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Abstract: Spiking neural network (SNN) based on a sparse trigger and event-driven information processing 

has the advantages of ultra-low power consumption and hardware friendliness. As a new generation of the 

neural network, SNN is widely concerned. At present, the most effective way to realize deep SNN is through 

artificial neural network (ANN) conversion. Compared with the original ANN, the converted SNN will suffer 

performance loss. This paper adjusts the spike firing rate of spiking neurons to minimize the performance loss 

of SNN in the conversion process. We map the ANN weight to the corresponding SNN after continuous 

normalization, which ensures that the spike firing rate of neurons is in the normal range. We propose a certainty 

interval reset mechanism (CIRM), which effectively reduces the loss of membrane potential and avoids the 

problem of neuronal over-activation. In the experiment, we added a modulation factor (MF) to the CIRM to 

further adjust the spike firing rate of neurons. The accuracy of the converted SNN on CIFAR-10 is 1.026% 

higher than that of the original ANN. The algorithm not only realizes the lossless conversion of ANN but also 

reduces the network energy consumption. Our algorithm also effectively improves the accuracy of SNN 

(VGG-15) on CIFAR-100 and reduces the network delay. The work of this paper is of great significance for 

developing high-precision depth SNN. 

Keywords: Spiking neural network; continuous normalization; certainty interval reset; firing rate; 

modulation factor. 

1. Introduction 

Image processing plays an important role in military, astrophysics, and aerospace. High-resolution 

images contain a lot of information, and processing such images requires a powerful computing platform [1]. 

Due to the limitation of hardware, developing a hardware-friendly and low-power neuromorphic chip is an 

effective solution to this problem [2]. SNN is different from the current ANN and closer to the brain 

information processing mode [3]. As a new generation of ANN, SNN has a more powerful information 

processing ability than the traditional ANN based on frequency coding information [4]. SNN uses a discrete 

spike train to transfer information instead of analog quantity, which is more suitable for hardware 
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implementation and rapid information processing [5]. Therefore, image processing instruments and systems 

based on SNN neuromorphological chips will show excellent performance in complex task processing. 

The research of SNN is the basis of neuromorphological chip design. SNN-based neuromorphological 

chip needs a high-performance SNN algorithm as a guarantee [6]. This paper mainly focuses on the 

improvement of the performance of the SNN algorithm. The output of ANN neurons is the analog quantity in 

the interval, while the output and input of neurons in the biological nervous system are discrete spike 

information [7]. Scientific research shows that the information coding and processing mechanism based on 

spike train is very important for the study of brain-like intelligence [8]. Therefore, SNN composed of spiking 

neurons based on biological interpretability has become an indispensable tool for the study of brain-like 

systems [9]. 

ANN only processes the image in the spatial dimension, while SNN uses a spike train to represent and 

process all kinds of information [10]. It integrates multiple dimensions of input information, such as time, 

space, frequency, and phase. Because SNN processes discrete spike information, it can not train the network 

through back propagation (BP) like ANN [11]. Although SNN has advantages in processing perceptual 

information, the training of its network model has not been unified [12]. 

In the past few years, SNN has developed rapidly, and its model training is still an active research field. 

At present, the algorithms used for SNN training are mainly divided into direct training and indirect training. 

Direct training includes local learning rules based on spike time-dependent plasticity (STDP) and spike-based 

approximate error BP [13]. The SNN based on STDP rules is limited to shallow networks (generally no more 

than 5 layers), and its accuracy is much lower than ANN in complex tasks [14]. The internal training of SNN 

based on the spike BP algorithm is very complex, which limits its application in deep SNN. The indirect 

training method is to convert the ANN into the corresponding SNN [15]. This method is an effective way to 

realize the deep SNN. Hunsberger and Eliasmith used the biologically more reliable LIF neuron model instead 

of the previous IF to convert SNN [6, 15]. They found that the high discharge rate of neurons can produce 

performance equivalent to that of the original network, while the low discharge rate will cause a great loss of 

performance [6]. In 2015, Cao et al. Successfully converted a deep SNN with two orders of magnitude lower 

power consumption than the original network by training and tailoring CNN [15]. Compared with the original 

network, the accuracy of the converted SNN network is reduced by 1.69% on the CIFAR-10. Han Bing et al. 

proposed using soft reset (It can also be called residual membrane potential (RMP)) spiking neurons, 

appropriate hierarchical threshold initialization, and constrained ANN training to achieve almost lossless 

ANN-SNN conversion [16]. The conversion from ANN to SNN will cause the loss of network performance. 

The focus of researchers' work is how to reduce the loss in the conversion process [17]. 

ANN-SNN conversion has been proved to be an effective way to realize deep SNN. The transformed 
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SNN can obtain high enough accuracy in complex tasks [18]. Based on this, we propose a weight continuous 

normalization (WCN) algorithm for the network to ensure the normal spike emission of neurons. The certainty 

interval reset mechanism (CIRM) proposed in this paper solves the problems existing in hard reset and soft 

reset mechanisms. By adding a modulation factor (MF) to the CIRM, the spike firing rate of neurons is further 

adjusted to ensure the performance of the network. For different tasks, the MF only needs to be adjusted 

properly to realize the lossless conversion of the network. By analyzing the spike firing rate of neurons, the 

advantages of our algorithm are explained.  

The specific contributions of our work are as follows: 

1.  We monitor and analyze the spiking firing rate of the model and propose a modulation method to 

adjust it to improve the network performance. 

