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Abstract
Under certain task conditions, error-related potential (ErrP) will be elicited, meaning that
the subject is perceiving an error, responding to an external error, or engaging in a cognitive
process of reinforcement learning. The detection of ErrP on a single trial basis has been
studied and applied to improve all kinds of brain–computer interfaces (BCIs). However, the
performance of this kind of detection is not currently good enough. In the paper,we proposed a
novel method, called window-adjusted common spatial pattern (WACSP), for detecting ErrP
in P300 BCI. In this method, the coefficient of determination was introduced to measure the
difference of Electroencephalogram (EEG) signals on a channel at a moment and to guide
the search of time windows in which EEG differences are significant, and common spatial
pattern (CSP) was further used to capture the stable spatial patterns of EEG differences
between correct and incorrect responses in each time window. WACSP and the commonly
used methods were tested on the data sets that were built using the EEG signals acquired
during the P300 BCI experiments with different feedback. The comparisons of accuracy,
area under receiver operating characteristics curve (AUC) and F-measure show that WACSP

B Zhihua Huang
hzh@fzu.edu.cn

B Huiru Zheng
h.zheng@ulster.ac.uk

Minghong Li
lmh@ynutcm.edu.cn

Wenming Zheng
wenming_zheng@seu.edu.cn

Yingjie Wu
yjwu@fzu.edu.cn

Kun Jiang
n190327111@fzu.edu.cn

1 College of Computer and Big Data, Fuzhou University, Fuzhou 350108, China

2 Basic Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China

3 Key Laboratory of Child Development and Learning Science of Ministry of Education, Research
Center for Learning Science, Southeast University, Nanjing 210096, China

4 School of Computing, Ulster University, Belfast, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-023-11353-7&domain=pdf
http://orcid.org/0000-0001-5710-5231


10830 M. Li et al.

significantly outperforms the commonly used methods. The proposed method can improve
ErrP detection based on a single trial.

Keywords Error-related potentials · Window-adjusted common spatial pattern ·
Brain–computer interface

1 Introduction

The electrical activities in the brain are measured by the electrodes placed on the scalp
as Electroencephalogram (EEG). In the late 1980s and early 1990s, Michael Falkensttein’s
group [1] and William J. Gehring’s group [2] respectively observed the error-related nega-
tivity (ERN) in EEG. Twenty-five years later, Gehring et al. looked back on the events of
discovering ERN in the paper [3]. ERN is a component of event-related potential in EEG,
which is characterized by a negative deflection (Ne) at approximately 50–200 ms and a pos-
itive deflection (Pe) at approximately 200–500 ms following the error over the frontocentral
and centroparietal areas of the brain [1–4]. On the other hand, the correct-related negativity
(CRN) following the correct responses was also observed in EEG, showing a morphology
similar to the ERN, but with a smaller amplitude. Generally, the difference waveform (error
minus correct) between the ERN and CRN is considered to be error-related potential (ErrP)
[4, 5]. The researchers on ErrP suggest that ErrP is elicited under certain task conditions [3,
4]. According to the different task conditions, ErrP is called response ErrP, feedback ErrP,
interaction ErrP, observation ErrP, outcome ErrP, execution ErrP, and so on. For example,
response ErrP occurs when a subject responds to external events as fast as possible, and
feedback ErrP occurs when a subject perceives that given feedback on a task is incorrect.

The reinforcement learning theory of ERN suggests that error signals originate from the
basal ganglia, spread to the anterior cingulate cortex and then to the cortex, and ERN is
essential to the reinforcement learning of the brain [6]. The errors that are immediately
correctable in control are believed to be represented by positive deflections originating from
the posterior parietal cortex, which is hypothesized by many researchers to be involved with
action conflict monitoring and movement correction [5, 6]. However, although we do know
that people will have ERNwhen they make mistakes, a consensus view of ErrP is still elusive
[3]. Many variations of ErrP that have more than two peaks with dissimilar latencies have
been observed [4]. Additionally, some researchers reported that ErrP could also be observed
in the motor, somatosensory, parietal, temporal, and pre-frontal areas [6].

Brain–computer interface (BCI) is a promising technology, providing a direct informa-
tion pathway from the brain to external environments without depending on the peripheral
nervous system and muscles. It is believed that BCI can be used to replace, restore, enhance,
supplement or improve the natural output of the central nervous system. In recent years, the
advancements in the field are inspiring people’s interest in BCI. More and more researchers
devote themselves to the study of BCI. Various methods have been introduced to improve
BCI. One of them is based on ErrP.

In 2010, Dal Seno et al. studied the use of ErrP in P300 BCI but hardly found any gain
due to the low accuracy of recognizing ErrP [7]. In 2012, a series of research on using ErrP
in P300 BCI were reported. Combaz et al. studied nine subjects’ EEG responses to correct
and incorrect feedback of BCI and explored the possibility of detecting ErrP in a single trial
and integrating the detector into the P300 Speller system [8]. Schmidt et al. carried out a
performance assessment on incorporating ErrP into P300 BCI. Margaux et al. implemented a
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P300 BCI, for the first time, including an automatic correction function based on online ErrP
detection [9]. The special P300 BCI would correct the selected character with the second
best guess of a probabilistic classifier whenever ErrP was detected and was evaluated in 16
healthy subjects. Spüler et al. studied the approach to recognizing ErrP by an offline analysis
on EEG data of six amyotrophic lateral sclerosis [10]. Thereafter, they developed an error
correction system (ECS) that could recognize ErrP online and delete the letter that their P300
BCI responds wrong. Their conclusion is that ErrP as a secondary information source can
be utilized to improve the performance of a P300 BCI. In 2015, Mainsah et al. compared
the correction based on ErrP with the rectification on the basis of language models in P300
BCI [11]. In 2016, Zeyl et al. designed a two-step P300 speller including ECS and achieved
an increase in the selection accuracy of P300 BCI [12]. In 2018, Cruz et al. implemented a
P300 BCI including ECS [13]. Their P300 BCI selected the character with the second-highest
probability as a candidate if ErrP was detected. The P300 BCI re-selected the first selected
character if the second character elicited ErrP again when it was presented to the subject,
otherwise accepted the candidate.

