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Abstract

Most of the existing deep learning-based image super-resolution meth-
ods require a large number of datasets or ground truth. However, these
methods are not suitable for the restoration of real image with differ-
ent domains. Recently, Deep Image Prior (DIP) based on single-image
explores image prior and uses network structure as implicit image prior
to recover images, but it ignores the explicit prior information of the
actual image itself. The addition of image prior can effectively allevi-
ate the ill-posed problem in the image restoration model. Therefore,
in this paper, we propose an unsupervised deep image super-resolution
(SR) method that based on segmentation driven. Intuitively, clear image
has a clearer segmentation boundary. It will drive deep neural net-
works (DNN) to obtain higher performance SR image when forcing
the restored image to have clear boundary. In order to make energy
flow into DIP better, we use the fully convolutional networks-based
(FCN-based) superpixel method, and we use back propagation to inject
the gradient generated by segmentation entropy energy into DIP to
obtain lower energy optimization parameters. Experiments show that
the image generated by our method has clearer boundary and better
performance than that generated by DIP on Set5, Set14 and BSD100.

Keywords: image super-resolution; Deep Image Prior; unsupervised;
segmentation driven; entropy
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1 Introduction

Image super-resolution reconstruction technology is to generate a high-
resolution image from low-resolution images by algorithm. However, the
resolution of the image will be limited by signal transmission bandwidth and
noise interference. Restricted by the current manufacturing level, it is difficult
to improve the resolution from the hardware. So people pay more and more
attention to the research of image super-resolution algorithm. Now, super-
resolution algorithm is widely used in medical imaging [1–3], remote sensing
imaging [4–6] and picture compression [7–9].

Segmentation Entroy=1.41 × 105 Segmentation Entroy=9.7 × 104

Fig. 1 The first line shows the images with blurred boundary and clear boundary, respec-
tively. The second line shows the corresponding superpixel segmentation results. Based on
FCN-based superpixel method, the segmentation is realized by predicting the probability of
which superpixel pixel belongs to. The clearer the image is, the greater the probability of
dividing the correct superpixel block is, and the clearer the segmentation boundary is. We
convert this probability into a segmentation entropy, as shown in the third line. The clearer
the image is, the smaller the obtained segmentation entropy is.

The existing methods to solve the problem of image super resolution are
mainly divided into three parts. Methods based on interpolation, reconstruc-
tion and deep learning. The interpolation method [10–12] mainly use the
relationship between adjacent pixels of the image to select the appropriate
pixel coordinates for image interpolation. However, these methods do not con-
sider the semantic information of the whole image. Because of only using the
value between the adjacent pixels of the original image to improve the res-
olution, the edge of the reconstructed image is poor. The method based on
reconstruction mainly introduces effective prior information in the reconstruc-
tion process and uses prior information to constrain the image. Such as [13],
it references probability priors to image super-resolution, [14] applies image
gradient contour information to image edge contour restoration. The method
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based on reconstruction obtain less prior knowledge when the up-sampling fac-
tor of the image is too large, so the reconstruction effect will decline sharply.
The method based on deep learning is to mine the detail features of the image
by convolutional neural network, it can recover the image by it’s strong non-
linear fitting ability. Supervised SR methods [15–19] use paired low-resolution
images and high-resolution images to learn the mapping from low-resolution
images to high-resolution images. However, these methods require a large num-
ber of datasets and ground truth (GT). Unsupervised methods do not use
GT, they are trained by some features of the image itself. such as [20–23]
learn the degradation process by learning the domain between different images.
[24, 25] train the super-resolution network model based on frequency separa-
tion. [26, 27] takes the network structure as the prior condition. [28, 29] use
the image statistics within a single image. Unsupervised methods are learning
the image degradation process to make the restored image more in line with
the domain distribution of real images. However, these methods ignore the
processing of image boundary details. Superpixels can get multiple superpixel
blocks and edges by dividing pixels. It also can extract more segmentation
boundary information.

In this paper, we propose an unsupervised deep image SR method that
based on segmentation driven. Intuitively, clear image has a clearer segmenta-
tion boundary. We use superpixel segmentation method to extract the contour
boundary of image and force them to become clear. The gradient generated by
the segmentation entropy energy will flow into the neural network of DIP [26]
through back propagation when forcing DIP to obtain a higher performance
SR image. Specifically, we add segmentation entropy to each iteration of DIP
as a driver, it can make DIP to focus more on edge detail recovery in each iter-
ation and a clear edge contour image will be obtained. Experiments on Set5,
Set14 and BSD100 datasets show that the image generated by our method has
clearer boundary and better performance than that generated by DIP.