2.  We propose the WCN algorithm of ANN to ensure that the spike firing rate of spiking neurons is in 

the normal range. 

3. Aiming at the deficiency of hard reset and soft reset of spiking neurons, the CIRM proposed by us 

effectively reduces the loss of membrane potential of hard reset and avoids the problem of over activation of 

soft reset neurons. 

4. We added the MF to the certainty interval reset mechanism to further adjust the spike firing rate of 

neurons. The algorithm not only reduces the energy consumption of the model but also improves the network 

delay. 

5. In the experiment, the algorithm in this paper realizes the lossless conversion of SNN. The 

classification accuracy of the network on MNIST and CIFAR-10 is higher than that of the original ANN. The 

algorithm also has good applicability in the deep network (VGG-15) and CIFAR-100. 

The first part introduces the background and development of SNN. The second part of the article 

introduces the relevant theories of ANN-SNN. On this basis, the optimization algorithm of the SNN model is 

proposed. Then, experiments are carried out on our proposed algorithm. Finally, the algorithm is discussed 

and analyzed in detail. 

2. ANN to SNN 

The conversion of ANN to SNN requires a series of conversion operations, mainly including neuron 

replacement, weight normalization, threshold allocation, and selection of appropriate reset mechanisms [19]. 

The purpose of these conversion operations is to improve the performance of SNN and reduce the performance 

loss in the process of network conversion. 

2.1 Neuron Model 

The spiking neuron is the basic unit of SNN. Its main function is to integrate and transmit the spike train 

information of the network. The integrated and fire (IF) model has been widely used in the field of neural 
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computing for a long time [20]. The reason why the IF neuron is selected is that it has a simple linear model. 

The analytical expression of the membrane potential of the IF model can not only quantitatively study the 

properties of neurons but also accurately simulate SNN by using an event-driven method [21]. The membrane 

potential of IF neuron at time t is calculated by equation (1). 

  ,                                                        (1) 

where  represents the membrane potential of neuron at time 𝑡 − 1. 𝑊𝑗,𝑖 represents the weight of the 

connection between the current layer neuron 𝑖 and the upper layer neuron 𝑗. 𝑆𝑗  represents the spike train 

information of neuron 𝑗 (If the neuron has a spike at time 𝑡, 𝑆𝑗(𝑡) = 1, otherwise, 𝑆𝑗(𝑡) = 0). The membrane 

potential of neuron at time 𝑡 is the sum of the membrane potential at time 𝑡 − 1 and the spike input received 

at time 𝑡. When the membrane potential at time 𝑡 exceeds the threshold 𝑉𝑡ℎ𝑟, the neuron will generate a spike 

and the neuron membrane potential will be reset [22]. 

The training of the ANN converted to SNN uses ReLU as the activation function, and the nonlinear 

description of the function is as equation (2). 

   𝑦 = max (0，∑ 𝑊𝑖𝑗𝑥𝑗𝑗 + 𝑏)  ,                             (2) 

where 𝑦 is the output of the activation function ReLU. 𝑊𝑖𝑗 is the weight of the connection between the current 

layer neuron 𝑖 and the upper layer neuron 𝑗. 𝑥𝑗 is the activation value of neuron 𝑗. b represents the bias term 

of neurons[23]. The activation function ReLU varies linearly with positive input, which can be roughly 

simulated using IF neurons. Therefore, when ANN is converted to SNN, the neuron nodes in ANN are replaced 

by IF neurons. To make the network conversion more effective, the b is usually set to 0. 

2.2 Reset Mechanism 

When the neuron membrane potential exceeds its threshold, the neuron will emit spikes to trigger the 

corresponding reset mechanism. Next, we introduce the most commonly used hard reset and soft reset. On 

this basis, we propose a certainty interval reset mechanism. 

 
Fig. 1. Hard reset mechanism of neuronal membrane potential. 

2.2.1 Hard Reset 

At present, the hard reset is a common method in the research of SNN. At one spike instant, the membrane 

potential is "hard reset" to 0, regardless of how much the membrane potential exceeds the threshold 𝑉𝑡ℎ𝑟. If 
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the membrane potential does not exceed 𝑉𝑡ℎ𝑟, then its value remains unchanged [24]. Equation (3) shows the 

specific way of the neuron hard reset method. 𝑉𝑚′(𝑡) = {𝑉𝑚(𝑡)                   𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟0,   𝑆(𝑡) = 1       𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ𝑟  .                                          (3) 

Ignoring the residual membrane potential above 𝑉𝑡ℎ𝑟 will affect the expected linear relationship between 

input and output. We assume that the weighted input sum received by an IF neuron (as shown in Fig. 1) in 

three consecutive time steps is 1.3𝑉𝑡ℎ𝑟, 1.2𝑉𝑡ℎ𝑟, and 0.5𝑉𝑡ℎ𝑟, respectively. The weighted input sum of the three 

consecutive time steps is 3𝑉𝑡ℎ𝑟. Neurons need to generate three spikes to maintain a precise linear relationship 

between input and output. Because hard reset ignores the residual potential above the threshold at the trigger 

moment, the neuron produces only two spikes in three consecutive time steps. The hard reset will cause the 

loss of neuronal membrane potential. 

2.2.2 Soft Reset 

The soft reset mechanism of spiking neurons effectively solves the problem of membrane potential loss 

of the hard reset mechanism [16]. Equation (4) shows the reset mode of the soft reset mechanism. 