Besides P300 BCI, another kind of BCI was also improved by the means of recognizing
ErrP [14]. In 2019, a review [4] summarized various studies of applying ErrP in BCIs,
including robot control, wheelchair control, prosthetics, exoskeletons, gesture-enabled BCI,
and so on. After that, some new similar research was still reported in succession. Yokota
et al. studied the ERN of the players who were engaging in competitive video games and
found that ERN could predict failures [15]. In order to facilitate using ErrP in BCI, Keyl et al.
systematically examined the ErrP in the subjects with spinal cord injury (SCI) and compared
the characteristics of ErrP in individuals with SCI and those of healthy subjects [16]. Chou
et al. used ErrP to evaluate neural activities underlying action-monitoring dysfunction in
patients with obstructive sleep apnea [17]. Ehrlich et al. studied the decoding of ErrP of
persons who were interacting with a robot and the feasibility of validating robot actions
by online detection of ErrP [18]. Lopes-Dias et al. investigated the feasibility of online
asynchronous ErrP detection [19]. Kim et al. used ErrP in their investigation on how the
subjects responded to the delayed cursor control [20].

One of the key problems of detecting ErrP is the feature extraction of ErrP. Many ways
have been tried in the field. Some researchers extracted features of ErrP by computing the
powers of EEG signals in certain frequency bands [21, 22]. The time-frequency analysis using
wavelet transform is a common method in signal processing and was also utilized to extract
the features of ErrP [21, 23]. When the EEG amplitudes of multi-channels at a moment were
viewed as a sample vector, principal component analysis (PCA) and independent component
analysis (ICA),which are the classicalmethods in the area of pattern recognition,were applied
in the feature extraction of ErrP [22, 24, 25]. In the early 1990s, Koles et al. proposed the
common spatial pattern (CSP) to strengthen the difference between the EEG signals of two
kinds of trials [26, 27]. So far, CSP has been widely applied in the feature extraction of EEG
signals, including extracting the features of ErrP [22]. In 2009, an unsupervised algorithm,
xDAWN, was proposed to enhance evoked potentials in P300 BCI by estimating spatial
filters, by which EEG signals were projected into a subspace [28]. In the ErrP detection,
xDAWN was often used to intensify the features of ErrP [9, 22]. Additionally, windowed
mean (WM), which simply averages EEG signals every time window, was also widely used
[29–31].

As for ErrP, we do know that ErrPs occur when people make mistakes. However, we
still lack a thorough understanding of ErrP [3]. Many variations of ErrP with dissimilar
latencies or on different brain areas were observed [4, 6]. It is necessary to develop a feature
extraction of ErrP that can adapt to the variety of ErrP across subjects. This paper presents

123



10832 M. Li et al.

our work towards acheiving this task. We developed an approach based on the coefficient
of determination and CSP. The proposed approach is able to search several effective time
windows for a subject, construct a spatial filter for each time window and extract the features
of ErrP using the time windows and spatial filters.

2 Methods

The EEG differences between correct and incorrect responses occur only in certain time
segments that vary across subjects [4], and these kinds of differences are likely to appear
in different brain areas for subjects [6]. Our approach is based on the idea of tailoring the
feature extraction process for ErrP to suit the given situation.

2.1 DifferenceMeasure

In order to build our method, we need to identify a good difference measure of EEG signals
between correct and incorrect responses. In this study, we used the coefficient of deter-
mination. Here, a course of T duration beginning with a feedback onset is called a trial.
A trial is labelled +1 if the feedback is correct, or −1 if the feedback is incorrect. Let
Xi ∈ R

N×T , i ∈ {1, . . . , n} represent the EEG signals of one of n trials, where N indi-
cates the number of channels and T is the number of sampling points during a trial. For
any k ∈ {1, . . . , N }, l ∈ {1, . . . , T }, we view Xi

k,l as an independent variable value and
the label (i.e. +1 or −1) of the i th trial as a dependent variable value, to construct a linear
regression model, thereafter compute a coefficient of determination and assign it to R2

k,l ,

where R2 ∈ P
N×T , P represents all coefficients of determination of T sampling points on

N channels.

2.2 Adjusted TimeWindow

Obviously, R2
k,l measures the EEG difference of the lth time point on the kth channel. The

matrix R2 is an objective basis for going ahead. We need to search several time windows for
a subject in accordance with R2. Our method to handle this problem is formally depicted as
Algorithm 1, called GetRange.

Algorithm 1 GetRange

Require: R2 ∈ P
N×T , the matrix of coefficients of determination;

Ensure: Rr , r ∈ {1, · · · , M}, M time windows;
1: for k ∈ {1, · · · , N } do
2: Search R2

k , producing Wk ;
3: end for
4: Merge Wk , k ∈ {1, · · · , N };
5: Select Rr , r ∈ {1, · · · , M};

GetRange aims at getting M time windows in which the EEG differences between correct
and incorrect responses are more significant than in other time ranges. Intuitively speaking,
the purpose of GetRange is to find the time windows of the M biggest peaks of N curves of
a subject. The input of GetRange, R2 ∈ P

N×T , is the matrix of coefficients of determination
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for a subject, which is obtained in the way described in Sect. 2.1. The output of GetRange,
Rr , r ∈ {1, . . . , M}, represents the M time windows of concern. Algorithm 1 includes three
procedures: Search,Merge and Select.

