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Abstract

The stabilization problem for a class of stochastic reaction-diffusion
delayed Cohen-Grossberg neural networks (SRDDCGNNs) with event-
triggered controller is addressed in this paper. To address such a
problem, Neumann boundary condition, distributed and boundary exter-
nal disturbances are introduced. New sufficient criteria are derived by
using the Lyapunov method, event-triggered mechanism, and the lin-
ear matrix inequality (LMI) approach to ensure the proposed controlled
systems achieve practically exponential input-to-state stabilization. In
light of these criteria, the impact of an event-triggered controller on
practically exponential input-to-state stability (PEISS) is examined. Fur-
thermore, the obtained results are successfully applied to stochastic
reaction-diffusion delayed cellular neural networks (SRDDCNNs) and
stochastic reaction-diffusion delayed Hopfield neural networks (SRD-
DHNNs). At last, simulation results are given to illustrate the main
results, and the SRDDHNNs are applied to the image encryption.

Keywords: Neural networks, Stochastic inputs, Reaction-diffusion terms,
External disturbances, Event-triggered control, Image encryption.
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1 Introduction

Neural networks (NNs) plays an significant role in many real-world applications
such as image encryption [1–7], signal processing [8], pattern recognition [9],
optimization problem [10], and secure communication [11]. Cohen-Grossberg
NNs (CGNNs) was initially proposed and studied by Cohen and Grossberg in
1983 [12]. Some other models, cellular NNs [13], Hopfield NNs [14], and recur-
rent NNs [15] are special cases of CGNNs. As a dynamical behavior in CGNNs,
stabilization plays an unique role in various fields such as engineering and sci-
ence. For different aims, various types of stabilization were studied, such as
asymptotic stabilization [16], exponential stabilization [17], finite-time stabi-
lization [18], fixed-time stabilization [19], input-to-state stabilization [20], and
H∞-stabilization [21]. Most of the authors previous focused on stabilization of
CGNNs modeled by ordinary differential equations. In the wide range of appli-
cations, COVID -19 [22], dengue fever [23], HCV infections epidemic model
[24], Alzheimer’s disease [25], chemical reaction [26], and image encryption [27]
are depend on both space and time variables. These behaviors are modeled by
partial differential equations (PDE). However, the diffusion effects inevitable
in NNs while electrons move through unsymmetrical electromagnetic fields
[28–31].

Delays are inevitable in NNs because of the limited switching speeds of the
neurons and amplifiers. It has been shown that delays can cause oscillation and
instability in NNs. Consequently, stability analysis of stochastic CGNNs with
time delays has received extensive attention in the literatures [32–35]. However,
input-to-state stability (ISS) is required in several engineering fields such as
share market and simple pendulum. ISS only requires the state of the system to
be within a bounded interval, as compared to asymptotic stability which needs
that the states of the system tends to zero equilibrium. In the recent decades, a
lot of results has been published on exponential input-to-state stability (EISS)
of NNs with respect to distributed external disturbances [36–41]. Especially, in
[42], the author studied the practical exponential stability (PES) of impulsive
CGNNs with respect to h-manifolds. In [43], the author studied the PEISS
of stochastic delayed nonlinear systems with respect to distributed external
disturbances. In [44], the author studied the G-Lyapunov function on PES of
stochastic delayed systems via G-Brownian motion. In [45], the author studied
the PES of stochastic impulsive systems. In [46], the author studied the PES
of stochastic impulsive delayed reaction-diffusion systems. In [47], the author
studied the PES of stochastic impulsive functional differential equations.

On the other hand, modern technology and microelectronics have increased
interest in event-triggered control system analysis and synthesis. Event-
triggered control usually comprises of a feedback control rule that stabilize
the system and an event-triggered mechanism with a triggering condition that
decides when the control has to be updated. In event-triggered control, emu-
lation and co-design are used to design unknown control and event-triggered
parameters. In recent decades, the event-triggered control mechanism has been
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CGNNs [20] [32, 33] [37–39] [40, 41] [43] [51, 52] [53] This paper
Stochastic inputs

√ √ × √ × × √ √

Reaction-diffusion × √ × × × × × √

DEIs
√ × √ √ × × √ √

BEIs × × × × × × × √

ETC × × × × × √ √ √

Stabilization × √ × × × × √ √

Image encryption × × × × × × × √

Table 1 Comparison for CGNNs with other works.

introduced to NNs [48–50]. Especially, in [51], the author studied the fixed-
time synchronization of inertial CGNNs via event-triggered control. In [52],
the author studied the asymptotic synchronization of memristive CGNNs via
event-triggered control. In [53], the author studied the ISS of stochastic fuzzy
CGNNs via event-triggered control.