The main contributions of this paper are summarized as follows.
• We propose an unsupervised deep image SR method that based on seg-

mentation driven and use back propagation to inject the gradient generated
by segmentation entropy energy into DIP.
• In deep learning, a method for computing segmentation entropy is

proposed.
• Solving the problem of insufficient edge detail recovery in unsupervised

super resolution method.

2 Related Works

The existing methods to solve the problem of image super resolution are mainly
divided into three parts. Methods based on interpolation, reconstruction and
deep learning.
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The method based on interpolation mainly uses the relationship between
adjacent pixels to select the appropriate pixel coordinates for image interpola-
tion. Such as [10], the value of the interpolation point is the value of the pixel
with the shortest euclidean distance from the interpolation point. However,
the results obtained by this method have obvious sawtooth phenomenon and
the amplification effect is not ideal. In order to solve it, [12] mainly implements
the linear interpolation of four adjacent pixels from the vertical and horizon-
tal directions to realize the image interpolation. The enlarged image sawtooth
phenomenon is improved, but the edge is blurred. Then Li [11] proposed an
interpolation method based on edge guidance, it assumed that low-resolution
images and high-resolution images had the same edge information at the edge.
The prediction coefficient of the optimal linear super-resolution mapping was
derived by calculating the local covariance of the edge of the low-resolution
image. This method solves the problem of image edge sharpening, but the
algorithm complexity is high. The method based on interpolation do not con-
sider the semantic information of the whole image, the reconstruction effect is
limited.

The method based on reconstruction mainly uses prior information to
constrain image restoration. Schultz [13] introduced maximum a posteriori
probability estimation model based on probability theory into image super-
resolution reconstruction. However, the obtained high-resolution image edge
contour is smooth. To solve this problem, Sun [14] proposed an image prior
reconstruction method based on edge guidance. This image prior statistics the
gradient contour information of the image, it can effectively sharpen the image
edge. The reconstruction effect depends on the consistency of the statistical
model and the gradient contour of the image. But once the magnification of
this reconstruction-based method is too large, the effect of reconstruction will
fall sharply.

The method based on deep learning is to extract the deep features of the
image by convolutional neural network, and recover the image by it’s strong
nonlinear fitting ability. It can be divided into supervised SR and unsupervised
SR.

The supervised super-resolution method uses a large number of datasets
and GT to learn the mapping relationship between low-resolution images and
high-resolution images. Then predict high resolution images based on the
learned mapping relationship. Dong [15] introduced the convolutional neural
network into the field of image super-resolution and proposed the SRCNN net-
work structure. Specifically, it uses an interpolation method to resize the image,
and then the high resolution image is obtained by nonlinear mapping with three
layers convolution network. The mapping relationship between low-resolution
images and high-resolution images is learned by convolution neural network.
However, The method of changing the size of the image by interpolation and
sending it to the neural network for recovery has affected the performance
of image restoration. Then sub-pixel convolution layer is proposed by [17] ,
it does not require an up-sampling process for a given low-resolution image,
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but indirectly realizes the image amplification process through the sub-pixel
convolution layer. It improves the reconstruction effect. However, the above
methods are using mean square error as the target loss function, which will
cause the image to be too smooth and lack of sensory image realism. So Ledig
[16] proposed SRGAN and applied GAN [30] to super-resolution tasks. The
high-level feature mapping of the VGG [31] network is used to define the new
perceptual loss. This loss uses the discriminant to make the generated high-
resolution image as visually similar to the ground truth. Recently, to exploit
feature correlation for improved performance, channel attention and second-
order channel attention are further introduced by RCAN [18] and SAN [19].
But the datasets used by these methods are obtained through known degrada-
tion processes. If the model trained on this dataset is applied to low-resolution
images with different domains in the real world, the effect is often not good. So
people pay more and more attention to unsupervised super-resolution methods.