The task of Search is to produce a group of time windows, denoted as Wk , for the kth
channel according to R2

k . The procedure Search first cuts the time range of 1-T apart into
several initial time windows in the light of a fixed length and obtains a time window from
each initial time window by a series of iterative updates of setting the peak of the previous
window as the center of the new time window. Then it removes the time window if its peak
coefficient of determination is less than the counterpart of one of its neighbor time windows
and the time gap between the two peaks (TGBP) is less than a given threshold. Finally, it
denotes the group of remained time windows as Wk . For N channels, N groups of time
windows, Wk, k ∈ {1, . . . , N }, will be produced by the Search procedure.

TheMerge proceduremerges the N groups of timewindows of a subject into one group, in
which, among the adjacent or overlapped time windows with TGBP less than a given thresh-
old, only the time window with the biggest peak coefficient remains. The Select procedure
selects the time windows with the M biggest peak coefficients from the merged result and
denotes them as Rr , r ∈ {1, . . . , M}.

2.3 Window-Adjusted Common Spatial Pattern

The EEG differences appear possibly in different brain areas for subjects [6]. In order to
effectively extract the features of ErrP, we apply the common spatial pattern(CSP) [26,
27] in each of the selected time windows and combine the results of several CSPs for the
feature extraction. We call the method window-adjusted common spatial pattern (WACSP),
as presented in Algorithm 2.

Algorithm 2Window-adjusted Common Spatial Pattern

Require: Xi ∈ R
N×T , i ∈ {1, · · · , n};

Ensure: Rr , Pr , r ∈ {1, · · · , M};
1: GetMatrix, producing the matrix R2;
2: GetRange, producing Rr , r ∈ {1, · · · , M};
3: for r ∈ {1, · · · , M} do
4: GetTrans Pr in Rr ;
5: end for

The input of Algorithm 2, Xi ∈ R
N×T , i ∈ {1, . . . , n}, is the EEG signals of n trials in the

training dataset of a subject. Its outputsRr , Pr , r ∈ {1, . . . , M} are respectively M selected
time windows and their corresponding transformation matrices for the subject. For feature
extraction, Rr , Pr , r ∈ {1, . . . , M} can be used to cut out the EEG signals and transform
them to feature vectors. Algorithm 2 contains three procedures: GetMatrix, GetRange and
GetTrans.

The GetMatrix procedure obtains a matrix of coefficients of determination, R2, for a
subject by computing the EEG data of n trials in the training dataset of the subject in the way
described in Sect. 2.1. TheGetRange procedure has been depicted in Sect. 2.2. TheGetTrans
procedure is constructed on the basis of the combination of the adjusted time windows and
common spatial pattern. ForRr ,GetTrans firstly cut out the signal segments of Xi in the time
window into Y i ∈ R

N×Tr , i ∈ {1, . . . , n}, where Tr is the duration of Rr ; Then, GetTrans
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conducts a series of computations on Y i to obtain Pr .

�i = Y i (Y i )T

trace(Y i (Y i )T )
, i ∈ {1, . . . , n} (1)

Thefirst stepof the computations is to compute the covariancematrices of n trials according
to Eq.1, and then obtain �c: the mean covariance matrix of the correct response, �e: the
mean covariance matrix of the incorrect response and �s : the sum of �c and �e.

�s = BλBT (2)

The second step of the computations is to perform the Eigendecomposition of�s depicted
as Eq.2, where λ is the diagonal matrix of eigenvalues of�s and B a matrix being comprised
of normalized eigenvectors of �s , get a matrix W by W = λ−1/2BT , and transform �c and
�e to Sc and Se by Sc = W�cWT and Se = W�eWT .

Sc = UψcU
T (3)

Se = UψeU
T (4)

I = ψe + ψe (5)

According to the references [26, 27], it can be inferred that Sc and Se have the same
eigenvectors. This can be described as Eqs. 3 and 4, where U is the common eigenvector
matrix of Sc and Se andψc andψe respectively diagonal matrices of eigenvalues of Sc and Se.
Additionally ψc and ψe meet the relation expressed by Eq.5, where I is an identity matrix.

Pr = (�(U ))T W (6)

The final step of the computations is to obtain the matrix Pr by Eq.6, where �(·) means
selecting the first and last a few columns of U after sorting the eigenvectors in ascending
order of the eigenvalues.

For feature extraction, the EEG signals of a trial are cut into Yr in the light of Rr , r ∈
{1, . . . , M}. The feature vector of the trial can be obtained by Eq.7.

v f = F(P1Y1, . . . , PMYM ) (7)

where F(·) represents the computation that transforms P1Y1, . . . , PMYM into a feature vec-
tor. F(·) may be implemented in various ways. One of the usual implementations is to
concatenate all rows of P1Y1, . . . , PMYM into a vector, and, sometimes, a downsampling is
further applied. Another one is to compute the variance of each row of PrYr , r ∈ {1, . . . , M}
and concatenate all variances into a vector.

In this study, the sample of a trial was the EEG signals of 1000 ms on 32 channels, that
is, Xi ∈ R

32×1000; the fixed length of the time window was 101 ms and the length would be
adjusted if the time window went beyond the range of 1-T; the threshold of TGBP was set
50 ms. The implementation of WACSP produced four time windows, that is, M = 4. It set
�(·) to select the first and last four columns ofU , meaning that every time window produced
a Pr ∈ R

8×32, which projected the 32-channel EEG signals in the time window into eight
virtual channels by PrYr . Finally, it computed the variances of the four time windows on
each virtual channel to obtained the 32-dimension feature vectors.