   𝑉𝑚′(𝑡) = {𝑉𝑚(𝑡)                                   𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟𝑉𝑚 − 𝑉𝑡ℎ𝑟 ,   𝑆(𝑡) = 1       𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ𝑟 .                                      (4) 

At time 𝑡, the neuronal membrane potential 𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟, the membrane potential remained unchanged, 𝑉𝑚′(𝑡) = 𝑉𝑚(𝑡); 𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ𝑟 , the membrane potential was reset， 𝑉𝑚′(𝑡) = 𝑉𝑚 − 𝑉𝑡ℎ𝑟 and 𝑆(𝑡) = 1 . 

Similarly, we assume that the sum of weighted inputs received by an IF neuron (as shown in Fig. 2) in three 

consecutive time steps is 1.3𝑉𝑡ℎ𝑟, 1.2𝑉𝑡ℎ𝑟 ,and 0.5𝑉𝑡ℎ𝑟, respectively. The neuron soft reset method retains the 

membrane potential beyond the threshold, and the accumulation of membrane potential generates a spike in 

three consecutive time steps (as shown in Fig. 2(b)). If the neuron membrane potential 𝑉𝑚(𝑡) ≥ 2𝑉𝑡ℎ𝑟 at time 𝑡, the reset neuron membrane potential 𝑉𝑚′(𝑡) is still greater than the threshold 𝑉𝑡ℎ𝑟. When neurons do not 

receive any input at 𝑡 +  1 time, they will also generate a spike, resulting in the problem of over-activation of 

neurons (as shown in Fig. 2(c)). 

  

Fig. 2. Soft reset mechanism of neuronal membrane potential. 

2.2.3 Certainty Interval Reset 

To solve the problems of membrane potential loss caused by hard reset and neuron over-activation caused 

by soft reset, we propose a CIRM, which effectively solves the problems caused by hard reset and soft reset. 

(a) (b) (c) 
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The membrane potential reset mode of CIRM is shown in equation (5). 

   𝑉𝑚′(𝑡) = {𝑉𝑚(𝑡)                                       𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟                 𝑉𝑚(𝑡) − 𝑉𝑡ℎ𝑟,   𝑆(𝑡) = 1      𝑉𝑡ℎ𝑟 ≤ 𝑉𝑚(𝑡) < 2𝑉𝑡ℎ𝑟 0.99𝑉𝑡ℎ𝑟 ,   𝑆(𝑡) = 1             𝑉𝑚(𝑡) ≥ 2𝑉𝑡ℎ𝑟               .                            (5) 

Assuming that the membrane potential of neurons at time 𝑡 is 𝑉𝑡ℎ𝑟, the adjustment of membrane potential 

under the CIRM will be as follows: 

1. 𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟, the neuronal membrane potential remained unchanged, 𝑉𝑚′(𝑡) = 𝑉𝑚(𝑡). 
2. 𝑉𝑡ℎ𝑟 ≤ 𝑉𝑚(𝑡) < 2𝑉𝑡ℎ𝑟 , the neuronal membrane potential was reset, 𝑉𝑚′(𝑡) = 𝑉𝑚(𝑡) − 𝑉𝑡ℎ𝑟  and 𝑆(𝑡) = 1. In this case, CIRM solves the problem of membrane potential loss caused by hard reset. 𝑉𝑚(𝑡) ≥ 2𝑉𝑡ℎ𝑟 , the membrane potential was reset, 𝑉𝑚′(𝑡) = 0.99𝑉𝑡ℎ𝑟  and 𝑆(𝑡) = 1 . At time 𝑡 , the 

membrane potential exceeded the threshold, and 𝑉𝑚′(𝑡) was reset to 0.99𝑉𝑡ℎ𝑟. The membrane potential was 

reset to 0.99𝑉𝑡ℎ𝑟, which effectively reduced the loss of membrane potential caused by hard reset. When the 

neuron does not receive any input at time 𝑡 +  1, the neuron membrane potential 𝑉𝑚(𝑡 + 1) = 0.99𝑉𝑡ℎ𝑟 <𝑉𝑡ℎ𝑟,  the neuron does not emit a spike. Assuming that the weighted input sum of the neuron at time 𝑡 is 

2.1𝑉𝑡ℎ𝑟, the neuron emits a spike and resets the membrane potential to 0.99𝑉𝑡ℎ𝑟. At time 𝑡 +  1, if the neuron 

does not receive any input, the neuron will not generate a spike, as shown in Fig. 3. 

 

Fig. 3. CIRM of neuronal membrane potential. 

2.3 Pooling Operation 

The pooling layer is generally behind the convolution layer of the convolution neural network to reduce 

the size of the convolution output map. Maximum pooling and average pooling are the two most popular 

methods to implement the pooling mechanism. SNN deals with spike train information rather than analog 

values. If the maximum is performed in the network, it will lead to a serious loss of information. Therefore, 

our pre-trained network considers average pooling as a pooling mechanism [25]. 

