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Order-dependent sampling control of uncertain fractional-order neural
networks system

Chao Ge∗, Qi Zhang, Ruonan Zhang, Li Yang

Abstract. The asymptotic stability of the fractional-order neural networks system with uncertainty by sampled-
data controller is addressed in the article. First, considering the influence of uncertainty and fractional-order
on the system, a new sampled-data controller is designed with alterable sampling period. In the light of the
input delay approach, the fractional system is simulated by the delay system. The main purpose of the method
presented is to design a sampled-data controller, which the closed-loop fractional-order system can guarantee
the asymptotic stability. Then, the fractional-order Razumishin theorem and linear matrix inequalities (LMIs)
are utilized to derive the stable conditions. A stability conditions are presented in the form of LMIs on the
new delay-dependent and order-dependent. Furthermore, the sampling controller can be acquired to promise
the stability and stabilization for fractional-order system. A numerical example is gotten to demonstrate the
effectiveness and advantages for the provided method.

Keywords: Fractional-order systems, neural networks, sampled-data control, Lyapunov function, stability.

1. Problem statement and preliminary

Neural network (NNs) is a classic complicated system made of the interconnected neurons, which has been
focused by many scholars. An artificial NNs is made up of artificial neurons or nodes in the modern science. The
NNs is a network system consisting of interlinked nodes, which simulates the function of neurons in the brain. It
is widely applied to help people solve various matter, for instance, image processing, pattern recognition, convex
optimization, robot manipulator in [1]-[6], etc. It should be noted that these adhibitions have an significant
relationship with their interior dynamics and the dynamical behavior of NNs, such as stability, multi-stability,
synchronization, etc. Nowdays, NNs have attracted numerous attention and become a related research field.

With the development of society, fractional calculus is introduced to replace integer order with some
non-integer order. In recent years, the calculus and the control systems of fractional-order (FO) systems have
attracted much attention from researchers in control theory. It is worth mentioning that the order of FO calculus
is not integer order, which can overcome the disadvantage that the differential equation model of integer order
can not accurately describe the complex system. And fractional derivatives can better describe the dynamic
behavior of neurons. Fractional derivatives have non-local characteristics, and FO has more accurate memory
and genetic properties compared with integer order. Although fractional calculus has not yet emerged, it has
recently attracted the attention of researchers, and it remains a great field of study. So far, some excellent
results have been presented on the dynamic analysis of FO systems in [7]-[9]. Many important and interesting
conclusions have been acquired in fractional-order neural networks (FONNs) systems and all kinds of issues
have been investigated by many authors in [10]-[17]. From these results, it can be proved that the FONNs can
more correctly depict and imitate the neurons than the traditional integer neural networks in the human brain.

∗Corresponding author. Email: gechao365@126.com(Chao Ge).
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Because fractional calculus has the advantages of infinite memory and genetic characteristics when representing
system models in biological engineering, neural network, fluid dynamics and other fields, it has received more
and more concern. It is well known that the long memory properties have been ignored in NNs. Additionally,
previous studies have indicated that electroconductibilities of biological cell membranes are FO [32]. Therefore,
it is extraordinarily proper and accurate to use FO differential equations to simulate and study the dynamics
of real NNs.

It is well known that stability is the most important issue in control systems, and it is the first condition
for the system to work properly. For FO systems, numerous interesting conclusions have been obtained in the
literature of proving system stability by Lyapunov function, containing asymptotic stability [20], consistent
stability [21], stability[22], Hopf-Bifurcation research [23, 24], Mittage-Leffler stability [18, 19]. At present, the
research has attracted more and more researchers’ attention on the robustness and performance for FO systems,
specially for FONN systems with uncertainties. For instance, the delay-dependent stability and stabilization
for a kind of FONNs with uncertainty and time-varying delays are discussed in [10]. The asymptotic stability
condition for the FONNs is derived by the Lyapunov method, a neural network property and the FO Razumikhin
theorem. In [12], sufficient conditions that ensure the stability of a estimated fractional uncertain neural network
error system are established by the fractional Lyapunov method.