2.4 Other Methods

Besides WACSP, we also implemented the commonly used approaches in the field and
compared them with WACSP. All implemented methods transformed one sample into a
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32-dimensional vector in their respective ways. Here, we briefly introduce these methods,
includingWindowedMeans (WM), Band Power (BP), Time-frequency (TF), Principal com-
ponents analysis (PCA), independent component analysis (ICA), xDAWN and common
spatial pattern (CSP).

WM, a simple but widely used technique, obtains the feature vectors by averaging EEG
signals in every 250-ms time window [29–31]. BP means using the EEG powers of a few
frequency bands of concern as the features [21, 22]. To carry out BP in this study, we
calculated the power in the frequency band of 1–30 Hz every 250-ms time window, and
connected the band powers into a feature vector. To obtain 32-dimensional feature vectors,
we had to confine the calculations of the WM and BP on the channels of F3, Fz, F4, FC3,
FCz, FC4, Cz and CPz, which are most closely related to the ErrP. TF approach usually uses
wavelet transformation to process EEG signals and selects the time-frequency points that
significantly differ under different conditions as features according to Fisher Criterion. The
detail is described in Algorithm 1 in [23]. The implementation of TF selected, as a feature
vector, the 32 time-frequency points whose differences under different conditions were at
the top level.

PCA and ICA both are classical methods in the area of Pattern Recognition.When applied
to feature extraction of EEG signals, they view the EEG amplitude vector of all channels at
a time point as one vector and, by a series of computations on the vector collections, obtain
the matrices that are able to transform the raw EEG signals to the signals on a few virtual
channels [22]. Certainly, the principles and results of the two methods are different from
each other. Originally, xDAWN was proposed to enhance P300 evoked potentials in BCI
[28]. Afterwards, it was extensively exploited in similar tasks [9, 22]. By an unsupervised
algorithm, xDAWN estimates a spatial filter to project the raw EEG signals to a signal
subspace [28]. Similarly, CSP, which was proposed for the purpose of processing EEG
signals [26, 27], also constructs a spatial filter, but its core is a supervised algorithm. A
lot of research shows that CSP is a very good method in the field of processing EEG signals
[22]. In this study, PCA, ICA, xDAWN, and CSP all projected the EEG signals of one sample
to the signals of eight virtual channels in their respective ways, computed a variance every
250 milliseconds on each virtual channel and connected all variances into a feature vector.

3 Experiment and Data

In this study, we recruited 20 right-handed BCI-naive subjects (10 males, 10 females), whose
age ranged from 19 to 28 years, with a mean age of 23 years and a standard deviation of 2.35,
to participate in the experiment. All subjects with a history of visual or neurological disorders,
head trauma or any drug use that would affect nervous system functionwere excluded, and the
subjects were asked to wash their hair before the experiment. This experiment was approved
by the Institutional Review Board at Fuzhou University. In accordance with the Helsinki
Declaration of Human Rights, informed consent for the experimentation was obtained from
all subjects after a detailed explanation of the study.

As shown in Fig. 1, all subjects carried out two sessions respectively at two different
times. The first session used a pseudo-detector to detect the symbols. A pseudo-detector
means that the subjects were provided with the outcomes that were generated by the BCI
platform according to the configured error rates, and they were told that a real detector was
working. In the second session, a real classifier trained on the data of the first session by
stepwise linear discriminant analysis (SWLDA) [32] was adopted to recognize P300 and the
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Fig. 1 The flow chart of the experiment and EEG data processing

Fig. 2 The course of selecting a symbol on the BCI platform

results of recognizing P300 corresponding to a symbol were synthesized to detect the symbol.
Each session included 14 runs. In a run, the subjects selected 18 symbols of Chinese pinyin
through the interaction of brain–computer on the platform. For each symbol, six sequences
of flashes were presented. Every time a symbol was selected by the platform, it was presented
to the subject. The selected symbol was possibly correct or incorrect. For a subject, the ratio
of the incorrect number to the total number of symbol detection is called Error Rate. The
mean error rate of the 20 subjects was 24.9% and the standard deviation was 5.6%.

Based on BCI2000 [33], we developed a BCI platform for Chinese pinyin. In nature, the
BCI platform is a P300 BCI system [34]. The BCI platform uses a standard 6 × 6 matrix of
symbols [34] to present stimuli in the way proposed by Townsend et al. [35], which is called
checkerboard stimulus paradigm. According to the checkerboard stimulus paradigm, the 36
symbols are randomly rearranged in an inner matrix of 6×6. In a sequence, the six groups of
symbols in the presentation matrix corresponding to six rows of the inner matrix and another
six groups of symbols in the presentation matrix corresponding to six columns of the inner
matrix are flashed one time in random order. Normally, a few sequences are essential for the
detection of a symbol. The main differences between the BCI platform and traditional P300
BCIs lie in that the symbols in the presentation matrices are not English characters but the
initial consonants, vowels or tones of Chinese pinyin and the BCI platform includes a formal
procedure of result presentation after P300 detection, allowing subjects to judge whether the
result is correct or not while observing it.