2.4 Normalized Weight 

ANN saves the weight of its network after full training. If the ANN weights are directly mapped to the 

corresponding SNN without any operation, it will cause a great loss of network performance [26]. The first 

possible cause of network performance loss is that the weight is too high, and its size exceeds the threshold of 

spiking neurons, resulting in multiple spikes in one timestep. The second possible reason is that the neuron 
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does not have enough input or the neuron threshold is too high so that the input cannot exceed its threshold, 

resulting in the spike firing rate lower than its normal rate. For the conversion loss, we propose a WCN 

algorithm to minimize the loss to improve the network performance. The pseudo-code of the WCN method is 

shown in Algorithm 1. This method adjusts the weight twice continuously according to the maximum 

activation value and weight value of neurons to avoid the loss of network performance caused by too high 

weight. After the weight is adjusted by WCN, we set the threshold of all spiking neurons in the network to 1 

to avoid the abnormal spike emission caused by too high a threshold. This normalization method is suitable 

for the case of short delay and high precision. The results show that this method is very effective to improve 

network performance. 
Algorithm 1: Weight continuous normalization 

1  for layer in net.layers: 

2  𝑚𝑎𝑥_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 0 

3  max_weight = 0 

4  normlization_factor = 0 

5  𝑚 = 0 

6  for 𝑚 in layers: 

7        for neuron in layers.neurons: 

8         𝑤𝑒𝑖𝑔ℎ𝑡 = max( 𝑊𝑖𝑗  ) 
9        end 

10        max_weight = max(weight) 

11        max_activation = max(neurons_activation) 

12      normlization_factor = max (max_weight, max_activation) 

13     for neuron in layers.neurons: 

14      𝑊𝑖𝑗 =  𝑊𝑖𝑗/normlization_factor 

15     end 

16  end 

17 end 

2.5 Input Encoding for SNN 

We use Poisson coding to encode the input image of the network. A Poisson event generation process is 

used to generate the input spike train [27]. Each time step of the SNN operation is associated with the 

generation of a random number whose value is compared with the corresponding input amplitude (image pixel 

value). If the generated random number is less than the value of the corresponding pixel intensity, a spike is 

triggered. The average number of spikes transmitted to the network as an input in a sufficiently large time 

window is approximately proportional to the size (pixel intensity) of the original ANN input. The time window 

size of Poisson coding is very important for the coding process of neural information. The time window cannot 

be selected arbitrarily but depends on the dynamic characteristics of the stimulus signal. 

We randomly select 8 samples in CIFAR-10 (as shown in Fig. 4 (a)) to compare the impact of different 

time windows on image coding. In the experiment, different time windows (Blue dashed box, window sizes: 

64, 128, 256, 374, 512, 768, and 1024) are selected to encode the selected samples respectively. The coding 

frequency of all our experiments is fixed at 1000Hz. Fig. 4 (b) shows the coding of the sample at a certain 

time (black dashed box), and Fig. 4 (c) shows the image reconstructed after the Poisson coding of the sample 
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(red dashed box). By comparing the reconstructed coded images, we can know that the small Poisson coding 

time window will lead to the large loss of reconstructed image information and the performance loss of SNN. 

On the contrary, a large coding time window will enrich the image information and will not cause serious loss 

of image information. However, the larger the time window, the amount of calculation of the corresponding 

network will increase significantly, and the calculation delay of the network will also be prolonged. The 

algorithm we designed should not only reduce the amount of computation but also shorten the network delay 

under the condition of ensuring network performance. 

 

Fig. 4. Poisson coding of image. Different time windows (Blue dashed box) are selected to encode the selected samples 
respectively. (a) Original image. (b) the coding of the sample at a certain time (black dashed box).  

(c) the image reconstructed after Poisson coding of the sample (red dashed box). 

3. Spike Firing Rate Modulation 

The firing rate of spiking neurons is an important factor affecting the performance of SNN. In this section, 

we analyze the spike firing rate of neurons from the perspective of reducing the conversion error. On this basis, 

we give the mathematical expression of the spike firing rate and the theoretical explanation of the conversion 

error. 

3.1 Analysis of Neuronal Membrane Potential 

The too high or too low spike output rate of neurons will affect the performance of SNN. An appropriate 

spike output rate is very important to improve the performance of the network. [28] adjust the spike output 

rate of the network by changing the size of the neuron threshold. There are two problems with this adjustment 

method: 

1. The increase of the threshold value of spiking neurons will reduce the spike firing rate. In this case, 

it will be more difficult for inactive neurons to emit spikes. 

2. Decreasing the threshold can increase the firing rate of spiking neurons. However, active spiking 

neurons may be over-activated. 

We avoid the above problems by adding modulation factor 𝜂 to the CIRM to adjust the neuron spike 

firing rate. The specific adjustment method of 𝜂 to spike firing rate is shown in equation (6). 

    𝑉𝑚′(𝑡) = {𝑉𝑚(𝑡)                                              𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟   𝑉𝑚(𝑡) − 𝜂 ∗ 𝑉𝑡ℎ𝑟 ,   𝑆(𝑡) = 1      𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ𝑟   .                                 (6) 

(a) 

(b) 

(c) 
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Assuming that the membrane potential of neurons at time 𝑡 is 𝑉𝑡ℎ𝑟, the adjustment of membrane potential 

under the MF will be as follows: 

1. 𝑉𝑚(𝑡) < 𝑉𝑡ℎ𝑟, the neuronal membrane potential remained unchanged, 𝑉𝑚′(𝑡) = 𝑉𝑚(𝑡). 
2. 𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ𝑟, the neuronal membrane potential was reset, 𝑉𝑚(𝑡) − 𝜂 ∗ 𝑉𝑡ℎ𝑟 and 𝑆(𝑡) = 1.  

According to different modulation factors, the reset membrane potential 𝑉𝑚′(𝑡) is divided into three cases, 

as shown in equation (7). 

