clearly contradict the result of the classifier.

Accordingly, a visual verification seems to be ambiguous and not sufficient to explain the
entirely different classification results of original images and adversarial examples. Further-
more, the question arises whether a visual verification of relevance scores based on human
interpretation of contour lines can actually explain the influence of a component within the
complex structure of a deep neural network. However, to allow the evaluation to be based on
more than a visual inspection a statistical evaluation of the differences in saliency maps is
presented in the following section.

4.2.2 Statistical Evaluation

Regardless of the applied decomposition rule, the statistical evaluation shows that on average
0.36 % of the adversarial components have a relevance score of zero, and therefore are
considered non-influential to the final decision score f (X ′), X ′ ∈ R

n . For correctly classified
images, on average only 0.24 % of the components have a relevance score of zero. Looking
at the quantile values in Tables 3 and 4, only 1 % of the positive and 1 % of the negative
relevance scores appear to be significant for the final classification decision. However, the
majority of the components seem to have no significant impact according to LRP, as their
relevance scores are an order of magnitude lower than those below and above the 1 % and
99 % quantiles, respectively. This is also reflected by the relevance scores’ expected value,
which ranges from zero (LRP-0) to 0.0516 (LRP-αβ, α = 1) for adversarial examples and
from zero to 0.055 for original images.

Considering the relevance scores’ quantile values, summarized in Tables 3 and 4, there
is no discernible difference between the relevance scores of adversarial examples, and the
relevance scores of original images. In both cases, the relevance scores obtained by LRP-0
and LRP-ε with ε ∈ {0.0001, 0.01, 0.1} are symmetrically distributed around zero. The
distributions of the relevance scores obtained by LRP-ε with ε = 1 and LRP-αβ with
α ∈ {1, 2}, on the other hand, are slightly skewed to the right, which is due to the nature of
the applied decomposition rules.

In the case of LRP-ε, the parameter ε absorbs a certain amount of relevance and thus
eliminates weak or contradictory contributions as ε grows. Accordingly, with an increasing
parameter value the number of irrelevant components increases and only the most salient
components survive, which is also reflected by the quantile values in Tables 3 and 4. Fur-
thermore, it can be observed that the relevance scores’ standard deviation also declines with
growing ε, showing values below 0.1184. Additionally, the gaps between the quantile values
of the relevance scores change for ε = 1 and the relevance scores of allegedly influential com-
ponents tend to become even larger. This seems to allow amore precise distinction of relevant
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and irrelevant features. In contrast to LRP-ε, the observed distribution shift for the relevance
scores obtained by LRP-αβ is due to the different weighting of positive and negative forward
contributions. Especially interesting is the significant difference in the lower quantile values
for relevance scores of adversarial components and components of original images for α = 1.
In the case of original images, 2% of the components are assigned a relevance score less than
zero, whereas only 0.1 % of the relevance scores associated with adversarial examples are
in the negative value range. Nevertheless, in both cases, the relevance scores have similar
expected values (0.0516 for adversarial examples, 0.055 for original images) and standard
deviations (0.0930 for adversarial examples, 0.1013 for original images). Similar to LRP-ε
the variation of the gap between the relevance scores’ quantile values can be observed for
LRP-αβ as well.

Regardless of the applied decomposition rule (i.e., LRP-0, LRP-ε or LRP-αβ), the exam-
ination and direct comparison of the relevance scores for both adversarial examples and
original images using quantiles, expected values and standard deviations revealed no major
differences between their relevance scores. Even the analysis of highly influential or non-
influential components showed neither significant differences between the relevance scores
of adversarial examples and original images, nor general differences between positive and
negative relevance scores. Hence, the statistical analysis indicates a rather ambiguous behav-
ior of LRP as well (cf. Sect. 4.2.1), supporting the conjecture of insufficient explanatory
power, especially when considering defective data such as adversarial examples.

4.2.3 Relevance Ranking

The results above are also supported by the established relevance ranking for components of
original images and components of adversarial examples, as well as by the direct comparison
of their ranking position according to Sect. 3.4. Particularly striking are the results of the
relevance ranking for adversarial examples and original images based on the relevance scores
obtained by applying LRP-αβ with α = 1.

The examination of the components with the highest relevance score in each original
image pursuant to LRP-αβ with α = 1 shows, that 96.72% of these components are also
among the 10% of the components most relevant for the classification of the corresponding
adversarial example. In 75.21% of the cases, the most relevant component of the original
image even belongs to the 1% top-scored components of the associated adversarial example.
When looking at the positional shift of an original image’s most relevant component, which
still belongs to the top 1% or top 10% of the most relevant components in the adversarial
ranking, a comparatively small change in position can be observed. For the majority of the
components (more precisely 70%of them), the change in position is below7whenconsidering
the top 1% of the components within the adversarial ranking, and less than 54 when taking
the top 10% into account. This observation is also illustrated by Fig. 7. In 3.75% of the cases,
the most relevant component of the original image and the most relevant component of the
corresponding adversarial example are identical.