From the engineering point of view, it is necessary to scheme a controller to make the closed-loop system
stable. The controller is used to stabilize the system in [7]-[10] and [12]-[17], and the impulsive control is used
to stabilize the system in [11]. However, although the above controllers effectively make the system stable,
the system receives data in real time, which may increase the burden of the network channel. As high-speed
computing technology develops, the sampled data controller [25] has been widely used in industry due to its low
price, high reliability, convenient preservation. Compared with the state feedback control, this method greatly
improves the bandwidth utilization and reduces the pressure of receiving information for system. But because
the control input is invariant in the following sampling time interval, it is not easy to acquire the stability
criteria for the control system. So researcher have put forward numerous ways to research it, and the input
delay method [26] has been a well-prevalent way for the past few years. Through the input delay method,
the system can be considered as a sequential system with time-varying delay produced by a zero-order holder
(ZOH). Afterwards the stability conditions are established by Lyapunov method in LMIs.

Determining the sampling period is an important issue in analyzing the stability of FONNs system using
sampled data controller. We note that a larger sampling period brings advantages, for instance, fewer informa-
tional communication, less controller drivers, and fewer channel occupancy. Then, a large sampling period is
obtained by using some methods to make the FONNs system stable. In most cases, because the characteristics
of the plant are hard to judge precisely, the internal parameters of the system are unpredictable, which can
change with the variations of the outside situation. Consequently, FONNs system has parameter uncertainty
and interference. And the stability is easily destroyed for FONNs system with parameter uncertainty and in-
terference. Although much effort has been made in the existing literature, The reaserch is rarely studied at
present about sampled data controller for FONNs systems with uncertainties , which is also the purpose of this
paper

In this paper, some new stability criteria are proposed for FONNs system with uncertainties under the
sampled data controller. The sampling periods are changeable and smaller than a known maximal admissible
upper bound. The order-dependent criteria with lower conservativeness are gained by a set of LMIs. Compared
with the now available studies, the main contributions of this study are as follows:

i) In practical application, the influence of parameter uncertainties always exist. The sampled-data control
with variable period is considered in the FONNs. Different from the previous methods, by using the input delay
method, the sampled-data controller can be used to assure that the uncertain FONNs is asymptotically stable.
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ii) Order-dependent and delay-dependent stability criteria are developed for uncertain FONNs by Razu-
mikhin theorem and LMIs. Moreover, in order to stabilize the FONNs system, a design method of the sampled-
data control is presented.

iii) The sampling intervals generated by ZOH are time-varying stochastically for FONNs. The alterable
sampling peculiarity can be displayed in the simulation example.

2. Problem statement and preliminary

Consider the following n-dimensional FONNS system with parameter uncertainties described by

Dγx(t) = −Ãx(t) + B̃f(x(t)) + u(t), (1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ Rn represents the state vector; f(x(t)) = (f1(x(t)), ..., fn(x(t)))

T ∈ Rn

represents the activation function; u(t) = (u1(t), ..., un(t))
T denotes control input; γ ∈ (0, 1); Ã = A +∆A(t);

B̃ = B + ∆B(t); A = diag{a1, a2, ..., an} is the positive definite diagonal matrix; B ∈ Rn×n is the constant
matrix; ∆A(t), ∆B(t) are time-varying matrices with compatible dimensions satisfying:

[∆A(t) ∆B(t)] =ME(t)[N1 N2], (2)

where M,N1 and N2 are given constant matrices; unidentified matrix function E(t) is fulfilled as follows:

ET (t)E(t) ≤ I. (3)