   𝑉𝑚′(𝑡) = { 0                                   𝑉𝑚′(𝑡) < 0                𝑉𝑚(𝑡) − 𝜂 ∗ 𝑉𝑡ℎ𝑟        0 ≤ 𝑉𝑚′(𝑡) < 𝑉𝑡ℎ𝑟    0.99𝑉𝑡ℎ𝑟                       𝑉𝑚′(𝑡) ≥ 𝑉𝑡ℎ𝑟            .                                 (7) 

After MF was added, the reset neuronal membrane potential was 𝑉𝑚′(𝑡), The value of MF affects the 

membrane potential reset, including the following three cases: 

1. 𝜂 >  1 may cause 𝑉𝑚′(𝑡) to be less than 0. If 𝑉𝑚′(𝑡) < 0  , to avoid the loss of membrane potential, 

we reset 𝑉𝑚′(𝑡) to 0. 

2. If 0 ≤ 𝑉𝑚′(𝑡) < 𝑉𝑡ℎ𝑟, 𝑉𝑚′(𝑡) remains unchanged. 

3. If 𝑉𝑚′(𝑡) ≥ 𝑉𝑡ℎ𝑟, to avoid over activation of neurons at 𝑡 +  1 time, reset  𝑉𝑚′(𝑡) to 0.99𝑉𝑡ℎ𝑟. 
Choosing a larger MF can reduce the spike firing rate of easily activated neurons, which has little effect 

on the spike firing rate of difficult activated neurons. Smaller MF can increase the spike firing rate of difficult 

to activate neurons, and it does not affect the spike firing rate of easily activated neurons. The addition of 𝜂 

can flexibly adjust the spike firing rate of neurons and avoid the problem caused by changing the threshold 

value of neurons. 

3.2 Error Analysis 

There is an approximately proportional relationship between the firing rate and the activation value of 

neurons. According to the relationship between the spike firing rate 𝑟𝑖1(𝑡) and the activation value 𝑎𝑖1  of the 

neurons in the first layer of the network under hard reset and soft reset [29], we derive equation (8). The 

equation represents the relationship between the spike firing rate 𝑟𝑖1(𝑡)  and the activation value 𝑎𝑖1  of the 

CIRM. 𝑟𝑖1(𝑡) = 𝑎𝑖1𝑟𝑚𝑎𝑥 −  𝑉𝑚1 (𝑡)𝑡×𝑉𝑡ℎ𝑟      ,                                                       (8) 

where 𝑟𝑚𝑎𝑥 represents the maximum spike firing rate, 𝑎𝑖1 represents the activation value of ANN neurons, 𝑉𝑚1(𝑡) represents the membrane potential of neuron 𝑖 in the first layer after reset. The relationship between 

the spike firing rate 𝑟𝑖1(𝑡) and the activation value 𝑎𝑖1  is not strictly proportional, but there is an error term  𝑉𝑚1 (𝑡)𝑡×𝑉𝑡ℎ𝑟. When we add an MF (𝜂) to the membrane potential 𝑉𝑚1(𝑡), the relationship between 𝑟𝑖1(𝑡) and 𝑎𝑖1 is 

shown in equation (9). 
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𝑟𝑖1(𝑡) = 𝑎𝑖1𝑟𝑚𝑎𝑥 −  𝑉𝑚1 ′(𝑡)𝑡×𝑉𝑡ℎ𝑟 = {  
  𝑎𝑖1𝑟𝑚𝑎𝑥                                           𝑉𝑚1′(𝑡) < 0               𝑎𝑖1𝑟𝑚𝑎𝑥 − 𝑉𝑚1 (𝑡)−𝜂∗𝑉𝑡ℎ𝑟𝑡×𝑉𝑡ℎ𝑟                 0 ≤ 𝑉𝑚1′(𝑡) < 𝑉𝑡ℎ𝑟  𝑎𝑖1𝑟𝑚𝑎𝑥 − 0.99𝑉𝑡ℎ𝑟 𝑡×𝑉𝑡ℎ𝑟                         𝑉𝑚1′(𝑡) ≥ 𝑉𝑡ℎ𝑟          ,                 (9) 

where 𝑉𝑚1′(𝑡) represents the membrane potential of neurons after MF modulation. After adding 𝜂, the error 

term  𝑉𝑚1 (𝑡)𝑡×𝑉𝑡ℎ𝑟  becomes  𝑉𝑚1 ′(𝑡)𝑡×𝑉𝑡ℎ𝑟 . According to the size of 𝑉𝑚1′(𝑡) , there are three cases. In these three cases, 𝑉𝑚1′(𝑡) < 𝑉𝑚1(𝑡), so    𝑉𝑚1 ′(𝑡)𝑡×𝑉𝑡ℎ𝑟 <  𝑉𝑚1 (𝑡)𝑡×𝑉𝑡ℎ𝑟. In either case, the error term is reduced. Therefore, the MF (𝜂) can 

effectively reduce the error in the conversion model.  

4. Experiment 

In the previous chapters, we theoretically derived and analyzed the algorithm. In this section, the 

algorithm is tested experimentally. 

4.1 Network structure 

Here, we use a network similar to Fig. 5 to test our algorithm with MNIST and CIFAR-10 data sets. The 

MNIST dataset trains 100 epochs in the network, the batch size is 256, and the learning rate is 1. The CIFAR-

10 data set is trained in the network for 240 epochs, and the batch size is also 256. The initial learning rate of 

the network is 0.1. The learning rates of epoch 81 and epoch 142 are divided by 10 respectively. All 

experiments are run on a GPU. The regularized dropout parameter is uniformly set to 0.5, and the momentum 

attenuation and momentum are 0.0001 and 0.9 respectively. The size of all convolution kernels in the network 

is 3 ×  3. All the experimental results in this paper are the average of the results of five independent runs of 

the network. We trained the network according to the above method. The classification accuracy of the network 

is 99.39% on MNIST and 86.00% on CIFAR-10. 