To best of our knowledge, there are few works concerning PES of stochas-
tic neural networks based on PDE systems and the practically exponential
input-to-state stabilization problem of how to act external disturbances on spa-
tial boundary point of stochastic reaction-diffusion NNs has not been studied.
Inspired by previous discussions, this paper aims to study the practically expo-
nential input-to-state stabilization problem of SRDDCGNNs with distributed
and boundary external disturbances via event-triggered control mechanisms.
The main contributions are listed as follows:

• We used an event-triggered controller to investigate the stabilization of
SRDDCGNNs with distributed and boundary external disturbances.

• New sufficient criteria are derived to guarantee the PEISS of SRDDCGNNs
using appropriate Lyapunov-Krasovskii functional (LKF), Neumann bound-
ary condition, Wirtinger’s inequality, event-triggered mechanism, and LMI
method.

• The effects of the control gain matrix on PEISS is reflected in the theoretical
results.

• The proposed SRDDHNNs are applied to image encryption, and the effi-
ciency of the encryption system is demonstrated by some security analyses
and tests.

To better illustrate the main contributions and innovations of this paper,
we provide Table 1 for comparison with other works on CGNNs, where
stochastic inputs, reaction-diffusion, distributed external inputs (DEIs),
boundary external inputs (BEIs), event-triggered control (ETC), stabiliza-
tion, and image encryption. Furthermore,

√
- this term is included in that

paper and × - this term is not included in that paper.

Notations: W– set of all whole numbers; R – set of all real numbers; R+ – set
of all positive real numbers; Rn – (n)-dimensional Euclidean space; Rm×n –
(m×n)-dimensional Euclidean space; ZT = Z > 0 (respectively, ZT = Z < 0)
– positive definite matrix (negative definite matrix); ZT – transpose of Z;
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Πmin(Z) – minimum eigen value of Z; Πmax(Z) – maximum eigen value of
Z; ∗ – the entry is symmetric; sym(Z) = (Z + ZT ); ‖ · ‖ – Euclidean norm;
E(Z) – mathematical expectation of Z; W 1,2([0,M]; R

n) – Soblev space of

absolutely continuous function;
∫ 1

0
ℜT (t, ̺)ℜ(t, ̺)d̺ = ‖ℜ(t, ̺)‖2.

The rest of this paper is structured as follows. In Section 2, system model,
event-triggered control problem, and preliminaries are introduced. In Section 3,
we investigate our main results: (i) To obtain the PEISS of proposed controlled
system; (ii) To prove the practically exponential input-to-state stabilizable
result by designing control gain matrix for proposed controller. In Section 4,
numerical simulations are show that the efficiency of event-triggered controller.
In Section 5, the SRDDHNNs are applied to the image encryption. Finally,
conclusion and our future works are shown in Section 6.

2 System Description and Preliminaries

Consider the following SRDDCGNNs with distributed and boundary external
disturbances:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − α
(

ℜ(t, ̺)
)

(

β
(

ℜ(t, ̺)
)

−Af
(

ℜ(t, ̺)
)

−Bg
(

ℜ(t− ζ, ̺)
)

− Cu(t, ̺)− φ(t, ̺)
)]

dt

+σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],
ℜ(t, 0) = 0, ∂ℜ(t,̺)

∂̺
|̺=1= ψ(t),

(1)

where ℜ(t, ̺) ∈ R
n denote the state variable; ̺ ∈ (0, 1) denote the space

variable; t > 0 denote the time variable. ̟(z, ̺) ∈ R
n denote the initial func-

tion. u(t, ̺) ∈ R
n denote the event-triggered control input vector. φ(t, ̺) ∈ R

n

and ψ(t) ∈ R
n are denotes the distributed and boundary external disturbances,

respectively. D = diag{D1,D2, ...,Dn} > 0 is a diffusion matrix. α
(

ℜ(t, ̺)
)

is

a amplification function. β
(

ℜ(t, ̺)
)

is a behaved function. f(·) and g(·) are
denotes the neuron activation functions. σ(·) is a stochastic input. ω(t) ∈ R

m

denote the Brownian motion. ζ is a constant delay. A,B are the connection
weight matrices. C is a constant matrix with suitable dimension.