In actual applications, some hardware communication is transmitted by digital signals with the popularity of
digital signals. In order to make full use of networking technique, a sampled data controller is designed for the
stability of FONNs (1). Obviously, the sampled-data controller is given as follows:

u(t) = Kx(tk), (4)

where K is controller gain matrix.
In this paper, the control message is generated by ZOH function at the sampling instant 0 = t0 ≤ t1 ≤ · · · ≤

lim
k→+∞

tk = +∞. In addition, the sampling period is changeable and nonperiodic. In other words, the sampling
period is described as follows:

0 < tk+1 − tk = dk ≤ d, ∀k ≥ 0 (5)

where d > 0 represents the upper bound of sampling periods. And define d(t) = t− tk, t ∈ [tk, tk+1]. Then, the
state feedback controller is rewritten as:

u(t) = Kx(t− d(t)), tk ≤ t < tk+1. (6)

Through the controller (6), the FONNs system (1) is written by

Dγx(t) = −Ãx(t) + B̃f(x(t)) +Kx(t− d(t)), t > 0, (7)

Here, it is supposed that activation function fi(.) meets the following assumption.
Assumption 1. [31] For any a, b ∈ R, a ̸= b, we have

li
− <

fi(b)− fi(a)

b− a
< li

+, (8)

where li−, li+ are known constants.
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Under the sampled-data controller, the stability is guaranteed for FONNs system (7). To this aim, the following
definition and lemmas are presented firstly.
Definition 1. [27]. The Caputo derivative of FO α of function x(t) is described as follows:

Dαx(t) =
1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1x(n)(τ)dτ, (9)

where n− 1 < α < n ∈ Z+. Γ(·) is the Gamma function Γ(s) =
∫
∞

0
ts−1e−tdt.

Lemma 1. [28]. Let x(t) ∈ Rn be a differentiable vector value function. Then, for any time instant t ≥ t0, we
have

Dα(xT (t)Px(t)) ≤ (xT (t)P )Dαx(t) + (Dαx(t))TPx(t),

Lemma 2. [29]. For given matrices Q = QT , E,H and F (t) with compatible dimensions, R = RT > 0 of
appropriate dimensions, the following inequality holds:

Q+HF (t)E + ETFT (t)HT < 0,

Then, for all F (t) satisfying FT (t)F (t) ≤ I, if and only if there exist a scalar λ > 0 such that

Q+ λ−1HHT + λETE < 0,

or, equivalentiy,


Q λH ET

∗ −λI 0

∗ ∗ −λI


 < 0.

Lemma 3. [30]. Assume that there exist three positive constants α1, α2, α3 and a quadratic Lyapunov function
V (.): R+ ×Rn → R+ such that
(i) α1 ∥ x(t)∥2 ≤ V (t, x(t)) ≤ α2 ∥ x(t)∥2,

(ii) Dα
t V (t, x(t)) ≤ −α3 ∥ x(t)∥2,

whenever V (t + θ, x(t + θ)) < ρV (t, x(t)), ∀θ ∈ [−h, 0], t ≥ 0, for some ρ > 1, then under the zero initial
condition, FO system Dα

t x(t) = f(t, xt), α ∈ (0, 1) is asymptotically stable.

3. Main results

In this section, the stability is discussed for the FONNs system (7) by the sampled-date controller (6). The
delay-dependent and order-dependent stability criteria in the form of LMIs for system (7) are proposed, which
are given in the next theorem.
Theorem 1. Given scalars d, γ ∈ (0, 1] and matrix K, if there exist matrices P > 0, X > 0, Z > 0, W1 > 0

and any suitable matrix Y , a scalar λ1 > 0 such that the next LMIs hold:

ψ =




ψ11 + P ψ12 ψ13 ψ14 ψ15 λ1N
T
2

∗ −W1 0 ψ24 0 −λ1N
T
1

∗ ∗ −P ψ34 0 0

∗ ∗ ∗ ψ44 ψ45 0

∗ ∗ ∗ ∗ −λ1I 0

∗ ∗ ∗ ∗ ∗ −λ1I




< 0, (10)

Π =

[
X Y

Y T Z

]
≥ 0, (11)
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where
ψ11 = −PA−AP + LW1L+ dγγ−1(X − Y A−AY T ),

ψ12 = PB + dγγ−1Y B,

ψ13 = PK + dγγ−1Y K,

ψ14 = −dγγ−1ATZ,

ψ15 = −(P + dγγ−1Y )M,

ψ24 = dγγ−1BTZ,

ψ34 = dγγ−1KTZ,

ψ44 = −dγγ−1Z,

ψ45 = dγγ−1ZM.