Unsupervised SR realizes image restoration by learning the image degra-
dation process. Such as [20], it proposes a two-stage process to learn the
degradation process. Firstly, using unmatched LR-HR images to train a HR-
to-LR GAN network to learn the degradation process, this is to obtain natural
LR images from HR images to simulate real low resolution data. And then
the LR-to-HR GAN network is trained using paired LR-HR images on the
basis of the first GAN. But this method does not take into account the gener-
ated resolution image feature distribution. So [21] proposed a Cycle-in-Cycle
(CinCGAN) structure, it let LR space and HR space as two domains. Using
Cycle-in-Cycle structure to learn the mapping between each other. Firstly, the
network maps the input images with noise and blur to a low-resolution space
that conforms to the real-world feature distribution and has no noise. Then, the
feature distribution of the output high-resolution image is compared with that
of the mismatched high-resolution image in the real world. This not only takes
into account the feature distribution of low-resolution images, but also the fea-
ture distribution of high-resolution images. But this part of the SR model is
a pre-trained model. In order to solve this problem, Maeda [22] starts from
the high-resolution image, down-samples the high-resolution image, maps the
down-sampled image to the real low-resolution domain, then passes through
an up-sampling network to obtain a high-resolution image. [22] also compares
the difference between the obtained high-resolution image and the real image
in the domain. Recently, in order to better reduce domain bias, Wei [23] pro-
posed domain distance map, which should be given different importance based
on the distance from different regions to the target domain.

FSSR [24] and Zhou et al [25] proposed to learn a downsampling process
to generate paired data and train SR network with the generated data in a
supervised manner. FSSR [24] proposes frequency separation, which guides the
network to realize the domain migration of high-frequency components, and
uses the migrated images for SR network training. Zhou et al [25] is improved
on the basis of FSSR [24]. A color-guided domain mapping networkwas pro-
posed to alleviate the color shift in domain transformation process. Moreover,
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it modified the discriminator of the super-resolution stage so that the net-
work not only keeps the high frequency features, but also maintains the low
frequency features.

However, these methods do not use the prior information of the image to
constrain. Then DIP [26] uses the randomly initialized CNN as a prior. The
deep image prior is to take into account that the CNN structure is sufficient to
capture a large number of low-level image statistical priors. It takes random
vector z as input and tries to generate target HR images. Since the network
is randomly initialized and never trained, the only prior is the CNN structure
itself. However, this method takes the network as an implicit prior information,
and the restored image effect is not very good. Then, EIP [27] improves the
DIP by introducing an external high-resolution reference image to enhance the
image prior and update the input noise.

After that, the method of learning the degradation process based on the
internal information of the image takes into account that the image statistics
within a single image have provided sufficient information for SR. ZSSR [28]
uses the nonlocal self-similarity of the image to exploit the internal recurrence
of information within a single image. In the super-resolution of a low-resolution
image, the image is down-sampled again to learn the super-resolution parame-
ters between the LR image and the down-sampled LR image. Then it uses the
parameters for LR super-resolution, we can get HR image finally. The method
is based on internal learning and the mapping is learned from this image. The
training time of ZSSR [28] is too long, and it needs thousands of iterations. To
solve this problem, MZSR [29] present a novel training scheme based on meta-
transfer learning, which learns an effective initial weight for fast adaptation to
new tasks.

3 Methodology

In super-resolution tasks, although DIP can obtain high resolution images by
training the network structure as an implicit prior, the effect is not ideal.
Therefore, the idea of adding explicit prior to DIP is proposed to alleviate the
ill-posed problem in image restoration model.

We observe that the clear image has a clearer segmentation boundary, it will
driven DNN to obtain higher performance SR image when forcing the restored
image to have clear boundary. The FCN-based superpixel method obtains
multiple superpixel blocks and superpixel block edges by dividing pixels. In the
FCN-based superixel method, some segmentation details are lost, because the
segmentation loss is obtained by weighted averaging the predicted correlation
matrix q and then reconstructing it. So we directly use the correlation matrix
q and make the correlation matrix q into the segmentation entropy.

In order to obtain lower energy optimization parameters,we use back prop-
agation to inject the gradient generated by segmentation entropy energy into
DIP. Based on this theory, we calculate the segmentation entropy by convo-
lution network, then add the segmentation entropy to each iteration of DIP,
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it can force DNN to obtain a higher performance SR image. Fig. 1 shows
the segmentation entropy results of image segmentation with clear edge and
blurred edge. The results show that the clearer the boundary is, the lower
the segmentation entropy is. To verify this idea. We tested on the BSD500
dataset. BSD500 is an image segmentation dataset which contains 500 com-
plex natural images. As shown in Fig. 2, the dataset is processed with different
degrees of ambiguity, and we calculate the segmentation entropy of images
with different fuzzy degrees. The clearer the boundary, the smaller the segmen-
tation entropy. We use different sampling methods (nearest, bilinear, bicubic)
to downsample and then upsample the dataset. The image edge obtained by
bicubic is clearer than that obtained by bilinear, so the segmentation entropy
of the whole dataset is smaller. Since the image obtained by nearest has a
sawtooth effect, the more obvious the sawtooth effect, the smaller the segmen-
tation entropy. We downsample the dataset 2 times, 4 times, 6 times, 8 times,
and then upsample to the original image size. Up factor, Down factor repre-
sents the operation of upsampling and downsampling the dataset according to
different multiples. The abscissa represents the multiple of the downsampling
and upsampling operations on the dataset. For bilinear and bicubic interpola-
tions, the larger the value, the more blurred the image boundary we finally get.
Vertical axis represents segmentation entropy result of dataset. We use convo-
lutional neural network to calculate the correlation matrix q, and convert the
correlation matrix q into the segmentation entropy. In order to prevent DIP
from falling into local minimum, L2 regularization is added for constraint.