Figure 2 shows an experiment course of selecting a symbol on the BCI platform. This
course includes 3 steps. In Step 1, the current target is cued for 2.4s using an ellipse frame,
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Fig. 3 Comparison of classification performances. The Y axis represents the Acc, AUC and F1 values of the
proposed WACSP method in figure (a), (b) and (c) respectively; and the X axis represents the corresponding
Acc, AUC and F1 values of CSP, PCA, BP, ICA, xDAWN, TF or WM in figure (a), (b) and (c) respectively.
Each point in the figure represents a comparison of WACSP and one of the methods of CSP, PCA, BP, ICA,
xDAWN, TF and WM for one subject. In total, there are 20 subjects. For example, point P in figure (a)
represents the Acc values for the subject S11 0.68 and 0.57 by WACSP and TF respectively. Points above the
dash line indicate that WACSP outperforms the compared methods (the value of Y axis is greater than that of
X axis). The figure shows that for all three indicators of Acc, AUC and F1, WACSP achieves better results for
most subjects

as shown in the first screen of Fig. 2. Step 2 contains six sequences of flashes. In each
sequence, each of the 12 groups of symbols is flashed one time. There are no breaks in-
between sequences. The intensification duration of the flash is equal to 80 ms and the interval
between the successive intensification onsets is 120 ms. Step 2 is shown in the section from
the second screen to the third screen of Fig. 2. In Step 2, the subjects are instructed to silently
count howmany times the target has been flashed to keep their attentions. In Step 3, the result
of P300 detection is presented, as shown in the fourth screen of Fig. 2, and the BCI platform
records the EEG signals while the subjects are observing the feedback. In the context of this
paper, Step 3 of the course is called a trial.

A 64-channel Neuroscan system, including the EEG cap, the amplifier, and the signal
acquisition software, was used to acquire EEG signals. For convenience, the EEG signals
of only 32 channels were recorded. The 32 channels were: FP1 FP2 F7 F3 Fz F4 F8 FT7
FC3 FCz FC4 FT8 T7 C3 Cz C4 T8 TP7 CP3 CPz CP4 TP8 P7 P3 Pz P4 P8 PO7 PO8
O1 Oz O2. The sampling rate was set to 1000 Hz. The procedure of constructing the EEG
datasets is included in Fig. 1. The raw EEG signals were firstly preprocessed by common
average reference and finite impulse response with the order at 64 and the frequency range
of 0.1-30Hz. Next, the EEG signals of 1000 ms beginning with the feedback onsets were
segmented after the baseline correction of subtracting themean of 200ms before the feedback
onset. Then, Savitzky-Golay filter [36] with the order at 3 and the window length at 101 was
applied to smoothen the EEG segments. Finally, every EEG segment, as the sample of a
trial, was labelled according to the feedback result, +1 if correct or −1 if incorrect, and was
added to the datasets of the subjects. In the dataset of a subject, there were 504 samples,
including about 399 samples corresponding to correct feedbacks (labelled as +1) and about
125 samples corresponding to incorrect feedback (labelled as −1).

4 Results

In this study, every method transformed the sample set of one subject into a feature vector
set. The feature vector set of each subject was randomly split into five subsets. Each subset
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Table 1 Ranking the eight
methods

Methods Rank Average
Acc AUC F1 Rank

WACSP 1 1 1 1

CSP 3 4 2 3

PCA 4 2 4 3.33

BP 6 8 6 6.67

ICA 7 6 7 6.67

xDAWN 5 5 5 5

TF 8 7 8 7.67

WM 2 3 3 2.67

Table 2 Comparing the accuracies of various methods. The means and standard deviations of accuracies are
shown in % for each method. The comparison was performed using repeated measures ANOVA (p value
< 0.05) with LSD adjustment. The legend ↑ represents significantly higher and ↓ significantly lower. The
legend entries are interpreted row-wise. For an example, ↑ in (1,2) means that the accuracies of WACSP are
significantly higher than those of CSP

WACSP CSP PCA BP ICA xDAWN TF WM
Mean±Std 79.2±6.8 74.3±4.9 74.2±6.9 73.7±4.4 72.2±6.2 74±5.9 67.9±5.5 74.6±5.6

WACSP ↑ ↑ ↑ ↑ ↑ ↑ ↑
CSP ↑
PCA ↑
BP ↑
ICA ↑

xDAWN ↑
TF ↓

Table 3 Comparing the AUCs of various methods. The means and standard deviations of AUCs are shown
in % for each method. Likewise, the comparison was performed using repeated measures ANOVA (p value
< 0.05) with LSD adjustment. The legends ↑ and ↓ respectively represents significantly higher or lower.
The legend entries are interpreted row-wise. For an example, ↑ in (2,4) means that the AUCs of CSP are
significantly higher than those of BP

WACSP CSP PCA BP ICA xDAWN TF WM
Mean±Std 80.8±7.8 74.9±6 74.2±8 66.9±6 62±6.2 73.2±6.8 56.9±6.3 74.9±7.6

WACSP ↑ ↑ ↑ ↑ ↑ ↑ ↑
CSP ↑ ↑ ↑
PCA ↑ ↑ ↑
BP ↑ ↓ ↑ ↓
ICA ↓ ↑ ↓

xDAWN ↑
TF ↓
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Table 4 Comparing the F1 of various methods. The means and standard deviations of F-measures are shown
in % for each method. Similarly, the comparison was performed using repeated measures ANOVA (p-value
< 0.05) with LSD adjustment. The legends ↑ and ↓ respectively indicates significantly higher or lower. The
legend entries are interpreted row-wise. For an example, ↓ in (4,6) means that the F-measures of BP are
significantly lower than those of xDAWN

