
E�cient Re-parameterization Operations Search for
Easy-to-Deploy Network Based on Directional
Evolutionary Strategy
Yu Xinyi

Zhejiang University of Technology
Wang Xiaowei

Zhejiang University of Technology
Rong Jintao

Zhejiang University of Technology
Zhang Mingyang

Zhejiang University of Technology
Ou Linlin (linlinou@zjut.edu.cn)

Zhejiang University of Technology

Research Article

Keywords: neural network, evolutionary algorithm, structural re-parameterization, deep learning

Posted Date: July 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1818283/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1818283/v1
mailto:linlinou@zjut.edu.cn
https://doi.org/10.21203/rs.3.rs-1818283/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Efficient Re-parameterization Operations

Search for Easy-to-Deploy Network Based on

Directional Evolutionary Strategy

Xinyi Yu1, Xiaowei Wang1, Jintao Rong1, Mingyang Zhang1

and Linlin Ou1*

1College of Information and Engineering, Zhejiang University of
Technology, Hangzhou, 310014, China.

*Corresponding author(s). E-mail(s): linlinou@zjut.edu.cn;
Contributing authors: 2112003049@zjut.edu.cn;

Abstract

Structural re-parameterization (Rep) methods has achieved signifi-
cant performance improvement on traditional convolutional network.
Most current Rep methods rely on prior knowledge to select the re-
parameterization operations. However, the performance of architecture
is limited by the type of operations and prior knowledge. To break
this restriction, in this work, an improved re-parameterization search
space is designed, which including more type of re-parameterization
operations. Concretely, the performance of convolutional networks can
be further improved by the search space. To effectively explore this
search space, an automatic re-parameterization enhancement strategy is
designed based on neural architecture search (NAS), which can search
a excellent re-parameterization architecture. Besides, we visualize the
output features of the architecture to analyze the reasons for the for-
mation of the re-parameterization architecture. On public datasets, we
achieve better results. Under the same training conditions as ResNet,
we improve the accuracy of ResNet-50 by 1.82% on ImageNet-1k.

Keywords: neural network, evolutionary algorithm, structural
re-parameterization, deep learning

1

Springer Nature 2021 LATEX template

2 Re-parameterization Operations Search for Easy-to-Deploy Network

1 Introduction

Neural architecture search (NAS)[1–8] has been widely used in many
field, such as object detection[9, 10], semantic segmentation[11, 12], image
recognition[13], image generation[14] and object re-recognition[15, 16].
Although the architecture searched by NAS is superior to traditional net-
works in performance such as VGG[17], ResNet[18], MobileNet[19–21] and
DenseNet[22], its landing ability is far inferior to these networks, which makes
it difficult for NAS methods to be widely-used in practice.

NAS tends to retain multi-path structures and more ”shortcut” operations
without artificial restrictions. This structure is not friendly to most terminal
devices. Meanwhile, the architecture searched based on the DARTS[1] search
space achieves better performance on the benchmark dataset, but some con-
volution operations (such as 7×7 and 5×5 separable convolutions, 7x1–1x7
sequential convolution) in the search space are not well optimized on the ter-
minal devices, which makes them[2–4, 6, 23–25] not well deployed on edge
devices. In Fig. 1, we tested the accuracy and inference time of networks on
the NVIDIA embedded board. The networks searched by traditional search
space do not perform well when deployed to edge devices. Especially, the accu-
racy and inference speed are inferior to the manually designed networks on
ImageNet-1K. Therefore, it is a challenging task to improve the performance
of the architecture without sacrificing the ability of deployment to terminal
devices.

The structural re-parameterization technology provides us with a new idea.
Rep methods effectively improve the performance of the tranditional networks,
but the specific operations need to be selected based on prior knowledge[26, 27],
such as depth, the type of convolution operations and the number of con-
volution operations. This approach makes the re-parameterization network
suboptimal. To further improve the performance of the model and find

Fig. 1 The inference speed and accuracy of networks are tested on NVIDIA AgX Xavier.
On ImageNet-1K, our networks achieved better accuracy and inference speed on the general
dataset

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 3

the globally optimal networks, we use NAS method to search a set of re-
parameterization operations, which can be fused into the traditional networks.
In this way, we can get great performance and landing friendly models. In
addition, the performance of re-parameterization models is closely related to
the type of re-parameterization operations. Some previous work[28, 29] search
the best combination of re-parameterization operations automatically, but the
type of re-parameterization operations limits the upper limit of network per-
formance. Therefore, the performance of model can be further improved by
exploring more re-parameterization operations.

In addition to the re-parameterization operations involved in the above
work, there are other convolution operations that can be fused into VGG-
style networks after appropriate transformation. Thus, an improved re-
parameterization search space (IREPS) was designed to make it include more
re-parameterization operations, and a better set of re-parameterization oper-
ations can be searched from the larger search space, which can be fused into
easily deployable networks without accuracy degradation.