In this paper, we propose an unsupervised deep image SR method that
based on segmentation driven. The reconstruction of super-resolution images
can be divided into three steps. Firstly, random coding vector z is used as the
input of DIP network, through the DIP network, we can get high resolution
images as output. Secondly, the high resolution images is sent to the segmen-
tation network for training to obtain the segmentation entropy. Finally, we use
back propagation to inject the gradient generated by segmentation entropy
energy into DIP, and the L2 regularization term is added for constraint. This
method will be described in detail step by step in the following.

3.1 Deep Image Prior Network

The image is generated by x = fθ (z). It maps the random code vector z to the
image x and samples the real image from the random distribution. We interpret
the neural network as a parametrization : x = fθ (z), z is random coding
vector, θ is the network parameter, x is the output result after parameter θ.
In order to show the effect of parameterization, we consider the image inverse
tasks, it can be expressed as the energy minimization problem, which is shown
in Eq (1).

x∗ = min
x

E (x; x0) +R (x) (1)

E (x; x0) is a task-dependent data term, R (x) is the regularization term, which
can usually capture the general prior of natural images, x∗ is the image we
want to get, x0 is the image to be repaired. In this paper, the regularization
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Fig. 2 In order to verify the effect of clear edge and fuzzy edge on segmentation entropy, we
test on the BSD500 dataset. The results show that the clearer the segmentation boundary
is, the smaller the entropy is.

term R (x) is replaced by the implicit prior captured by the neural network, it
lets the network learn the mapping from random vector z to degraded images.
So, we can replace Eq (2) with Eq (1).

θ∗ = argmin
θ

E (fθ(z); x0) , x
∗ = fθ∗(z) (2)

Starting with the random initialization of parameters θ, then, in the next
training, an optimizer such as gradient descent is used to obtain the minimum
θ∗, the learned parameter θ∗ is directly used to get the image x∗. z is a 2D
tensor with 32 feature maps, the same size as x∗, and is filled with uniform
noise. In Eq (2), R (x) does not disappear, it is hidden, and it’s value becomes
an extreme form: R (x) = 0. The image can be speculated from z based on a
specific CNN structure.

A high-capacity network can be used as the prior information, we expect
to find a parameters θ that can reproduce the given target image x0, including
random noise. So that, the network should not impose any restrictions on the
generated images. It’s optimization is as Eq (3). The Eq (3) calculates the
L2-norm between x and x0

E (x; x0) = ∥x− x0∥
2

(3)

Putting Eq (3) into Eq (2), it becomes an optimization problem Eq (4). For
super resolution tasks, the data term is set as shown in Eq (5). The training
process is shown in Algorithm 1.

min
θ
∥fθ(z)− x0∥

2
(4)

E (x; x0) = min
θ
∥d(fθ(z))− x0∥

2
, x = fθ(z) (5)

x0 ⊆ R3×H×W is a low resolution image, here H,W represent the height
and width of the low-resolution image, respectively. Random code vector z
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Algorithm 1 Algorithm for solving DIP

Input: Random code vector z and low-resolution image x0.
Output: High-resolution image x.
1: repeat

2: x(i) = θx
(i)(z)

3: Update DIPloss by Eq (5).

4: Update θx
(i) using the ADAM algorithm.

5: i← i+ 1
6: until i > imax

��
DIP_loss

↓�
��

...