WACSP CSP PCA BP ICA xDAWN TF WM
Mean±Std 57.6±9.6 47±9.1 48±10 33.5±11.4 37.1±8.6 46.5±8.6 35.7±9 47.1±11.6

WACSP ↑ ↑ ↑ ↑ ↑ ↑ ↑
CSP ↑ ↑ ↑
PCA ↑ ↑ ↑
BP ↓ ↓
ICA ↓ ↓

xDAWN ↑
TF ↓

of a subject was in turn selected as a test set and the other four subsets were merged as
the corresponding training set. Here, each test set contains the feature vectors of 101 or
100 trials, so the chance level of classification accuracy is 0.58. Since our focus was on
feature extraction, only shrinkage linear discriminant analysis (sLDA) [29, 37], a way that
performed very well in EEG classification [22, 29], was further used to train the classifiers
on the training sets and classify the feature vectors in the corresponding test sets. According
to [38], the three performance indexes of classification were used to compare our approach
with the commonly used methods. They were Accuracy (Acc), Area Under the Receiver
Operating Characteristics Curve (AUC) and F-measure (F1). Due to the 5-fold procedure,
every method obtained the three performance values five times for a subject. In Fig. 3, the
mean values are presented for each performance.

Figure 3 graphically shows the comparisons ofAcc,AUCandF1 betweenWACSP and one
of the other methods on all subjects. In Fig. 3, (a) is the comparison of accuracy, (b) presents
the comparison of AUC, (c) exhibits the comparison of F1, the Y value of each point is the
performance value of WACSP on a subject, its X value represents the performance value of
one of the othermethods on the subject. Othermethods includeCSP, PCA, BP, ICA, xDAWN,
TF and WM. A legend represents a specific method. It means that WACSP outperforms the
specific method on the subject when a point lies above the diagonal. According to Fig. 3, we
can roughly conclude that WACSP performed better than the other methods. We ranked the
eight methods respectively in accordance with the means of Acc, AUC and F1. The ranking
result is shown in Table 1. Friedman test (p value< 0.01) shows that significant performance
difference exists among the eight methods.

Furthermore, repeated measures analysis of variance (ANOVA) with least significant dif-
ference (LSD) adjustment (p value < 0.05) was used to test the statistical significance of
the differences of Acc, AUC and F1 among these methods. Table 2 shows the means and
standard deviations of accuracies ofWACSP, CSP, PCA, BP, ICA, xDAWN, TF andWM and
the results of their pair-wise comparisons. The accuracies of WACSP are significantly higher
than those of the other methods. The statistical inference is consistent with the intuition from
the left subgraph of Fig. 3. No significant difference of accuracy exists among CSP, ICA,
PCA, BP, xDAWN and WM. The accuracies of CSP, ICA, PCA, BP, xDAWN and WM are
significantly higher than those of TF.

Table 3 presents the means and standard deviations of AUCs of the eight methods and the
results of their pairwise comparisons. The AUCs ofWACSP significantly exceed those of the
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Fig. 4 ErrP waveforms
(error-minus-correct) on the
channels of Fz, FCz and Cz and
the average waveforms of the
three for a subject

other methods. The rough conclusion from the middle subgraph of Fig. 3 is further verified
by the statistical inference. No significant difference in AUC is discovered among CSP,PCA,
xDAWN and WM. The AUCs of CSP, PCA, xDAWN and WM are significantly higher than
those of BP, ICA, and TF. The AUCs of BP are significantly higher than those of ICA and
TF. The AUCs of ICA are significantly higher than those of TF.

Likewise, Table 4 exhibits the means and standard deviations of F-measures of the eight
methods and the results of their pair-wise comparisons. The F-measures of WACSP are
significantly higher than those of the other methods. The statistical inference further verifies
the intuitive conclusion from the right subgraph of Fig. 3. No significant differences in F-
measure appear amongCSP, PCA, xDAWNandWM.The F-measures of CSP, PCA, xDAWN
and WM are significantly higher than those of BP, ICA and TF. No significant differences of
F-measure are discovered among BP, ICA and TF.

The ErrP waveforms of a subject on Fz, FCz and Cz are presented in Fig. 4. Compared
with the ErrP waveforms in [10], the negative peak at 670 ms and the positive peak at 840 ms
in Fig. 4 are extra. However, each peak in the ErrP waveforms has its counterparts in Fig. 1 in
[39], except that the latencies in Fig. 4 are about 100 ms later. As for the latency difference,
it is known that the latencies vary across subjects. On the other hand, the onsets of stimuli in
the different tasks are specified in different ways, probably leading to the latency difference.
In summary, the comparisons show that similarity and dissimilarity in the ErrP waveforms
both exist in the related literature.

Figure 5 shows R2 of the subject graphically. The first row of Fig. 5 presents the curves
representing the changes of coefficients of determination over time. The two peak regions
of the curves are marked in red color. The second row presents the brain maps drawn using
the coefficients of determination on all channels at the first peak moments. The brain maps
in the third row correspond to the second peak moments. Before drawing the pictures, we
divided the training set of the subject into five parts, randomly and equably, and obtained five
training subsets by deleting one part from the training set every time. The five columns of
Fig. 5 respectively correspond to the five training subsets. In the first row of this figure, the
two peak regions of all five training subsets, which are marked in red color, are very similar.
Likewise, only very small differences exist among the brain maps in the second row, and
among the brainmaps in the third rowaswell. This reveals that the spatio-temporal differences
inEEGbetween correct and incorrect responses are stable for a subject.Additionally, in Fig. 5,
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Fig. 5 The changes of coefficients of determination over time and their distributions on scalp

the spatial distribution patterns presented by the brain maps in the third row are significantly
different from the counterparts of the second row, indicating the change of the spatial pattern
of ErrP over time. To adapt to this situation, our method intends to search several time
windows for a subject and build respective spatial filters in each time window.