For the larger re-parameterization search space, a directional evolutionary
strategy (DES) was designed to explore a optimal architecture population from
it. When training the SuperNet parameters, it learns the importance of blocks
and candidate operations, and uses them as an indicator to generate different
offspring architectures. Thus, the search strategy can directly ignore bad archi-
tectures, which makes the algorithm converge rapidly. To explain the reasons
for the formation of the architecture and the improvement of performance,
finally, we visualized the architecture and the output feature. In summary, the
contributions can be summarized as follows:

1. An improved re-parameterization search space was designed, which contains
more re-parameterization operations. Compared with other Rep search
space, it can further improve the performance of traditional convolutional
network.

2. To explore the larger search space, DES is proposed to search a set of re-
parameterization operations. This search strategy makes a trade-off between
the diversity of architectures and the efficiency of search.

3. Extensive experiments on image classification and its downstream tasks
demonstrate our architecture achieve better results compared to other
related work.

2 Related Work

2.1 Network Architecture Search

Neural architecture search (NAS) is a widely-used technique, which aims
to search feature extraction networks that match given tasks. Evolution-
ary algorithm-based NAS[5, 7, 8, 30, 31] uses the principle of ”survival of
the fittest” to select architectures and rely on genetics, mutation, crossover
and random generation to obtain new offsprings. Evolutionary algorithm is

Springer Nature 2021 LATEX template

4 Re-parameterization Operations Search for Easy-to-Deploy Network

well-established global optimization method with high robustness and wide
applicability. However, evolutionary algorithm-based NAS converges slowly
due to the random generation of offspring architectures.

Gradient-based NAS[1, 2, 4, 6, 32–36] benefits from the introduction of
differentiable function, which transforms the discrete search space into contin-
uous, so that it can be optimized by gradient optimization algorithm. From the
perspective of parameter optimization, it can be divided into two categories.
One is bilevel optimization[1, 6, 33, 35, 36], which optimizes the architecture
parameters under the weight parameters are optimal. It can be described as:

min
α

Lval (w
∗(α), α) s.t. w∗(α) = argminw Ltrain (w,α) (1)

where α denotes architecture, wα denotes the network weight bound with
the architecture α, Ltrain and Lval denote optimization loss on training and
validation dataset. It first optimizes the network weights w, then finds α that
minimizes the validation loss Lval. The other is single-level optimization[2, 34,
37], which regards the optimization of w and α as independent processes. It
can be described as:

αt, wt+ = η∇α,wLtrain

(

αt−1, wt−1
)

(2)

Eq. 2 indicates that both w and α are optimized in an optimization process.
Although gradient-based NAS can converge quickly, the existence of Matthew’s
effect makes architecture lack of diversity, which leads to the architecture is
non-globally optimal. In this work, the single-level optimization approach is
used to optimize the weight of SuperNet and learn the importance of operations
in the SuperNet. Instead of sampling from SuperNet randomly, DES assumes
that the optimal re-parameterization operation combination vary at different
training phases (epochs) and aims to generate different architecture based on
current optimal re-parameterization operations. Thus, DES can speed up the
convergence of search strategy and explore globally optimal architecture.

2.2 Structural Re-parameterization

The structural re-parameterization technology is an equivalent parameter con-
version technology. In our work, the structural re-parameterization technique
refers to equivalently converting a multi-branch architecture into a single-
branch architecture. ACNet[38] proposes to fuse 1D asymmetric convolution
into square convolution to enhance the feature representation capability of
square convolution. DDB[26] aims to enhance the representation of a sin-
gle convolution by combining diverse branches and give methods for fusing
multiple convolution operations in various combinatorial forms. RepVGG[27]
constructs a residual structure-like branch based on the VGG network and
fuses the trained residual-like structure into a 3×3 convolution by structural
re-parameterization technique. Based on the re-parameterization technique,

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 5

RepNAS[28] designed a re-parameterization search space, in which all multi-
branch structures can be transformed into single-branch structures. There are
several re-parameterization techniques, which can be described as: 1) Conv-BN
to Conv, 2) a Conv for branch addition, 3) Sequence Conv structure to Conv,
4) a Conv for depth concatenation to a Conv, 5) K×K average pooling to
K×K Conv, 6) a Conv for multi-scale Convs. The above work enhances the fea-
ture extraction ability of convolution by re-parameterization technology, but
their type of re-parameterization operation is deficient. In this work, we aim
to build more different types of reparameterization operations.

3 Proposed strategy and search space

Here, the improved re-parameterized search space is designed first. Secondly,
the parameters of the SuperNet are optimized by batch optimization method.
Afterward we introduce how to generate the offspring architectures. Finally,
a re-parameterization verification method is implemented to speed up the
verification process.