Then, the closed-loop system (7) is asymptotically stable.
Proof: Building the Lyapunov function candidate V (x(t)) = xT (t)Px(t) and computing the derivative of V (x(t))

for system (7) yield in light of Lemma 1

DγV (x(t)) ≤ xT (t)PDγx(t) + (Dγx(t))TPx(t)

= xT (t)(−PÃ− ÃP )x(t) + 2xT (t)PB̃f(x(t)) + 2xT (t)PKx(t− d(t)).
(12)

There exist any real matrices X = XT > 0, Y and Z = ZT > 0, satisfying (11). Then, the following result
holds,

dγγ−1υT (t)Πυ(t)−

∫ t

t−d(t)

(t− s)
γ−1

υT (t)Πυ(t)ds ≥ 0, (13)

where υ(t) =
[
xT (t), (Dγx(t))

T
]T

.
Under the assumption 1, the following inequality holds for any diagonal matrix W1 > 0,

xT (t)LW1Lx(t)− fT (x(t))W1f(x(t)) ≥ 0, (14)

where L = diag{l1, l2, ..., ln}.
By Lemma 2, for any real number ρ > 1, we suppose that

V (t+ θ, x(t+ θ)) < ρV (t, x(t)).

Then, we can obtain

ρxT (t)Px(t)− xT (t− d(t))Px(t− d(t)) ≥ 0. (15)

Combining (12)-(15), we have

DγV (x(t)) ≤ xT (t)(−PÃ− ÃP + LW1L+ ρP + dγγ−1(X − Y Ã− ÃY T + ÃZÃ))x(t)

+ 2xT (t)(PB̃ + dγγ−1(Y B̃ − ÃZB̃))f(x(t))

+ 2xT (t)(PK + dγγ−1(Y K − ÃZK))x(t− d(t))

+ 2fT (x(t))dγγ−1B̃TZKx(t− d(t))

+ fT (x(t))(−W1 + dγγ−1B̃TZB̃)f(x(t))

+ xT (t− d(t))(−P + dγγ−1KTZK)x(t− d(t))−

∫ t

t−d(t)

(t− s)
γ−1

υ(t)Πυ(t)T ds

=: ϑT (t)φϑ(t)−

∫ t

t−d(t)

(t− s)
γ−1

υT (t)Πυ(t)ds,

(16)
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where ϑ(t) = [xT (t), fT (x(t)), xT (t− d(t))]T ,

φ =



φ11 + ρP + dγγ−1ÃZÃ φ12 − dγγ−1ÃZB̃ φ13 − dγγ−1ÃZK

∗ −W1 + dγγ−1B̃TZB̃ dγγ−1B̃TZK

∗ ∗ −P + dγγ−1KTZK


 ,

φ11 = −PÃ− ÃP + LW1L+ dγγ−1(X − Y Ã− ÃY T ),

φ12 = PB̃ + dγγ−1Y B̃,

φ13 = PK + dγγ−1Y K.

By Schur complement, φ < 0 is equivalent to



φ11 + ρP φ12 φ13 ψ̃14

∗ −W1 0 ψ̃24

∗ ∗ −P ψ̃34

∗ ∗ ∗ ψ̃44


 < 0, (17)

where
ψ̃14 = −dγγ−1ÃZ, ψ̃24 = dγγ−1B̃TZ, ψ̃34 = dγγ−1KTZ, ψ̃44 = −dγγ−1Z,
Replacing ∆A(t) and ∆B(t) in (17) with ME(t)N1 and ME(t)N2, respectively, one has




ψ11 + ρP ψ12 ψ13 ψ14

∗ −W1 0 ψ24

∗ ∗ −P ψ34

∗ ∗ ∗ ψ44


+




ψ15

0

0

ψ45


E(t)

[
N1 −N2 0 0

]

+




NT
1

−NT
2

0

0


E

T (t)
[
ψ15

T 0 0 ψ45
T

]
< 0.