��(��)

seg_loss

��(��)
↓�

↑�
... association 

map(Q)

�(�)...

seg

segDIP

Fig. 3 The schematic illustration of training. Firstly, zx is a random coding vector, the
network structure is an encoder-decoder structure. fθ represents the neural network, and
the random coding vector is mapped to a high-resolution image through the neural network.
↓t denote downsampling with scale factor t. The image is reconstructed by minimizing the
LR image, so as to optimize the model. Then, let HR image as the input, the segmenta-
tion network will output a correlation matrix q through an encoder-decoder neural network
structure, which is a weight matrix to predict pixels to the surrounding nine clustering
centers, here q ∈ ZH×W×Np . ↓t represents the process from the pixel point to the clus-
ter center, implemented by Eq (6). t represents the grid pixel size of the clustering center
as t. ↑t represents the process from superpixel center to pixel point, this is the process of
image reconstruction, which is realized by Eq (7). Finally, minimize the input image and
the reconstructed image. The training process is unsupervised. We emphasize that the two
segmented networks in the figure are the same network. The gradient generated by the seg-
mentation entropy energy flows into the DIP network through back propagation, and finally
forces DNN to obtain better training parameters.

is the input of deep neural network, x ⊆ R3×tH×tW is the high-resolution
image result output by the network. d(·) is a down-sampling operator, fθ is
the parameter of the neural network. It adjusts the size of the image by factor
t, t is the up-sampling factor, and it downsamples high-resolution images to
the same size as low-resolution images.

3.2 Segmentation Entropy

In the previous section, we train the DIP network by inputting the random
coding vector z, and the network output the high-resolution images in each
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⊕
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Fig. 4 This is the specific flow chart of each iteration optimization in the joint training.
The random vector z is used as input, and the high resolution image is generated after
being sent to the DIP network. Then we send the high resolution image to the segmentation
network to obtain the segmentation entropy. We add segmentation entropy to each iteration
of DIP to guide the generation of high resolution images. From this, we can see that the
segmentation entropy also plays a role in the DIP network parameters.

iteration. The obtained high-resolution images are sent to the segmentation
network for training. The specific process is as follows.

Firstly, using a regular grid of size h×w to partition the H×W image, and
consider each grid cell as an initial superpixe. Here h, w are the hight and width
of the superpixel block. H, W are the hight and width of the image. This step
is to initialize the superpixel center. To get the final superpixel segmentation
map, we need to find each pixel p = (u, v) belongs to which cluster center
s = (i, j) by a mapping g, (u, v) is the coordinate position of the pixel, (i, j)
is the coordinate position of the cluster center. If it find that the current pixel
p belongs to a cluster center s, set the map gs(p) = gi,j(u, v) = 1. However, a
pixel is only related to several clustering centers around it, and the connection
with other clustering centers can be ignored. In order to reduce the calculation
amount, only nine clustering centers around it are calculated. Therefore, the
mapping is written as g ⊆ ZH×W×9. There are many methods to calculate
mapping g, such as calculating the euclidean distance, but in this paper, we
use deep neural network to predict g directly. In order to make our objective
function differentiable, we use a soft correlation mapping q ∈ ZH×W×Np to
replace g. We emphasize that q is the predicted weight of each pixel to the nine
cluster centers around the pixel, and the sum of the weights is 1. Np is the
number of cluster centers. Here qs(p) represents the probability that each pixel
p is assigned to the surrounding cluster center s, s ⫅ Np and

∑
s∈Np

qs(p) = 1
.
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us =

∑
p:s∈Np

f(p) · qs(p)∑
p:s∈Np

qs(p)
, ls =

∑
p:s∈Np

p · qs(p)∑
p:s∈Np

qs(p)
(6)

The superpixel correlation matrix q is predicted by using the standard
encoder-decoder design with skip connection. Firstly, the encoder takes the
high-resolution image generated by DIP as the input and generates the high-
level feature map through the convolutional neural network. Then, the decoder
gradually samples the feature map through the deconvolution layer to pre-
dict the correlation matrix q finally. In terms of loss function, fp is the pixel
attribute of pixels. In this method, fp is the 3D CIELAB color vector. We fur-
ther represent the position of the pixel by the image coordinate p = [x, y]T of
the pixel, where x is the abscissa and y is the ordinate.

By the association graph q, we can predict the color and location properties
of superpixel centers by Eq (6). The attributes of the superpixel center can be
represented as Cs = (Us, Is), where Us is the CIELAB color attribute vector of
the superpixel center and Is is the location attribute vector of the superpixel
center.

Eq (6) is a clustering process. A pixel will assign its own attributes to the
surrounding cluster centers with a certain weight. If the predicted pixel belongs
to the current cluster center, the current weight is set to be large, and then,
update the properties of the cluster center.