3.1 Improved re-parameterization search space

The convolution operations in traditional convolution networks are called fixed
operation. In this work, fixed operation represents 3×3 convolution operation.
In the re-parameterization search space, all candidate operations can be fused
into fixed operation. Therefore, when the traditional network (ResNet,VGG
etc.) that needs to be re-parameterized is determined, the parameters of the
architecture is also determined. In addition, when two different operations are
re-parameterized, the center weight of the operations need to be aligned , and
then fuse the weight parameters. Hence, the re-parameterization search space
has the following characteristics:

1. In structural re-parameterization search space, the parameter number of
the network is only related to the number of channels. Therefore, changing
the number of operations in the block only affects the resource consumption
of training, not the amount of parameters and the inference speed when the
network is deployed.

2. In the reparameterization search space, the convolution operations with the
same groups and channels but different kernel sizes can be fused into each
other, if the centers of the convolutions can be exactly overlapped.

In AcNet[38], taking 3×3 convolution as an example, the cruciform weight
of the convolution center position has the most important feature information.
Thus, the better feature extraction ability can be achieved by enhancing the
cruciform feature at the center position of convolution. In this work, more
operations are expected to be included in the re-parameterization search space,
which can further enhanced the cruciform weight at the center position of the
fixed operation.

Springer Nature 2021 LATEX template

6 Re-parameterization Operations Search for Easy-to-Deploy Network

Based on the properties of the re-parameterization search space, in this
work, 2×2, 2×1, and 1×2 dilated convolutions are added to the search space,
besides the 3×3, 1×3, 3×1, 1×1, 1×1−3×3 convolution operations, residual
connection and 1×1-average pooling operation. Since the centers of the 1×2
and 2×1 dilated convolutions overlap with the 3×3 convolution, the dilated
convolution can be perfectly fused into 3×3 convolution. Specifically, it can be
described as F 3×3

((0):,:,1:2,::2) = F 1×2
(D:,:,:,:); F

3×3
((0):,:,::2,1:2) = F 2×1

(D:,:,:,:); F
3×3
((0):,:,::2,::2) =

F 2×2
(D:,:,:,:), where F 3×3

(0) represents 3× 3 convolution with weights of zero. F 1×2
(D) ,

F 2×1
(D) and F 2×2

(D) represent the weight of 1×2, 2×1 and 2×2 dilated convolutions.

During re-parameterization, we transfer the weight of dilated convolutions to
3 × 3 convolution with zero weight. In this way, dilated convolutions can be
fused into the fixed operation. Considering that ResNet is one of the most
widely used models in visual tasks, in this work, to further improve ResNet
through a set of re-parameterization operations, we add a re-parameterization
block for 3× 3 convolution that is similar to the residual structure.

3.2 Batch optimization of SupNet parameters

In the search process, we use binary encoding (i.e., 0, 1) to cover the SuperNet
to obtain different subnets. 1-element indicates participation in forwarding
propagation and 0-element indicates non-participation. To trade off efficiency
and accuracy, the method of batch optimization of parameters is introduced,
which can be expressed as:

dω =
1

P

P
∑

i=1

dωi =
1

P

P
∑

i=1

∂Li

∂ω
⊙Mi ≈

1

B

B
∑

j=0

∂LMj

∂ωMj

(3)

where P and B represent the number of populations and subnets. M denotes
the subnet sampled from the SuperNet S. LMj

is the loss value of the subnet on
the training dataset. Eq. 3 shows that the weight parameters of the SuperNet
can be optimized by updating the gradients of subnets in batch. Further, it
can be approximated as the average gradients of a part of the individuals in
the population.

In search process, the branches number of sub-architectures is limited to
C and all sub-architectures share the weight of SuperNet. The single-level
method is used to optimize parameters on the training dataset Dtrain. With
the formulation used before Eqs. 2 and 3, the search process can be given as:

ωt+1, θt+1+ = ξω,θ

1

B

B
∑

j=0

∂LDtrain
(ωt, θt)

∂ωMj
, θMj

(4)

s.t.

{

M = S{M1,M2,...,Mj}

∥Mj∥ ≤ C
(5)

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 7

where θ and ω are the architecture parameters and the weight parameters
of the network, respectively. We generate different sub-architectures to form
a population under resource constraints, and optimize the weight and archi-
tecture parameters of the Supernet by sampling the architectures from the
population.

3.3 Generation of the architecture

The convergence speed of Evolutionary algorithm-based NAS is slow, which
is caused by generating offspring architectures randomly. Therefore, we
introduce the differentiable method to learn the importance of blocks and
re-parameterization operations, and then guide the generation of the sub-
architectures. We use the Sigmoid function to quantify the importance of
re-parameterization blocks β and candidate operations α. As shown in Fig. 2,
each layer of SuperNet is composed of re-parameterization blocks and fixed
operations, the block is composed of multiple candidate operations Op (·).
Therefore, the output of the ith layer B̄i(x) can be expressed as:

B̄i(x) = β′
i

∑

o∈O

1

1 + e−αi
o

fo(x) + F (x) (6)

β′
i =

1

1 + e−βi
(7)

where fo(x) and F (x) are the output feature of the candidate operations and
fixed operation respectively. From Eqs. 6 and 7, we can conclude the following
easily: 1) From a local perspective, the more significant the enhancement of
the fixed operation by the re-parameterization operation in a block, the larger
the value of α, 2) The feature values of re-parameterization operations are
multiplied by the weight β of the current block eventually. From a global
perspective, the more important the output feature of the block are for the
fixed operation, the greater the value of β. Therefore, when generating offspring
architectures, both the global and local characteristics of the architecture are
considered.