(18)

Applying Lemma 2 to (18), there exists a positive scalar λ1, such that




ψ11 + ρP ψ12 ψ13 ψ14

∗ −W1 0 ψ24

∗ ∗ −P ψ34

∗ ∗ ∗ ψ44


+ λ1

−1




ψ15

0

0

ψ45



[
ψ15

T 0 0 ψ45
T

]

+λ1




NT
1

−NT
2

0

0



[
N1 −N2 0 0

]
< 0.

Taking ρ→ 1+, ψ is equivalent to (10) by Schur complement. Since
∫ t

t−d(t)
(t− s)

γ−1
υ(t)Πυ(t)T ds > 0, we have

DγV (x(t)) < ϑT (t)ψϑ(t). From (10), we have DγV (x(t)) < 0, then, condition (ii) in Lemma 3 is also satisfied.
Thus, system (7) with sampled-data controler K is asymptotically stable.

When the controller gain matrix K is unknown, it is evident that the (10) is not an LMI because some crosses of
these determined parameters are described in (10) in a nonlinear fashion PK. However, it can be transformed
into an LMI by the following Theorem 2.
Theorem 2. Given scalars d, γ ∈ (0, 1]. If there exist P > 0, X > 0, Z > 0, W1 > 0 and any suitable matrix
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Y , a scalar λ1 > 0 such that the next LMIs hold



ψ̂11 + P PB X −dγγ−1AP −PM λ1N1
T

∗ −W1 0 dγγ−1BTP 0 −λ1N2
T

∗ ∗ −P dγγ−1X
T

0 0

∗ ∗ ∗ −dγγ−1P dγγ−1PM 0

∗ ∗ ∗ ∗ −λ1I 0

∗ ∗ ∗ ∗ ∗ −λ1I




< 0, (19)

[
X 0

0 P

]
≥ 0, (20)

where ψ̂11 = −PA−AP + LW1L+ dγγ−1X.
Moreover, a controller gain matrix is given by

K = P−1X (21)

Proof: To simplify the structure of the LMI, let Y = 0, Z = P in (10). The proof is completed.
In order to show the advantages of the controller (6), the following result without uncertainties is given for
comparison. Excepting for the uncertainties, the system (7) is describe by

Dαx(t) = −Ax(t) +Bf(x(t)) +Kx(t− d(t)), t > 0, (22)

Then, we can obtain the following criterion. From Theorem 1, we can get the following result for FONNs.
Corollary 1. : Given scalars d, γ ∈ (0, 1] and matrix K. If there exist P > 0, X > 0, W1 > 0, Z > 0, and any
suitable matrix Y , such that the next LMIs hold




ψ11 + P ψ12 ψ13 ψ14

∗ −W1 0 ψ24

∗ ∗ −P ψ34

∗ ∗ ∗ ψ44


 < 0, (23)

Π =

[
X Y

Y T Z

]
≥ 0, (24)

Similarly, the system (22) remains stable when the uncertainty disappears.
When the controller gain matrix K is unknown, it is evident that the (23) isn’t an LMI because some crosses of
these determined parameters are described in (23) in a nonlinear fashion PK. However, it can be transformed
into an LMI by the following Corollary 2.
Corollary 2. Given scalars d, γ ∈ (0, 1]. If there exist P > 0, W1 > 0, X > 0, Z > 0, and any suitable matrix
Y , such that the next LMIs hold




ψ̂11 + P PB X −dγγ−1AP

∗ −W1 0 dγγ−1BTP

∗ ∗ −P dγγ−1X
T

∗ ∗ ∗ −dγγ−1P


 < 0, (25)

[
X 0

0 P

]
≥ 0, (26)

Similarly, a controller gain matrix is given by

K = P−1X. (27)
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Proof: To simplify the structure of the LMI, let Y = 0, Z = P in (23). The proof is completed.