The computation from pixels to cluster centers can not be used as a basis
for superpixel segmentation. It also needs to use Eq (7) to reconstruct the
original pixel attribute with the properties of the superpixel center. That is to
say, the original pixel attribute is reconstructed again by the correlation matrix
q and the superpixel center. The follow two steps complete the segmentation of
superpixel.Firstly,the superpixel center is found by pixel clustering, and then
the clustering center attribute is reconstructed to the pixel attribute.

f ′(p) =
∑

s∈Np

us · qs(p),p
′ =

∑

s∈Np

ls · qs(p) (7)

f
′

(p) is the reconstructed pixel color attribute and p
′

is the reconstructed
pixel position attribute. In order to complete the training of superpixel seg-
mentation network, a loss function as Eq (8) is designed. Loss function has
two parts, one is the content reconstruction loss, choose the L2-norm as the
distance metric, constraint color attribute loss. The second is the spatial posi-
tion loss, forcing superpixel to be compact in space. Here s is the superpixel
sampling interval, m is to balance the weight of these two items, m is set by
ourself. The training process is shown in Algorithm 2.

Lossseg =
∑

p

∥f(p)− f ′(p)∥2 +
m

S
∥p− p′∥2 (8)
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Algorithm 2 Segmentation Entropy

Input: High-resolution image x

Output: A soft correlation mapping q

1: repeat

2: q = θs
(i)(x)

3: Update superpixel center Cs = (Us, Is) by Eq (6).
4: Update the reconstructed f ′(P ), P ′ by Eq (7).
5: Update the segloss by Eq (8).

6: Update θs
(i) using the ADAM algorithm.

7: i← i+ 1
8: until i > imax

Algorithm 3 Super-resolution image algorithm

Input: Random code vector z, low-resolution image x0.
Output: High-resolution image x.
1: initialize x(0) = θx

(0)(z) by Eq (5).
2: repeat

3: repeat

4: q = θs
(j)(xi)

5: update superpixel center Cs = (Us, Is) by Eq (6).
6: Update the reconstructed f ′(P ), P ′ by Eq (7).
7: Update the segloss by Eq (8).

8: Update θs
(j) using the ADAM algorithm.

9: j ← j + 1
10: until j > jmax

11: q = θs(x
i)

12: Build H(q) according to Eq (9).
13: Update the loss by Eq (10).

14: Update θx
(i) using the ADAM algorithm.

15: x(i) = θx
(i)(z)

16: i← i+ 1
17: until i > imax

3.3 Combined Training

In the joint training process, we send the images generated by each iteration
of DIP into the superpixel segmentation network. By Eq (8), we can train the
superpixel segmentation network. We obtain the corresponding segmentation

entropy by Eq (9),
∑Np

i=1 qi = 1. qi is the probability of an event occur-
ring, it represents the probability that the pixel p belongs to the surrounding
superpixel block. Np is the number of cluster centers. Then, the segmentation
entropy is added to the loss of DIP and perform the next iterative training.
The process is shown in Fig. 3, Fig. 4 and Algorithm 3.
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H(q) = −

Np∑

i=1

qi log qi (9)

Loss = E (fθ(z); x0) +H(q) + ∥θ∥2
2

(10)

4 Experimental Evaluation and Results

4.1 Dataset

In order to evaluate the proposed algorithm, we carried out experiments on
common benchmark datasets, including Set5, Set14 and BSD100. The Set5
dataset contains five images, Set14 contains 14 images and BSD100 contains
100 complex natural images. These datasets are used for single image super-
resolution reconstruction. In the experiments, the size of the high-resolution
image was the size of the original image. The low-resolution image is down-
sampled according to the scaling factor, and the bicubic interpolation method
is used to downsample the image. So we can get matched low resolution and
high resolution images, namely lLR and lHR. Then, lLR image is used for net-
work training, and lHR is used to evaluate the training results. The batch size
of the image during the training is set to 1.

4.2 Implementation Details

Our model is implemented by PyTorch. In the DIP network, the number of
iterations is set to 2000. Optimizer was used Adam with β1 = 0.9, β2 =
0.999. The learning rate is initialized to 0.0005. Firstly, downsampling the
high resolution image size, so that the size meets the size of the segmentation
network. In the segmentation network, optimized using Adam with α1 = 0.9
and α2 = 0.999. We use lossseg in Eq (8) as the segmentation loss function,
where m = 0.003. For the number of superpixels, the size of superpixel cell is
4× 4, this size determines the number of superpixel cluster centers. For total
training, we use Eq (10) as the loss function.