The architectures in population can be divided into three parts: 1) the
architectures retained from the previous population (parent architectures),
2) the offspring architectures generated by the crossover and mutation, 3)
the new offspring architectures sampled from the SuperNet. The architectures
that are generated according to importance is used to form the third part
of the population. Specifically, the random distribution noise σα and σβ are
added to the architecture parameters α and β to ensure the diversity of the
architecture. We define α′

0 = sigmoid (α0), α
′ = sigmoid(α), β′

0 = sigmoid (β0),
β′ = sigmoid(β), where α0 and β0 are the initialization weights of α and β.
The range of the perturbation can be defined as:

σα ∈ (α′
0 −max (α′) , α′

0 −min (α′)) (8)

Springer Nature 2021 LATEX template

8 Re-parameterization Operations Search for Easy-to-Deploy Network

Fig. 2 (a): This is the SuperNet. After training it, each branch and block of the Supernet
is given different weights. (b): The offspring architectures are generated from the SuperNet
according to Eqs. 8-10. (c): We use binary code to represent the offspring architectures, and
the binary code (1) represents the architecture in (b).

σβ ∈ (β′
0 −max (β′) , β′

0 −min (β′)) (9)

where σα and σβ belong to random distribution. We take the deviation of
the maximum and minimum weight values from the baseline as the range of
perturbation. When sampling offspring architectures from the SuperNet, the
edges with higher weights are retained by global sorting (β′

i + σβ) · (α
′
i + σα),

(·) denotes the multiplication of two matrices. This process can be simply
described as:

{

1, if rank [(β′
i + σβ) · (α

′
i + σα)] ≤ C

0, else
(10)

where 1-element means the network uses this connection. rank (·) denotes
the global ranking. As shown in Fig. 2, the red line indicates the branch,
which selected, and the black line indicates not selected. Due to the addition
of appropriate perturbations, the candidate operations with high weight are
retained, and do not completely ignore the operations with low weight in the
current stage.

Fig. 3 Using the re-parameterized structure to obtain the accuracy. Each sub-architecture
in the population can be re-parameterized into the rightmost structure.

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 9

Algorithm 1 Directional evolution strategy for neural architecture search

Require: SuperNet S, Population P = {P1, · · · , Pk}, evolution number
Eevo, Warm up number Ewarm, parameter optimization epochs Ep,
arch-parameters α, β.

1: while i < Ewarm do: do
2: Warm up SuperNet S
3: end while

4: while j < Eevo do

5: while k < Ep do

6: for Mini-batch data X, target Y in Dataset do
7: Ramdom sample B sub-architectures from Population.
8: Forward B sampled sub-networks.
9: Calculate loss and compute the gradients according to Eq. 3.

10: Update network parameters ω and architecture parameters α, β.
11: end for

12: end while

13: Re-parameterize architecture and obtain the performance of the archi-
tecture.

14: Select the architecture according to performance and perform muta-
tion crossover. Meanwhile, sample the subarchitectures from the SperNet
according to Eq. 8-10.

15: end while

16: Output: Architectures P =
{

P
′

1, P
′

2 · · ·P
′

k

}

.

3.4 Performance estimation of population

In evolutionary algorithm-based NAS, evaluating the architectures takes a lot
of time. In addition, there is still tiny deviation in the performance of the
architecture before and after reparameterization. Although this deviation can
be ignored in practical application, we need to search for the best performance
architecture after re-parameterization, it has a certain impact on the choice
of the architecture. Thus, in this work, the re-parameterization operations are
fused into the fixed operation before verifying architecture performance, as
shown in Fig. 3. It is worth noting that the BN layer is also fused into the fixed
convolution. The multi-branch Conv-BN layer becomes Conv layer. Hence,
using re-parameterized architectures for performance evaluation can speed up
the evaluation process and eliminate the deviation.

We use α and β to indicate the importance of blocks and candidate oper-
ations. Therefore, the weights and biases of the candidate operations need to
be scaled α ·β times before the architecture is re-parameterized. Table 1 shows
the time consumption of the verification process on CIFAR-10. Concretely,
the number of populations is set to [64, 128, 256]. Our approach increases the
speed of the architecture evaluation by around 60% compared to the naive
evaluation method. In this experiment, considering factors such as architec-
ture diversity search time and computational resources, the population size is
set to 128. The overall training procedure is summarized in Algorithm 1.