 

Fig. 5. Network structure. The network includes one input coding layer, six convolution layers, three pooling layers and two 
full connection layers. 𝐶𝑖,𝑗𝑚 indicates that there are 𝑚 neurons in the 𝑖th convolution layer, and the step size is 𝑗. 𝑃𝑖,𝑗𝑛×𝑛 indicates that the step size of the 𝑖th pool layer is 𝑗 and the kernel size is 𝑛 × 𝑛. 

4.2 Result 

Next, the above networks are converted into corresponding SNNs. We first save the weight of the network 

Input       Coding Layer   𝐶𝑖,𝑗𝑚 𝐶𝑖,𝑗𝑚   𝑃𝑖,𝑗𝑛×𝑛  𝐶𝑖,𝑗𝑚 𝐶𝑖,𝑗𝑚 𝑃𝑖,𝑗𝑛×𝑛  𝐶𝑖,𝑗𝑚 𝐶𝑖,𝑗𝑚 𝑃𝑖,𝑗𝑛×𝑛   1024       10 

kernel 
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and prepare the conversion operation of the network. Then, the above-saved weights are continuously 

normalized. Replace all nodes of the network with IF neurons (except the output layer). A coding layer is 

added at the network input to Poisson code the input image. In this way, the ANN network is successfully 

converted to SNN. We test its performance on the data set. 

4.2.1 MNIST 

Based on different coding time windows (time window sizes: 32, 64, 128, 256, 374, and 512), we tested 

the classification performance of SNN on the MNIST dataset under hard reset, soft reset, and CIRM 

respectively (the results are shown in Fig. 6). In our experiment, when the coding time window of the network 

is 32, the accuracy of our proposed CIRM is 99.1%, and the accuracy of hard reset and soft reset methods is 

only 64.89% and 98.79%. When the coding time window is 512, SNN uses hard reset, soft reset, and CIRM 

to achieve the best performance, and the accuracy rates are 99.38%, 99.27%, and 99.36% respectively.  

 
Fig. 6. The classification performance of SNN on MNIST under hard reset, soft reset and CIRM respectively. 

Under the above three reset mechanisms, the classification accuracy of SNN increases gradually with the 

increase of the coding time window. However, the increase in the coding time window will greatly increase 

the amount of calculation and delay of the network. By comparing the experimental results, we find that SNN 

has good configurability. If the network computing time is very important, we can choose the interval reset 

mechanism. This mechanism can make the network performance reach the same level as ANN with a small 

time window. If accuracy is important, a large time window can be used to improve the performance of the 

network. 

The CIRM proposed by us shows good performance in the above experiments. Next, we add modulation 

factor 𝜂 to the CIRM to adjust the spike firing rate of neurons, to further improve the network performance. 

The impact of 𝜂 of different sizes on network performance is shown in Fig. 7. When the time window size is 

512 and the modulation factor 𝜂 = 1.5, the performance of the SNN network reaches the best classification 

accuracy of 99.48%. In this case, the accuracy of SNN is improved by 0.09% compared with the original ANN, 

which exceeds the performance of the ANN network. When the time window is 64, the SNN network 

performance with 𝜂 = 1.5 has exceeded the accuracy of the original ANN. Choosing the appropriate 𝜂 can not 
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only improve the performance of the network but also improve the delay of the network. 

 
Fig. 7. The impact of 𝜂 of different sizes on network performance. 

Table 1 compares the best performance of SNN under different reset mechanisms and also compares it 

with previous work. By comparison, we can know that the addition of MF in the CIRM effectively improves 

the performance of SNN. 

Table 1. Network performance comparison (MNIST). 

Model Reset Accuracy (%) Ref. 
SNN(BP) / 98.71 [30] 

SNN(STDP) Hard Reset 95.00 [31] 
SNN(BP) / 97.66 [32] 

Spiking RBM(STDP) Hard Reset 93.16 [33] 
SNN(IF) Hard Reset 98.48 [25] 

SNN(Data-Norm) Hard Reset 98.64 [25] 
SNN(Model-Norm) Hard Reset 98.61 [25] 

SNN(WCN) Hard Reset 99.38 This work 

SNN(WCN) Soft Reset 99.27 This work 

SNN(WCN) CIRM 99.36 This work 

SNN(WCN) CIRM(MF=1.5) 99.48 This work 

4.2.2 CIFAR-10 

With the above experiments, we tested the classification performance of SNN on CIFAR-10 under hard 

reset, soft reset, and CIRM respectively (time window size: 64, 128, 256, 374, 512, 768, 1024, and 2048). The 

results are shown in Fig. 8. Under the three reset mechanisms, the classification accuracy of SNN increases 

gradually with the increase of the coding time window. When the coding time window size is 1024, SNN uses 

hard reset, soft reset, and CIRM, and its network accuracy is 85.88%, 85.18%, and 85.70% respectively. When 

the coding time window size is 2048, SNN uses hard reset, soft reset, and CIRM, and its network achieves the 

best performance, with accuracy rates of 86.49%, 86.63%, and 86.13% respectively. Compared with ANN, 

the accuracy of the three reset mechanisms are better than ANN, which shows that the weight normalization 

method proposed by us is effective in network conversion and has good applicability. 