2.1 Event-triggered controller design of SRDDCGNNs:

We used an event-triggered control mechanism in this study, which differs from
the usual time-triggered method. {tq : q ∈ W} is a sampling sequence, which
satisfies t0 = 0 and

tq+1 = inf{t : t > tq,ℵ(t, ̺) > 0},

where ℵ(t, ̺) denote the event generator function. For the sampled-data con-
trol with zero-order hold (ZOH), the event-triggered controller is designed as
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follows:

u(t, ̺) = Jℜ(tq, ̺), t ∈ [tq, tq+1), q ∈ W, (2)

where J is a control gain matrix.
By virtue of controller (2), the system (1) can be rewritten as follows:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − α
(

ℜ(t, ̺)
)

(

β
(

ℜ(t, ̺)
)

−Af
(

ℜ(t, ̺)
)

−Bg
(

ℜ(t− ζ, ̺)
)

− CJℜ(tq, ̺)− φ(t, ̺)
)]

dt

+σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],
ℜ(t, 0) = 0, ∂ℜ(t,̺)

∂̺
|̺=1= ψ(t).

(3)

Let ℑ(t, ̺) be measurement error between current state ℜ(t, ̺) and sampled
state ℜ(tq, ̺). Then, we get

ℑ(t, ̺) = ℜ(tq, ̺)−ℜ(t, ̺), t ∈ [tq, tq+1), q ∈ W. (4)

By virtue of (4), the system (3) can be rewritten as follows:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − α
(

ℜ(t, ̺)
)

(

β
(

ℜ(t, ̺)
)

−Af
(

ℜ(t, ̺)
)

−Bg
(

ℜ(t− ζ, ̺)
)

− CJ
(

ℑ(t, ̺) + ℜ(t, ̺)
)

− φ(t, ̺)
)]

dt

+σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],
ℜ(t, 0) = 0, ∂ℜ(t,̺)

∂̺
|̺=1= ψ(t).

(5)

In this paper, we choose the following event-generator function ℵ(t, ̺) as:

ℵ(t, ̺) = ‖ℑ(t, ̺)‖2 − ε1‖ℜ(tq, ̺)‖2 − ε2, q ∈ W, (6)

where ε1, ε2 ∈ R+ denotes the event-triggered parameters, and satisfying the
condition ε21 + ε22 6= 0.
Assumption (H1): There exist scalars αi, αi ∈ R+ such that

0 < αi ≤ αi(~) ≤ αi, ∀ ~ ∈ R
n, i = {1, 2, ..., n}.

Assumption (H2): There exist scalar γi > 0 such that

(~1 − ~2)(βi(~1)− βi(~2)) ≥ γi(~1 − ~2)
T (~1 − ~2), ∀ ~1, ~2 ∈ R

n.

Assumption (H3): There exist scalars χ1 > 0 and χ2 > 0 such that

(f(~1)− f(~2))
T (f(~1)− f(~2)) ≤χ1(~1 − ~2)

T (~1 − ~2), ∀ ~1, ~2 ∈ R
n,
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(g(k1)− g(k2))
T (g(k1)− g(k2)) ≤χ2(k1 − k2)

T (k1 − k2), ∀ k1, k2 ∈ R
n.

Assumption (H4): There exist scalars δ1 > 0 and δ2 > 0 such that

trace[(σ(~1, ~2)− σ(~3, ~4))
T (σ(~1, ~2)− σ(~3, ~4))] ≤δ1(~1 − ~3)

T (~1 − ~3)

+ δ2(~2 − ~4)
T (~2 − ~4),

for any ~1, ~2, ~3, ~4 ∈ R
n.

Lemma 1 [31] For a matrix R > 0 and a state vector ~(·) ∈ W 1,2([0,M]; R
n) with

~(0) = 0 or ~(M) = 0, we have
∫ M

0
~
T (s)R~(s)ds ≤

4M2

π2

∫ M

0

(d~(s)

ds

)T
R
(d~(s)

ds

)

ds.

Lemma 2 [28] There exist real matrices Υ1,Υ2, and a positive definite matrix W
such that the following inequality is holds:

ΥT
1 Υ2 +ΥT

2 Υ1 ≤ ΥT
1 W

−1Υ1 +ΥT
2 WΥ2.

Lemma 3 [35] Let Θ1,Θ2,Θ3 be given matrices such that ΘT
1 = Θ1 > 0 and ΘT

2 =
Θ2 > 0. Then

Θ1 +ΘT
3 Θ

−1
2 Θ3 < 0 ⇔

[

Θ1 ΘT
3

∗ −Θ2

]

< 0 or

[

−Θ2 Θ3

∗ Θ1

]

< 0.