Springer Nature 2021 LATEX template

10 Re-parameterization Operations Search for Easy-to-Deploy Network

4 Experiments

To verify the improved re-parameterization search space is effective for differ-
ent datasets, we search for a set of reparameterization operations for ResNet
on CIFAR-10 and ImageNet-1K. Due to ResNet has residual structure, it is
natural to weed out residual connection in the search space. Our experiment
is divided into two stages: the search stage and the retraining stage.

4.1 Search Architectures on CIFAR-10

We add a re-parameterization block similar to the residual structure to the 3×3
convolution in VGG-16 and ResNet-18. For a fair comparison, the structure of
the network and data augmentation techniques are followed by ACNet[38] and
ResNet[18]. We use the SGD optimizer with a learning rate of 0.1 to optimize
the parameters of the network. To optimize the architecture parameters α and
β, we use Adam optimizer with learning rate of 0.0001 and (0.5, 0.999) betas.
We limit the number of branches to 2

3 times of the total branch number. In
the training process, we sampled 5 architectures and used them to update
SuperNet. The probability of both mutation and crossover for the architecture
is 0.5.

We search for 500 epochs and retrain architectures on CIFAR-10 dataset.
Except for the learning rate and the probability of the drop-path, the retraining
process are the same as DARTS[1]. Respectively, the learning rate and the
probability of drop-path is set to 0.05 and 0.08.

Table 2 shows our results. We achieved 1.02% better accuracy than
RepVGG[27] and 0.21% than RepNAS[28]. Our architecture has a great advan-
tage in the inference process. Since the re-parameterized architecture retains
only convolution and non-linear operations, the inference speed of IrepResNet-
18 and IrepVGG-16 reaches 3.93ms and 1.76ms per image, which is faster than
the architectures such as DARTS.
Table 1 We obtain the performance of architecture on Nvidia A100 GPU. The time to
evaluate the performance of the architecture by the re-parameterization techniques consists
of two parts, i.e. the time consumed by the architecture re-parameterization and the archi-
tecture forward inference. The results are average of verifying 10 populations and the batch
size is 512, full precision(fp32).

Population Size/Time 64/S 128/S 256/S

Multi-Branch
VGG-16 1349.4 2681.1 5336.9
Resnet-18 649.1 1301.6 2685.7

Re-parameterized
VGG16 499.5 1000.0 1823.9

Resnet-18 286.3 571.5 1133.9

Acceleration percentage (%)
VGG-16 63.7 62.7 65.8
Resnet-18 55.9 56.1 57.8

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 11

4.2 Experience on ImageNet-1K

To reveal the generalization ability, we evaluate on the ImageNet-1K, which
contains 1.3M images for training and 50K for validation from 1000 classes. To
save computational resource and speed up the search, based on the conclusion
of ACNet[38], we remove the 2× 2 dilated convolution from the search space.
We set B = 1, Ewarm = 5 and batch size is 256. We use Adam optimizer
with 0.0001 learning rate and (0.5, 0.999) betas to optimize α, β. We limit
the number of branches to 1

2 times of the total branch number. We search for
100 epochs and then fix the structure of the SuperNet to retrain architectures
for 120 epochs. To be fair, we use the same data augmentation techniques as
ResNet[18].

We compare our architectures with state-of-the-arts in Table 3. Compared
to other work, IrepResNet also shows favorable performance. IrepResNet-50
achieve top-1 accuracy of 77.92%, which is 1.82% higher than ResNet-50, 0.84%
higher than DyRep[29] and 1.21% higher than DDB[26]. IrepResNet-34 and
IrepResNet-18 also achieve great performance. Meanwhile, the architecture has
faster inference speed compared to ResNet, DARTS, P-DARTS, GoldNAS, etc.

We plot the structure of IrepResNet in Appendix A. The structure of
IrepResNet-50 is truncated in the middle, i.e., the first eight layers retain all
re-parameterization operations, and the last eight layers exclude all enhance-
ment operations. To better explain this phenomenon, we visualized the output
feature values of ResNet-50 and IrepResNet-50. As shown in Fig. 4, it can
be easily concluded that IrepResNet-50 has stronger discrimination ability for
targets compared to ResNet-50. For ResNet-50, the role of the first eight layers
task is mainly to achieve the separation of foreground and background in the
image. While the last eight layers task is mainly to further distinguish the sub-
tle differences between foreground and background, so that the target in the
image can be focused accurately. This division of task is significant for the for-
mation of the IrepResNet-50 structure. The first eight layers obtain less feature

Table 2 Comparison with state-of-the-art image classifiers on CIFAR-10 dataset. We cal-
culated the parameters of the model and tested the model of the inference time on Nvidia
A100 GPU with a batch size of 1, full precision(fp32).