5 Discussion

As for the feature extraction of ErrP, many methods, such as WM, CSP, PCA, BP, ICA,
xDAWN and TF, have been investigated [9, 21–23, 26–31]. However, ErrPs with dissimilar
latencies ondifferent brain areas havebeendiscovered [4, 6] andwehaven’t totally understood
ErrP as far [3]. As a result, the methods, which were developed for other tasks of pattern
recognition, probably miss the point for the feature extraction of ErrP, even though they
seemingly work.

Based on extensive observations, we think that, for a subject, the spatial pattern of ErrP
is stable in a time window although it changes from one time window to another. The point
of the feature extraction of ErrP is to find the time windows, in which the EEG differences
between correct and incorrect responses are significant, and to capture the spatial pattern of
EEG difference in each time window. Our method WACSP was developed on the basis of
this idea. We introduced the coefficient of determination to measure the EEG differences and
guide the search of the time windows, and further used CSP [26, 27] for each time window
to obtain a matrix projecting the EEG signals in the time window to a few virtual channels.

Among the methods of WM, CSP, PCA, BP, ICA, xDAWN and TF, CSP and xDAWN are
more similar toWACSP. The difference betweenWACSP, CSP and xDAWN deserves further
investigation. CSP and xDAWN estimate their spatial filters directly from the given EEG
signals, while the proposed WACSP estimates the spatial filters in several time windows,
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which are mined using the guidance of the determination coefficients that reflects EEG
dissimilarities under different conditions.

We tested WACSP and the commonly used methods on the data sets that were built
using the EEG signals acquired during the P300 BCI experiments with feedback. The result
presented graphically in Fig. 3 shows that WACSP obviously outperforms such commonly
used methods asWM, CSP, PCA, BP, ICA, xDAWN and TF. A series of statistical inferences
shown in Tables 1, 2, 3 and 4 further confirm the advantage of WACSP over the alternative
methods. Conversely, the superiority ofWACSP verifies our idea that, for a subject, the spatial
pattern of EEG difference between correct and incorrect responses in a time window keeps
stable even though it varies from one time window to another.

Additionally, we also compared the performances of WM, CSP, PCA, BP, ICA, xDAWN
andTF. In Table 1, the average ranks ofWM,CSP and PCA (2.67, 3 and 3.33) are approximate
and they are followed by that of xDAWN (5). According to Tables 2, 3 and 4, no significant
differences in Acc, AUC and F1 values among WM, CSP, PCA and xDAWN are observed.
The Acc, AUC and F1 values of WM, CSP, PCA and xDAWN are significantly higher than
their counterparts of BP and TF. A commonality of CSP, PCA and xDAWN is that they all
consider the spatial distribution of EEG differences between correct and incorrect responses
during the feature extraction of ErrP. Thus, we infer that the spatial pattern of EEGdifferences
is very important for detecting ErrP. On the other hand, the cognitive fundamentals implied
by the feature extractions of ErrP are also our concern.

The improvement of P300 BCI involves many aspects. In this task, using ErrP detection
is one of the directions of exploration. We acquired the data in the experiments of P300 BCI
as shown in Fig. 2 and studied the performance of ErrP detection in the data sets. The results
show that the proposed method,WACSP, is a good option for feature extraction in single-trial
ErrP detection and it is feasible to integrate ErrP detection into online P300 BCIs to improve
the information transfer rate. We will go ahead along this road in the future.

6 Conclusions

In summary, there are several time windows for a subject, in which the spatial difference
patterns of EEG between correct and incorrect responses are significant and stable but the
patterns vary from one time window to another. Based on the idea, WACSP for detecting
ErrP in P300 BCI was developed by combining coefficient of determination and CSP. We
tested WACSP and compared it with the commonly used methods on the data sets that were
constructed using the EEG signals acquired during the P300 BCI experiments with feedback.
The intuitive comparisons and statistical analysis of accuracy, AUC and F-measure between
WACSP and the commonly used methods both show that WACSP significantly outperforms
the commonly used methods. The results show the superiority of WACSP and meanwhile
verify the idea underlying WACSP.

Acknowledgements This work is supported by the Science and Technology Plan Project of Fujian Province,
China (2023Y0009). Ting Li, Zhilei Lv and Faqiang Peng participated in this work when they studied at
Fuzhou University. We thank them for their contributions.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123



Window-Adjusted Common Spatial Pattern for Detecting… 10843

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. FalkensteinM, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late
ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol
78(6):447–455

2. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and
compensation. Psychol Sci 4(6):385–390

3. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (2018) The error-related negativity. Perspect
Psychol Sci 13(2):200–204

4. Kumar A, Gao L, Pirogova E, Fang Q (2019) A review of error-related potential-based brain–computer
interfaces for motor impaired people. IEEE Access 7:142451–142466

5. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their
functional significance: a tutorial. Biol Psychol 51(2–3):87–107

6. Wilson NR, Sarma D, Wander JD, Weaver KE, Ojemann JG, Rao RPN (2019) Cortical topography of
error-related high-frequency potentials during erroneous control in a continuous control brain–computer
interface. Front Neurosci 13:502

7. Dal Seno B, Matteucci M, Mainardi L (2010) Online detection of P300 and error potentials in a BCI
speller. Comput Intell Neurosci 2010:307254

8. Combaz A, Chumerin N, Manyakov NV, Robben A, Suykens JAK, Van Hulle MM (2012) Towards the
detection of error-related potentials and its integration in the context of a P300 speller brain–computer
interface. Neurocomputing 80(C):73–82