Remark 1. The conditions in criteria can guarantee the stabilization of the FONNs under a sampled-data
controller. In this paper, by using the FO Razumikin theorem, appropriate inequalities are established. Then,
the order-dependent stability conclusions are obtained for the FONNs with sampled-data control. Finally, the
LMI toolbox can be used to overcome the issue quickly. In addition, the conclusions are easy to be applied to
engineering applications. In many papers, the authors have reflected on the issue of stabilization for regions or
conditions without sampled-data control in [11]-[17]. However, the results are graphic or numerical, so they are
difficult to verify. Hence, we take account of this truth.

Remark 2. According to [28], it is possible to analyze the stabilization of FO complex dynamical networks with
sampled-data control in the future.

Remark 3. If we consider γ = 1 in system (1), then the FONNS system with sampled-data control will degenerate
to integer order. Accordingly, the asymptotic stability and stability results are still effective for integer order
neural network models in [10], [12] and [13].

Remark 4. In [17], the authors used Lyapunov direct method to derive an order-independent analysis criterion
for FONNs. The Caputo FO correlation analysis criterion needs to be proved by the FO Razumikhin theorem
and by combining some properties of FONNs. This paper is less conservative compared with the results of [17].

4. Numerical Example

In this section, an example is displayed to testify the availability of the proposed method.
Consider system (22) with controller (6), the parameters given as follows:

A =




5 0 0

0 4 0

0 0 9


 , B =




2 −1.2 0

1.8 1.71 1.15

−4.75 0 1.1


 ,

Setting the activation functions f1 = f2 = f3 = tanh(s) with l+1 = l+2 = l+3 = 1, the following matrice is given:

L =




1 0 0

0 1 0

0 0 1


 ,

The initial conditions are chosen as x(t) = [0.9, 0.8, 0.9]T . With the criteria of Corollary 2, it can be obtained
the maximum d under different γ in Table 1. The stability of the FONNs is verified.
From Table 1, we can get that d increases as γ increases, which means that the consequences of our method
are less conservative and more generalized. Letting γ = 0.98, the corresponding maximum d is 0.17. Using the
Matlab LMI Toolbox, by the solution of LMIS (25)-(27), the K is given as follow:

K =




0.7533 0.1617 0.0343

0.6972 0.9290 −0.0694

0.3172 −0.0661 0.2385


 ,

Table 1: The simulation results of the sampling interval with different γ.
γ 0.90 0.92 0.95 0.98
d 0.13 0.14 0.15 0.17

With the above K, the state response curves of state signal x(t) and control input u(t) are given in Fig. 1 and
2, separately. From Fig. 1, it is clear to see that the state x(t) of the system is tending to zero, which means
the system (22) in the example is asymptotically stable successfully by the designed sampled-data controller.
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Figure 1: State x(t) in the Example

Figure 2: Sampled-data control input u(t) in the Example
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5. Conclusion

The order-dependent stability of FMNN with sampled data control is studied in this paper. Through the FO
Razumikhin theorem and LMIs, the order-dependent stability criteria are formulated. In view of the stability
conditions, the sampled data controller is also proposed. The results are less conservative and restrictive than
those reported previously in the literature. In addition, this method is feasible on calculation and can be directly
implemented by Matlab toolbox. This method can be applied to the synchronization problem of FNNs systems
with uncertainty. The effectiveness of the new criteria is demonstrated by a numerical example. Parameter
uncertainty is often encountered in real systems and neural networks. Because of inaccurate modeling of the
model or changes in the environment, robust stability and stabilization analysis of delayed FNNs systems will
be considered in the future.
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