Model Top-1 (%) Params(M) Inference (ms) Search Cost (GPU days)

VGG 94.12 14.73 2.14 —
ResNet-18 96.21 11.69 4.12 —
RepVGG 94.62 14.73 1.76 —

RepNAS (VGG) 95.43 11.69 1.76 0.7
AcNet 94.47 14.73 1.76 —

DARTS (second) 97.24 3.3 31 4
P-DARTS 97.50 3.4 33 0.3
GoldNAS 97.39 3.67 40 1.1
CARS 97.38 3.6 27 0.4

AmoebaNet-A 96.60 3.2 38 3150
IrepResNet-18 96.61 11.69 3.93 8.0

IrepVgg-16 95.65 14.73 1.76 16.0

Springer Nature 2021 LATEX template

12 Re-parameterization Operations Search for Easy-to-Deploy Network

Table 3 Results of our models on ImageNet-1K dataset compared to other models. The
performance on ImageNet-1K with comparison to other NAS methods and models. All exper-
iments on the ImageNet-1K were performed based on Nvidia A100 GPU. We calculated the
parameters of the model and tested the model of the inference time with a batch size of 1,
full precision(fp32).

Model Top-1(%) Top-5(%) Params(M) Inference (ms) Search Cost (GPU-days)

ResNet18 69.76 89.07 11.69 4.25 —
ResNet34 73.31 91.42 21.80 6.12 —
ResNet50 76.10 93.29 25.56 7.54 —
DyRep

(ResNet-18)
71.58 — 16.90 3.59 —

DyRep
(ResNet-34)

74.68 — 33.10 5.15 —

DyRep
(ResNet50)

77.08 — 31.50 6.14 —

DDB
(ResNet18)

70.99 — 26.30 3.59 —

DDB
(ResNet34)

74.33 — 49.90 5.15 —

DDB
(ResNet50)

76.71 — 40.70 6.14 —

DARTS (second) 73.30 91.3 4.70 67.4 4
P-DARTS 75.60 92.6 4.90 62.3 0.3
GoldNAS 76.10 92.7 6.40 39.4 1.7
CARS 75.20 92.5 5.10 59.9 0.4

IrepResNet-18 71.57 89.98 18.23 3.59 12

IrepResNet-34 74.91 92.12 36.12 5.15 19

IrepResNet-50 77.92 93.88 29.04 6.14 30

information due to the few number of channels. Thus, the re-parameterization
operations are important to improve the current feature information, which
makes the them has higher weight. The last eight layers can acquire more fea-
ture information because of the more channels, which allows it to take on the
task of focusing on the target and refining the foreground and background
in the picture. Compared with the first eight re-parameterization blocks, the
feature information in the last eight re-parameterization blocks is not impor-
tant for the last eight fixed operations, which makes the re-parameterization
operations has smaller weight value. Therefore, searching the architecture
under resource constraints makes the algorithm prefer to retain the re-
parameterization operations that in the shallow layers. We also visualized
the output features and architecture of IrepResNet-34 and IrepResNet-18, as
shown in Appendix A. The re-parameterization operations that are preserved
in the IrepResNet-34 and IrepResNet-18 also emerge the same trend.

4.3 Generalization performance on Downstream Task

We transfer our ImageNet-pretrained IrepResNet-50 and IrepResNet-18 model
to downstream tasks object detection to validate generalization of the model.
Specifically, the pre-trained model is used as the backbone for the downstream
algorithms FPN[39] and CenterNet[40] algorithms on the COCO dataset. For
the optimization of the target detection model, we refer to the optimization

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 13

Fig. 4 We visualized the output feature values of the convolution in the ResNet-50 and
IrepResNet-50 to better interpret the structure of our network. We consider the structure
of Conv1×1-Conv3×3-Conv1×1 as a layer. The first and second columns are the original
image and the heatmap of the last layer output. The other columns are the heatmap of the
feature outputs convolved in the 4th layer to the 11th layer. IRepResNet-50 has significantly
better feature focus than ResNet-50.

Table 4 Results on object detection.

Backbone Algorithm ImageNet Top-1 COCO mAP

ResNet-18 CenterNet 69.76 29.5
ResNet-50 FPN 76.10 37.9

DyRep-ResNet50 FPN 77.08 38.1
Irep-ResNet18 CenterNet 71.27 31.2

Irep-ResNet50 FPN 77.92 38.2

Table 5 Performance of the architecture on the CIFAR-10 dataset under different resource
constraints.

Model 1/6 1/3 1/2 2/3 5/6 1

IRepVGG-16 94.22 94.58 95.21 95.65 95.64 95.64
IRepResNet-18 96.28 96.47 96.47 96.61 95.50 96.52

approach and hyperparameter settings of MMDetection[41]. FPN and Center-
Net are fine-tuned on a single NVIDIA A100 GPU with batch sizes 16 and 64,
respectively. In addition, the fine-tuned model can re-parameterize the back-
bone to achieve faster forward inference. The results in Table 4 show that
IrepResNet can achieve better performance compared to FPN, CenterNet, and
DyRep.