4.3 Evaluation Metrics

The evaluation criteria of single-image super-resolution methods are usually
divided into subjective evaluation and objective evaluation. Subjective evalu-
ation is to visually compare the original image with the generated image by
human eyes. In order to verify the quality of the model, objective evaluation
criteria such as peak signal-to-noise ratio (PSNR) and structure similarity
(SSIM) are usually used to evaluate the reconstruction quality of the generated
image for different models. The peak signal-to-noise ratio measures the qual-
ity of image reconstruction by calculating the error between the corresponding
pixels. The higher the value is, the stronger the repair ability of the network is.
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Type Method
Set5 Set14 BSD100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Supervised

LapSRN [32] 2 37.52/0.9591 33.08/0.9130 31.08/0.8950
VDSR [33] 2 37.53/0,9590 33.05/0.9130 31.90/0.8960
EDSR [34] 2 38.11/0.9602 33.92/0.9150 32.32/0.9013
SRCNN [15] 2 36.66/0.9542 32.45/0.9067 31.36/0.8879
RCAN [35] 2 38.27/0.9614 34.12/0.9216 32.41/0.9027
SAN [19] 2 38.31/0.9620 34.07/0.9213 32.42/0.9028

Unsupervised
Bicubic 2 33.66/0.9299 30.24/0.8688 29.56/0.8431
DIP [26] 2 32.43/0.9039 29.07/0.8509 28.48/0.8170
Ours 2 32.95/0.9097 29.56/0.8543 28.75/0.8241

Supervised

LapSRN [32] 4 31.54/0.8850 28.19/0.7720 27.32/0.7270
VDSR [33] 4 31.35/0.8830 28.02/0.7680 27.29/0.7260
EDSR [34] 4 32.46/0.8968 28.80/0.7876 27.71/0.7420
SRCNN [15] 4 30.48/0.8628 27.50/0.7513 26.90/0.6675
SAN [19] 4 32.64/0.9003 28.92/0.7888 27.78/0.7436
RCAN [35] 4 32.63/0.9002 28.87/0.7889 27.77/0.7436

Unsupervised
Bicubic 4 28.42/0.8104 26.00/0.7027 25.96/0.6675
DIP [26] 4 29.68/0.8495 26.87/0.7412 26.35/0.7053
Ours 4 29.98/0.8532 27.01/0.7433 26.40/0.7062

Supervised

LapSRN [32] 8 26.15/0.7380 24.35/0.6200 24.54/0.5860
VDSR [33] 8 25.93/0.7240 24.26/0.6140 24.49/0.5830
EDSR [34] 8 26.96/0.7762 24.91/0.6420 24.81/0.5985
SRCNN [15] 8 25.33/0.6900 23.76/0.5910 24.13/0.5660
SAN [19] 8 27.22/0.7829 25.14/0.6470 24.88/0.6011
RCAN [35] 8 27.31/0.7878 25.23/0.6511 24.98/0.6059

Unsupervised
Bicubic 8 24.40/0.6580 23.10/0.5660 23.67/0.5480
DIP [26] 8 25.88/0.7120 24.11/0.6079 24.27/0.5707
Ours 8 25.98/0.7131 24.12/0.6083 24.30/0.5710

Table 1 Comparison with existing methods on Image super-resolution tasks. We
compared the PSNR and SSIM of these method under Set5, Set14 and BSD100 with three
scale factors of 2, 4 and 8.

4.4 Experimental Results

The experiment in this paper is to compare the reconstructed images by our
method with the images generated by other different methods. We compare
our method with the existing supervised method and unsupervised method
on the Set5, Set14 and BSD100 datasets at three different scale factors. Our
method is to drive the network to produce better edge details through the
segmentation entropy obtained by image segmentation. As shown in Table 1,
By adding the segmentation entropy, our method achieves better results than
DIP when the scale factor is 2, 4. When the scale factor is 8, the improvement
effect is not obvious. This is because the image generated by the DIP network
has clear image edges when the scale factor is not large. The clearer the image
edge, the lower the segmentation entropy. Clearer image edges can force the
DIP to produce clearer images. Similarly, with the increase of scale factor, the
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Method
Set5 Set14

×2 ×4 ×8 ×2 ×4 ×8

PSNR/Entropy PSNR/Entropy PSNR/Entropy PSNR/Entropy PSNR/Entropy PSNR/Entropy
DIP 32.43/115369 29.68/119723 25.88/204765 29.07/236056 26.87/248467 24.11/440273
Ours 32.95/111063 29.98/107942 25.97/119848 29.56/222684 27.01/204480 24.12/216402