Next, we add 𝜂 to the interval reset mechanism to adjust the spike firing rate of neurons. The impact of 𝜂 of different sizes on network performance is shown in Fig. 9. When the input coding time window size is 

2048 and 𝜂  = 1.5, the classification accuracy of the SNN network reaches 87.01%. When 𝜂  = 1.1, the 
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performance of the SNN network reaches the best, and the classification accuracy is 87.03%. The accuracy of 

SNN with 𝜂 = 1.1 is 1.03% higher than that of the original ANN. In this paper, the optimal MF of the network 

in MNIST is 𝜂 = 1.5, while the optimal MF of the network in CIFAR-10 is 𝜂 = 1.1. The optimal modulation 

factors for different data sets are different. The experimental results show that we can flexibly select the best 𝜂 for different tasks to improve the performance of SNN. 

 

Fig. 8. The classification performance of SNN on CIFAR-10 under hard reset, soft reset and CIRM respectively. 

The focus of the research on the conversion from ANN to SNN is to reduce the loss of network conversion. 

The WCN algorithm proposed in this paper shows excellent performance in SNN of three reset methods. The 

WCN algorithm adjusts the spike firing rate of neurons to an appropriate range so that the classification 

accuracy of the converted SNN exceeds that of the original ANN. [25] in the four-layer fully connected 

network, the data-based normalization algorithm has achieved good results on the MNIST data set. We 

compare the spike firing rate of this algorithm with the WCN algorithm proposed in this paper at each neuron 

layer of the network (network time window size: 256, neuron reset mode: hard reset), as shown in Fig. 10. 

 
Fig. 9. The impact of 𝜂 of different sizes on network performance. 

As can be seen from the figure, we do not deal with the weight of ANN and directly convert the network. 

The neurons in the front layer of the network are over-activated, and the neurons in the subsequent layer are 

under-activated. Our network algorithm based on [25] caused serious loss of spikes in the neuron layer behind 
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the network, resulting in a great loss of network performance. Both over-activation and under-activation of 

neurons will cause the loss of SNN performance. The spike firing rate of neurons is the fundamental reason 

affecting SNN performance. The spike emission of each layer of the network of the WCN is better than the 

above two methods. The WCN algorithm proposed in this paper ensures that the neuron spike firing rate is in 

the normal range, and the performance of the converted SNN network is not reduced but improved. 

 
Fig. 10. The spike firing rate. 

The WCN algorithm proposed by us preliminarily adjusts the spike firing rate to ensure the normal firing 

of neuron spikes. Aiming at the shortcomings of the hard reset and soft reset mechanism, we propose CIRM. 

The spike firing rate was further adjusted by adding MF to CIRM. The spike emission of neurons in each layer 

of the SNN network with MF added to CIRM is shown in Fig. 11.  

 

Fig. 11. The spike emission of neurons in each layer of SNN network with MF added to CIRM. 

CIRM resets the membrane potential of spiking neurons to a reasonable range, which solves the problems 

of membrane potential loss of hard reset and over activation of soft reset neurons. MF was added to CIRM to 

further adjust the reset membrane potential. Choose the appropriate value of MF according to our needs. We 

experimentally selected MF = 1.1 to achieve the optimal performance of SNN (time window: 2048, CIFAR-

10), and the accuracy is improved by 1.026% compared with ANN. The MF with appropriate value finally 

controls the spike firing rate in a better range, to improve the performance of SNN. 
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Table 2 compares the best performance of SNN on CIFAR-10 under different reset mechanisms and also 

compares it with previous work. Through comparison, we can know that the previous SNN conversion 

algorithms have caused the loss of network performance. The classification performance of SNN based on our 

algorithm is improved compared with the original network. Our algorithm has obvious advantages in the 

conversion of SNN networks. 
Table 2. Network performance comparison (CIFAR-10). 

Model Reset Loss (%) Ref. 
VGG-16(SPIKE-NORM) Hard Reset -0.15 [28] 

VGG-16(ANN-SNN) Hard Reset -0.24 [28] 
ResNet-20(IF) Hard Reset -1.64 [16] 

ResNet-20(RMP) Soft Reset -0.11 [16] 
VGG-16(IF) Hard Reset -0.15 [16] 

VGG-16(RMP) Soft Reset -(<0.01) [16] 
BinaryNet Sign Hard Reset -0.72 [29] 
BinaryNet Heav Hard Reset -0.97 [29] 

BinaryConnect, binarized at infer. Hard Reset +0.19 [29] 
BinaryConnect, full prec. at infer. Hard Reset -1.06 [29] 

SNN(WCN) Hard Reset +0.492 This work 

SNN(WCN) Soft Reset +0.627 This work 

SNN(WCN) CIRM +0.127 This work 

SNN(WCN) CIRM(MF=1.1) +1.026 This work 

4.2.3 Average firing rate 

SNN processes information only when the spike appears, resulting in energy consumption. Therefore, 

the event-driven characteristic of SNN improves the energy efficiency of the neural morphological network. 