Springer Nature 2021 LATEX template

14 Re-parameterization Operations Search for Easy-to-Deploy Network

Fig. 5 Differential heatmap of the 1 × 3 convolution–1 × 2 dilated convolution and 3 ×

1 convolution–2 × 1 dilated convolution, which searched on CIFAR-10 and ImageNet-1K
dataset

4.4 Ablatilaon Study

4.4.1 Search under different resource constraints

To explore the impact on the performance of the architecture under dif-
ferent resource constraints, we searched IrepVGG-16 and IrepResNet-18
on the CIFAR-10 dataset. Specifically, the number of branches is set to
[

1
6 ,

1
3 ,

1
2 ,

2
3 ,

5
6 , 1

]

times of the total branch number. As shown in Table 5, when
the resource constraint reaches 2/3, the architecture achieves better perfor-
mance. We found that the performance of the architecture is weaker than
RepNAS[28] when retaining the same number of branches as RepNAS in
the improved reparameterization search space (retain four branches for each
block). Based on AcNet[38], the main reason is that the enhancement effect of
the dilated convolutions on the 3× 3 convolution is weaker than the 1× 3 and
3 × 1 convolutions. As shown in Fig. 5, the architecture weights of the 1 × 3
convolution–1× 2 dilated convolution and 3× 1 convolution–2× 1 dilated con-
volution are subtracted and transformed equivalently and we plotted them as

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 15

heatmap. The larger the difference values, the more important the asymmetric
convolution (3×1 and 1×3 convolutions) in the same layer. This indicates that
the feature enhancement effect of asymmetric convolutions (1 × 3 and 3 × 1
convolution) are stronger than dilated convolutions in this experiment. There-
fore, when the same number of branches are retained as RepNAS[28], some of
the 1× 3 and 3× 1 convolutions may be replaced by dilated convolution due
to the Matthew effect of the gradient-based learning method, which leads to
the architectures with potentially weaker performance than RepNAS[28].

5 Conclusion

In order to further improve tranditional convolutional networks, we designed
a more comprehensive re-parameterization search space and searched it
by directional evolutionary strategy to further improve the performance of
ResNet. A re-parameterization block similar to the residual connection is
added to each 3 × 3 convolution in ResNet model. Then finding an opti-
mal architecture population by exploring the derivative architectures of the
optimal re-parameterization architecture at the current stage. Extensive
experiments demonstrate that the proposed the improved re-parameterization
search space can further improve the performance of models and perform
well in downstream tasks. Moreover, we explain the reasons for the for-
mation of the architecture and analyze the enhancement effect between
re-parameterization operations. It is worth mentioning that the improved
re-parameterization search space proposed in our paper can be further used
as a bridge between coarse-grained search and fine-grained search. It means
that the re-parameterization model after coarse-grained search (architecture
operation) can be divided into 1× 1 convolution and 2× 2, 2× 1, 1× 2 dilated
convolution, and then the model can be transformed into a channel pruning
friendly network, which can actually further reduce the FLOPs and inference
time of the model.

Springer Nature 2021 LATEX template

16 Re-parameterization Operations Search for Easy-to-Deploy Network

Appendix A IrepResNet model

Fig. A1 IrepResnet-50 searched on ImgeNet. The 3 × 3 convolution operation is a fixed
operation and does not participate in the search process of the architecture.

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 17

Fig. A2 List of architectures of IrepResnet-50, IrepResnet-18, IrepResnet-34. Each row
represents the enhancement of a 3×3 convolution. From left to right, it represents the re-
parameterization structure from the first layer to the last layer.

Fig. A3 We visualized the output feature values of the convolution in the IrepResNet-18
and IrepResNet-34 to better interpret the structure of our architecture. We consider the
structure of Conv3× 3-Conv3× 3 as one layer.

References

[1] Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055 (2018)

[2] Hu, S., Xie, S., Zheng, H., Liu, C., Shi, J., Liu, X., Lin, D.: Dsnas:
Direct neural architecture search without parameter retraining. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12084–12092 (2020)

Springer Nature 2021 LATEX template

18 Re-parameterization Operations Search for Easy-to-Deploy Network

[3] Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search
on target task and hardware. arXiv preprint arXiv:1812.00332 (2018)

[4] Xie, S., Zheng, H., Liu, C., Lin, L.: Snas: stochastic neural architecture
search. arXiv preprint arXiv:1812.09926 (2018)

[5] Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E.,
Banzhaf, W.: Nsga-net: neural architecture search using multi-objective
genetic algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 419–427 (2019)

[6] Chu, X., Zhou, T., Zhang, B., Li, J.: Fair darts: Eliminating unfair advan-
tages in differentiable architecture search. In: European Conference on
Computer Vision, pp. 465–480 (2020). Springer

[7] Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu,
C.: Cars: Continuous evolution for efficient neural architecture search.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1829–1838 (2020)