Considering the 1% of the original images’ most relevant components according to LRP-
αβ with α = 1, it can be observed that 43.37% of them also belong to the 1% of the
top-ranked components of the corresponding adversarial examples. Approximately 93% of
original images’ top 1% even belong to the top 10% of the adversarial components mainly
responsible for the classifier’s outcome.As illustrated byFig. 7, the absolute positional change
of an original component within the adver-sarial relevance ranking is less than 10 in 70% of
the cases when looking at the 1% of the top-ranked adversarial components, and less than
54 when considering the top 10%. Of particular interest is the change in position of the most
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Fig. 7 Frequency distribution of the positional change of the most relevant component of each original image
according to LRP-αβ, α = 1, which also belongs to the top 1% (left) or the top 10% (right) of the adversarial
input components

Fig. 8 Frequency distribution of the positional change of the 1% most relevant components of each original
image according to LRP-αβ, α = 1, which also belong to the top 1% (left) or the top 10% (right) of the
adversarial input components

relevant 1% of the original components, which also belong to the 1% of the most relevant
components of the respective adversarial examples. Here, an average positional change of
zero can be observed. In the case of the components that are given 10%of the highest relevance
scores in the original image, 64.12% are also among the most relevant 10% in the adversarial
relevance ranking, even though the adversarial examples are classified with an equally high
accuracy. In fact, this even applies to strong attacks where the target is very different from the
origin, e.g. images originally belonging to the class bird vs. their corresponding adversarial
examples belonging to the target class truck.

Furthermore, the positional change of the components that belong to both, the top 10% of
the original images and to the top 10% of the corresponding adversarial examples, averages
zero as well (cf. Fig. 9and Fig. 8, left). For 50% of these components, the absolute change
in position is below 51. The relevance ranking and positional shift analysis were performed
analogously based on relevance scores obtained by LRP-αβ with α = 2 and LRP-ε with
ε = 1. The overall tendencies of these results are similar to the results based on relevance
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Fig. 9 Frequency distribution of
the positional change of the 10%
most relevant components of
each original image according to
LRP-αβ, α = 1, which also
belong to the top 10% of the
adversarial input components

Table 5 Share of the original
images’ top-ranked components
that also belong to the
corresponding share of the
adversarial examples’ top-ranked
components based on the
relevance scores obtained by
LRP-αβ with α = 2 and LRP-ε
with ε = 1

Rule Share orig. images Share adversarial examples

1% 10%

Most relevant 54.97% 79.93%

LRP-αβ 1% 34.00% 76.03%

10% – 52.40%

Most relevant 44.14% 68.85%

LRP-ε 1% 27.12% 64.18%

10% – 42.15%

scores obtained by LRP-αβ with α = 1. Therefore, these results will not be discussed further.
However, the main results can be found in Table 5.

Since the majority of top-ranked 1% experience only a marginal change in position of
2.3 per thousand and the majority of the top-ranked 10% merely undergo a relative position
change of 1.76%, these top-score shifts between original images and adversarial examples
cannot be considered a reliable foundation for explaining the change in classification w.r.t.
adversarial examples and original images. Given the fact that the analysis did not discrimi-
nate between class affiliations or target class dependencies, these results indicate a general
characteristic problem of layer-wise relevance propagation.

4.3 Discussion

Adversarial examples are generally characterized by high similarity to the original data.
Therefore, edges in images rarely undergo significant changes in adversarial attacks (cf.
Fig. 3). This feature is clearly highlighted by LRP by carving out almost identical contour
lines for both the original image and the adversarial examples (cf. Figs. 5 and 6) while they
are classified differently. Consequently, LRP emphasizes the image contour lines rather than
actually explaining the network’s decision. This finding is also supported by the observations
of Adebayo et al. [1], who show that some saliency methods (e.g., gradient�input) work
like an edge detector, in combination with the work of Ancona et al. [2], who show that
gradient�input is strongly related to LRP and even equivalent in some configurations. Taking
further into account that visual comparison between object contours and saliency maps is
a "poor guide in judging whether the saliency map is sensitive to the underlying model"
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[1], our results lead to the conclusion that assigning a relevance score to individual input
components based on a layer-wise conservation principle to measure their importance in the
decision process does not properly explain the behavior of a deep neural network.

However, this rationale is not inconsistent with other evaluations using relevance score-
dependent perturbations of input components to analyze the explanatory power of LRP [3, 19,
28]. Since these approaches change components of objects marked relevant, they technically
change the edges of these objects which should reduce the classification probability. But
this does not explain how the network arrives at its decisions, because in the case of adver-
sarial examples—where components allegedly relevant according to LRP mainly remain
unchanged (cf. Figs. 7 and 8)—the classification decision is completely overturned.

5 Conclusion

In this paper, we presented a comprehensive statistical analysis and a novel approach to evalu-
ate the explanatory power of LRP using adversarial examples as relevance score-independent
perturbation. The performed analyses demonstrate that there is no significant difference
between the saliency maps of adversarial images and the corresponding original ones. This
leads to the conclusion that there is no evidence that LRP in its current version explains
the CNN’s decision process for original images or adversarial examples in a comprehensible
way. Nevertheless, our analyses show that adversarial examples offer the potential to uncover
inconsistencies in the robustness and stability of explanations obtained by saliency methods.
We believe that adversarial examples are a useful addition to the means of evaluating the
explanatory power of such methods.

While our work was a first step in this direction, the presented approach can be used for
consistency evaluations of other explainability methods (e.g., LIME [27, 35]) as well.
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