9. Margaux P, Emmanuel M, Sébastien D, Olivier B, Jérémie M (2012) Objective and subjective evaluation
of online error correction during P300-based spelling. Adv Hum Comput Interact 2012:578295

10. Spüler M, Bensch M, Kleih S, Rosenstiel W, Bogdan M, Kübler A (2012) Online use of error-related
potentials in healthy users and peoplewith severemotor impairment increases performance of a P300-BCI.
Clin Neurophysiol 123(7):1328–1337

11. Mainsah B, Morton K, Collins L, Sellers E, Throckmorton C (2015) Moving away from error-related
potentials to achieve spelling correction in P300 spellers. IEEETrans Neural Syst Rehabil Eng 23(5):737–
743

12. Zeyl T, Yin E, Keightley M, Chau T (2016) Adding real-time Bayesian ranks to error-related potential
scores improves error detection and auto-correction in a P300 speller. IEEE Trans Neural Syst Rehabil
Eng 24(1):46–56

13. Cruz A, Pires G, Nunes UJ (2018) Double ErrP detection for automatic error correction in an ERP-based
BCI speller. IEEE Trans Neural Syst Rehabil Eng 26(1):26–36

14. Mousavi M, Koerner AS, Zhang Q, Noh E, de Sa VR (2017) Improving motor imagery BCI with user
response to feedback. Brain Comput Interfaces 4(1–2):74–86

15. Yokota Y, Soshi T, Naruse Y (2019) Error-related negativity predicts failure in competitive dual-player
video games. Plos One 14(2):1–19

16. Keyl P, Schneiders M, Schuld C, Franz S, Hommelsen M, Weidner N, Rupp R (2019) Differences in
characteristics of error-related potentials between individuals with spinal cord injury and age- and sex-
matched able-bodied controls. Front Neurol 9:1192

17. Chou P-S, Sharon SC-J, Hsu C-Y, Liou L-M, Wu M-N, Liu C-K, Lai C-L (2019) Compensatory neural
recruitment for error-related cerebral activity in patients with moderate-to-severe obstructive sleep apnea.
J Clin Med 8(7):1077

18. Ehrlich SK, ChengG (2019)A feasibility study for validating robot actions using EEG-based error-related
potentials. Int J Soc Robot 11(2):271–283

19. Lopes-Dias C, Sburlea AI, Müller-Putz GR (2019) Online asynchronous decoding of error-related poten-
tials during the continuous control of a robot. Sci Rep 9(1):1–9

123

http://creativecommons.org/licenses/by/4.0/


10844 M. Li et al.

20. Kim H, Yoshimura N, Koike Y (2020) Investigation of delayed response during real-time cursor control
using electroencephalography. J Healthc Eng 2020:1418437

21. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for
EEG-based brain-computer interfaces. J Neural Eng 4:R1

22. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review
of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng
15(3):031005

23. Huang Z, Li M, Ma Y (2018) Parallel computing sparse wavelet feature extraction for P300 speller BCI.
Comput Math Methods Med 2018:4089021

24. Iturrate I, Montesano L, Chavarriaga R, del R Millán J, Minguez J (2011) Spatio-temporal filtering for
EEG error related potentials. In: 5th International brain–computer interface conference

25. Kachenoura A, Albera L, Senhadji L, Comon P (2008) ICA: a potential tool for BCI systems. IEEE Signal
Process Mag 25(1):57–68

26. Koles ZJ (1991) The quantitative extraction and topographic mapping of the abnormal components in the
clinical EEG. Electroencephalogr Clin Neurophysiol 79(6):440–447

27. Koles ZJ, Lind JC, Soong AC (1995) Spatio-temporal decomposition of the EEG: a general approach to
the isolation and localization of sources. Electroencephalogr Clin Neurophysiol 95(4):219–230

28. Rivet B, Souloumiac A, Attina V, Gibert G (2009) xDAWN algorithm to enhance evoked potentials:
application to brain–computer interface. IEEE Trans Biomed Eng 56(8):2035–2043

29. Blankertz B, Lemm S, Treder M, Haufe S, Mller KR (2011) Single-trial analysis and classification of
ERP components—a tutorial. Neuroimage 56(2):814–825

30. Zander TO, Krol LR, Birbaumer NP, Gramann K (2016) Neuroadaptive technology enables implicit
cursor control based on medial prefrontal cortex activity. Proc Natl Acad Sci USA 113(52):14898–14903

31. Mousavi M, de Sa VR (2019) Spatio-temporal analysis of error-related brain activity in active and passive
brain–computer interfaces. Brain Comput Interfaces 6(4):118–127

32. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, Mcfarland DJ, Vaughan TM, Wolpaw JR (2006)
A comparison of classification techniques for the p300 speller. J Neural Eng 3(4):299–305

33. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose
brain–computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

34. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing
event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

35. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan
TM,Wolpaw JR, Sellers EW (2010) A novel P300-based brain–computer interface stimulus presentation
paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

36. Schafer RW (2011) What is a Savitzky-Golay filter? IEEE Signal Process Mag 28(4):111–117
37. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175
38. Fawcett T (2005) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
39. Buttfield A, Ferrez PW, Millan JR (2006) Towards a robust BCI: error potentials and online learning.

IEEE Trans Neural Syst Rehabil Eng 14(2):164–168

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCI
	Abstract
	1 Introduction
	2 Methods
	2.1 Difference Measure
	2.2 Adjusted Time Window
	2.3 Window-Adjusted Common Spatial Pattern
	2.4 Other Methods

	3 Experiment and Data
	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgements
	References