[8] Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Sin-
gle path one-shot neural architecture search with uniform sampling. In:
European Conference on Computer Vision, pp. 544–560 (2020). Springer

[9] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: Unified, real-time object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 779–788
(2016)

[10] Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767 (2018)

[11] Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A.L., Fei-
Fei, L.: Auto-deeplab: Hierarchical neural architecture search for semantic
image segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 82–92 (2019)

[12] Fang, J., Sun, Y., Zhang, Q., Peng, K., Li, Y., Liu, W., Wang, X.:
Fna++: Fast network adaptation via parameter remapping and archi-
tecture search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43(9), 2990–3004 (2020)

[13] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86(11), 2278–
2324 (1998)

[14] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 19

translation using cycle-consistent adversarial networks. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 2223–2232
(2017)

[15] Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning
of multi-loss classification. arXiv preprint arXiv:1705.04724 (2017)

[16] Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and iden-
tification feature learning for person search. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3415–3424
(2017)

[17] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[18] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

[19] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861
(2017)

[20] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4510–4520 (2018)

[21] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang,
W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1314–1324 (2019)

[22] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely con-
nected convolutional networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

[23] Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu,
T., Chen, K., et al.: Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12965–12974
(2020)

[24] Hong, W., Li, G., Zhang, W., Tang, R., Wang, Y., Li, Z., Yu, Y.: Dropnas:
Grouped operation dropout for differentiable architecture search. arXiv
preprint arXiv:2201.11679 (2022)

Springer Nature 2021 LATEX template

20 Re-parameterization Operations Search for Easy-to-Deploy Network

[25] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., Xiong, H.:
Pc-darts: Partial channel connections for memory-efficient architecture
search. arXiv preprint arXiv:1907.05737 (2019)

[26] Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block: Build-
ing a convolution as an inception-like unit. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10886–10895 (2021)

[27] Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making
vgg-style convnets great again. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 13733–13742
(2021)

[28] Zhang, M., Yu, X., Rong, J., Ou, L., Gao, F.: Repnas: Searching
for efficient re-parameterizing blocks. arXiv preprint arXiv:2109.03508
(2021)

[29] Huang, T., You, S., Zhang, B., Du, Y., Wang, F., Qian, C., Xu, C.: Dyrep:
Bootstrapping training with dynamic re-parameterization. arXiv preprint
arXiv:2203.12868 (2022)

[30] Lu, Z., Deb, K., Goodman, E., Banzhaf, W., Boddeti, V.N.:
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural archi-
tecture search. In: European Conference on Computer Vision, pp. 35–51
(2020). Springer

[31] Chen, Y., Meng, G., Zhang, Q., Xiang, S., Huang, C., Mu, L., Wang,
X.: Renas: Reinforced evolutionary neural architecture search. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4787–4796 (2019)

[32] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y.,
Vajda, P., Jia, Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10734–10742 (2019)

[33] Yang, Y., You, S., Li, H., Wang, F., Qian, C., Lin, Z.: Towards improving
the consistency, efficiency, and flexibility of differentiable neural architec-
ture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6667–6676 (2021)

[34] Bi, K., Xie, L., Chen, X., Wei, L., Tian, Q.: Gold-nas: Gradual, one-level,
differentiable. arXiv preprint arXiv:2007.03331 (2020)

[35] Li, G., Qian, G., Delgadillo, I.C., Muller, M., Thabet, A., Ghanem,

Springer Nature 2021 LATEX template

Re-parameterization Operations Search for Easy-to-Deploy Network 21

B.: Sgas: Sequential greedy architecture search. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1620–1630 (2020)

[36] Yang, Y., You, S., Li, H., Wang, F., Qian, C., Lin, Z.: Towards improving
the consistency, efficiency, and flexibility of differentiable neural architec-
ture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6667–6676 (2021)

[37] Hou, P., Jin, Y.: Single-level optimization for differential architecture
search. arXiv preprint arXiv:2012.11337 (2020)

[38] Ding, X., Guo, Y., Ding, G., Han, J.: Acnet: Strengthening the kernel
skeletons for powerful cnn via asymmetric convolution blocks. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1911–1920 (2019)

[39] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.:
Feature pyramid networks for object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–
2125 (2017)

[40] Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint
arXiv:1904.07850 (2019)

[41] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng,
W., Liu, Z., Xu, J., et al.: Mmdetection: Open mmlab detection toolbox
and benchmark. arxiv 2019. arXiv preprint arXiv:1906.07155 (2019)

	Introduction
	Related Work
	Network Architecture Search
	Structural Re-parameterization

	Proposed strategy and search space
	 Improved re-parameterization search space
	Batch optimization of SupNet parameters
	Generation of the architecture
	Performance estimation of population

	Experiments
	Search Architectures on CIFAR-10
	Experience on ImageNet-1K
	Generalization performance on Downstream Task
	Ablatilaon Study
	Search under different resource constraints

	Conclusion
	IrepResNet model