Table 2 Segmentation entropy generated by our method and DIP method on Set5 and Set14 dataset. We send the image obtained by our method
and the image obtained by DIP into the segmentation network, and use Eq (9) to calculate the segmentation entropy. Experimental results show
that the segmentation entropy generated by our method is smaller.
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cell size
×2 ×4 ×8

PSNR/SSIM/Entropy PSNR/SSIM/Entropy PSNR/SSIM/Entropy

4×4 32.95/0.9097/111063 29.98/0.8532/107942 25.97/0.7062/119848
8×8 32.98/0.9099/100512 30.01/0.8535/102558 25.98/0.7063/103323

16×16 33.04/0.9011/86331 30.07/0.8540/88743 26.03/0.7065/88954

Table 3 We compared the effect of the number of cluster centers on the experimental
results under different scale factors in the set5 dataset. The cell size determines the number
of superpixel cluster centers. The larger the size is, the less the number of cluster centers is.

scale factor
Nearest Bicubic Area

PSNR PSNR PSNR

×2 30.24 32.63 32.89
×4 24.91 28.92 29.52
×8 21.37 24.95 25.54

Table 4 The influence of different down-sampling methods on the results of DIP.

edge of the obtained image becomes more and more blurred, resulting in the
increase of segmentation entropy, and the energy can not flow into DIP well.

As shown in Fig. 5 and Fig. 6, we compare the subjective effects of
our method with other different methods. The function of the segmentation
entropy is to make each pixel better divided into the superpixel block in each
iterative training, so that the edge details of the image can be better recov-
ered. Fig. 5, Fig. 6 show that Our method can produce clearer image edges
than DIP by adding segmentation entropy.

However, supervised methods use pairs of data for supervised training, so
the edges of the image will be clearer, while our method does not use pairs of
data and only uses an image for image restoration. Our method only restores
the image through the image prior inside the image, lacking the supplement
of external data.

Table 2 is the segmentation entropy results of images trained by DIP and
our method on Set5 dataset. The results show that our method can produce
lower segmentation entropy on each image. This also confirms why our method
can get a clearer edge.

In Table 3, we compare the influence of the number of cluster centers
on the experimental results on the Set5 dataset. We adjust the number of
cluster centers by changing the size of superpixel cell. The larger the size, the
smaller the number of cluster centers. From Table 3, we can see that the fewer
the number of cluster centers, the smaller the segmentation entropy, and the
greater the PSNR value. The reason for this phenomenon is that the fewer
the number of clustering centers, the greater the weight difference between
each pixel and the surrounding clustering centers, and finally the smaller the
segmentation entropy obtained by training. The smaller segmentation entropy
can drive DIP to produce clearer image edges.
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At the same time, we compare the effects of different DIP downsampling
methods on the results when the scale factors are 2 , 4 and 8. In the area inter-
polation method, bicubic and nearest interpolation method, the image effect
obtained by the area interpolation method is the best. Therefore, among the
three methods, the image effect obtained by joint training using the area inter-
polation method is the best. This shows that DIP using better interpolation
method, the final joint training can get better image.

LR(4×) SAN EDSR V DSR SRCNN

LAPSRN BICUBIC DIP Ours

Fig. 5 Subjective results. The image is the third image in the Set5 dataset.

LR(4×) SAN EDSR V DSR SRCNN

LAPSRN BICUBIC DIP Ours

Fig. 6 Subjective results. The image is the fifth image in the Set5 dataset.

5 Conclusions

In this paper, we propose an unsupervised deep image SR method that based
on segmentation driven. This method does not need pre-training and does not
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depend on a large number of datasets and GT, only an image is needed for
image super-resolution. Our approach is completely unsupervised. The image
can be restored using only an image. DIP implicitly uses the network archi-
tecture to obtain the regularization effect of the restored image. By adding
the segmentation driven to DIP, it will provide additional improvement. We
use back propagation to inject the gradient generated by segmention entropy
energy into DIP to obtain lower energy optimization parameters. Adding
the segmention entropy will force the restored image to have clear bound-
ary. Experiments show that the proposed method can obtain more abundant
experimental results of edges and details.

Our method can produce clearer image edges than DIP, but it can not
be improved well when the scale factor is too large. The disadvantage is that
we need to train the segmentation network in each iteration of DIP, and the
training time is long. And our method is not very ideal when the scale factor
is too large.
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