We propose the average firing rate (𝑅𝐴𝑆𝑅) to indirectly reflect the energy consumption of the SNN model, 

which is defined in equation (8). 𝑅𝐴𝑆𝑅 = 𝑁𝑠𝑝𝑖𝑘𝑒𝑠𝑁𝑛𝑒𝑢𝑟𝑜𝑢𝑠×𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝𝑠 × 100%  ,                                                  (8) 

where, 𝑅𝐴𝑆𝑅  represents the average percentage of spikes produced by spiking neurons in each time step. 𝑁𝑠𝑝𝑖𝑘𝑒𝑠 represents the total number of spikes in the network. 𝑁𝑛𝑒𝑢𝑟𝑜𝑢𝑠 indicates the number of spiking neurons 

in the network. 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑒𝑝𝑠 indicates the length of the encoding train. 

The higher the average firing rate, the higher the energy consumption of the algorithm model. According 

to the above definition, we calculate the average firing rate of the SNN algorithm on CIFAR-10. The 

calculation results are shown in Fig. 12. According to the resulting graph, it can be found that the average 

firing rate (∼1%) presents a disproportionate benefit with the doubling of reasoning 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑒𝑝𝑠. Although 

the energy consumption of the hard reset model is low, the accuracy can not meet the requirements. The soft 

reset mechanism solves the problem of membrane potential loss of hard reset and improves the recognition 

accuracy of the network. However, the average firing rate increases significantly, which means that the energy 

consumption of the soft reset model is higher than that of the hard reset. Our CIRM reduces the loss of 

membrane potential caused by hard reset and reduces the energy consumption of soft reset.  
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Fig. 12. Average firing rate curve of SNN. 

As can be seen from Fig. 12, the average firing rate of CIRM is not much smaller than that of soft reset. 

While ensuring accuracy, to further reduce the energy consumption of the model, we add an MF to CIRM. 

The average firing rate curves of different modulation factors are drawn in Fig. 12. When MF = 1.1, the 

performance of SNN reaches the best (time window: 2048), and the accuracy is improved by 1.026% 

compared with ANN. And the energy consumption of the model is further reduced compared with CIRM. 

With the increase of MF value, although the average firing rate of the model gradually decreases (the 

corresponding energy consumption also decreases), the accuracy cannot meet the requirements. The algorithm 

not only reduces the energy consumption but also ensures its accuracy without loss. Adding appropriate MF 

into CIRM not only improves the accuracy but also reduces the energy consumption. It can be seen that our 

algorithm can flexibly and effectively improve the performance of SNN. 

 

Fig. 13. The test results of SNN models based on different algorithms on CIFAR-100. 

4.2 CIFAR-100 

The above content makes an empirical analysis and optimization of the algorithm proposed in this paper 

on CIFAR-10. We apply the conclusions and settings to the simulation of CIFAR-100 by deep layer network 

(VGG-15). To verify the effectiveness and generalization of our algorithm, the settings of VGG-15 and training 

parameters used in this experiment are consistent with [34]. CIFAR-100 trains 200 epochs, the batch size is 
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256, the initial learning rate is 0.05, and the learning rates of epoch 81 and epoch 122 are divided by 10 

respectively. All experiments are run on a GPU. The regularized dropout parameter is uniformly set to 0.1, 

and the momentum attenuation and momentum are 0.0001 and 0.9 respectively. The classification accuracy 

of VGG-15 on the CIFAR-100 test set is 64.9%. 
Table 3. SNN (VGG-15) performance comparison (CIFAR-100). 

Model (Algorithm) Reset Accuracy/Loss (%) Time-steps(about) 
VGG-15 [25] Hard Reset 62.69/2.21 362 

VGG-15 [34] Soft Reset 63.16/1.74 402 

VGG-15 [34] B-Soft Reset 62.07/2.83 345 

VGG-15(WCN) (This work) CIRM 64.13/0.77 340 

VGG-15(WCN) (This work) CIRM(MF=1.5) 64.63/0.27 334 

Next, we convert the trained VGG-15 to the corresponding SNN and test its performance on CIFAR-100. 

The test results of SNN models based on different algorithms on CIFAR-100 are shown in Fig. 13. From the 

test curve, we get the performance comparison table of different algorithms (Table 3). Compared with the hard 

reset and soft reset methods, the SNN (VGG-15) model based on WCN and CIRM algorithm not only 

improves the network accuracy but also improves the network delay. Adding MF to the above model further 

improves the network performance. When MF = 1.5, the classification accuracy reaches 64.63%. Compared 

with the original ANN, the classification accuracy of SNN decreased by only 0.27%. Compared with other 

methods, the accuracy loss is the smallest, and the reasoning time-steps required by the network is also the 

smallest. It can be seen that CIRM and MF also have good applicability in deep networks and large data sets. 

5. Conclusion 

In this work, we propose a weight continuous normalization technique for ANN to SNN conversion. This 

technology ensures the normal spike emission of spiking neurons, and there is almost no loss of network 

performance after conversion. We also propose a certainty interval reset mechanism of membrane potential. 

This mechanism solves the problem of membrane potential loss of hard reset neurons and the problem of over 

activation caused by a soft reset. In the interval reset method, we introduce a modulation factor to further 

regulate the spike firing rate of neurons. For different tasks, the lossless conversion of the network can be 

realized by appropriately adjusting the modulation factor. In our experiment, the performance of the network 

with modulation factor on MNIST and CIFAR-10 exceeds that of the original ANN. Moreover, the algorithm 

proposed in this paper also has good practicability in deep network and large data set.  

In the follow-up research, a general SNN algorithm is developed in close combination with the design 

requirements of the SNN neuromorphological chip. Image processing systems and instruments based on SNN 

have great advantages in both speed and power consumption. 
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