Definition 1 [36] The system (5) is called practically exponentially input-to-state
stable (PEISS) with respect to external disturbances φ(t, ̺) and ψ(t) if there exist
scalars λ > 0, µ > 0, η1 > 0, η2 > 0, and θ ≥ 0 such that

E‖ℜ(t, ̺)‖2 ≤ λe
−µt sup

−ζ≤z≤0
E‖̟(z, ̺)‖2 + η1‖φ(t, ̺)‖

2
∞ + η2‖ψ(t)‖

2
∞ + θ,

where

‖φ(t, ̺)‖2∞ = sup
t>0

‖φ(t, ̺)‖2 and ‖ψ(t)‖2∞ = sup
t>0

‖ψ(t)‖2.

Especially, when θ = 0, the system (5) is exponentially input-to-state stable
(EISS) with respect to external disturbances φ(t, ̺) and ψ(t). Furthermore, when
θ = 0, φ(t, ̺) = 0, and ψ(t) = 0, the system (5) is exponentially stable.

Definition 2 [43] The system (5) is called practically exponentially input-to-state
stabilizable if there exist control gain matrix J and event-triggering parameters ε1, ε2
such that the system (5) is PEISS with respect to external disturbances φ(t, ̺) and
ψ(t). In particular, when θ = 0, the system (5) is exponentially input-to-state sta-
bilizable with respect to external disturbances φ(t, ̺) and ψ(t). Furthermore, when
θ = 0, φ(t, ̺) = 0, and ψ(t) = 0, the system (5) is exponentially stabilizable.
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3 Main Results

In this section, we investigate the practically exponential input-to-state sta-
bilization of SRDDCGNNS, SRDDCNNs, and SRDDHNNs with distributed
and boundary external disturbances via event-triggered control mechanisms
and the Lyapunov method.

For our convenience, we let

P = diag{α1, α2, ..., αn}, P = diag{α1, α2, ..., αn}, Q = diag{γ1, γ2, ..., γn},
σ(t) = σ

(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

.

3.1 Practically exponential input-to-state stabilization of

SRDDCGNNs:

In this section, by using event-triggered control mechanisms to obtain the
PEISS of system (5). Furthermore, we obtain the practically exponential
input-to-state stabilization of system (5) through the control gain matrix for
proposed controller.

Theorem 1 Suppose that Assumptions (H1) − (H4) holds, and the event-triggered
parameters ε1, ε2 ∈ R+ satisfy 0 ≤ ε1 < 1 − τ, ε2 ≥ 0, and 0 < τ < 1, the system
(5) is said to be PEISS if there exist positive definite matrices U ,V,W1,W2,W3, and
W4 such that the following LMI feasible for

(i) Ω =







Ω11 −UD 0

∗
(

1− π2

4

)

UD 0

∗ ∗ −V + χ2W2 +Πmax(U)δ2.






< 0, (7)

where

Ω11 =sym(PCUJ − PUQ) +
(

1−
π2

4

)

UD + V +Πmax(U)δ1 + χ1W1

+ PUAW−1
1 A

TUP + PUBW−1
2 B

TUP + PCUJW−1
3 J

TUCTP + PUW−1
4 UP

+Πmax(W3)
(1− τ)ε1

τ(1− τ − ε1)
.

Proof: Consider the following Lyapunov-Krasovskii functional (LKF)
candidate as:

V
(

ℜ(t, ̺)
)

=

∫ 1

0

ℜT (t, ̺)Uℜ(t, ̺)d̺+
∫ 1

0

∫ t

t−ζ

ℜT (ℓ, ̺)Vℜ(ℓ, ̺)dℓd̺. (8)

Calculating the derivative of V
(

ℜ(t, ̺)
)

along the trajectories of system (5) by
using Ito’s formula, we obtain that

LV
(

ℜ(t, ̺)
)

=2

∫ 1

0

ℜT (t, ̺)U
[

D
∂2ℜ(t, ̺)
∂̺2

− α
(

ℜ(t, ̺)
)

(

β
(

ℜ(t, ̺)
)

−Af
(

ℜ(t, ̺)
)
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−Bg
(

ℜ(t− ζ, ̺)
)

− CJ
(

ℑ(t, ̺) + ℜ(t, ̺)
)

− φ(t, ̺)
)]

d̺

+

∫ 1

0

trace
[

σT (t)Uσ(t)
]

d̺+

∫ 1

0

ℜT (t, ̺)Vℜ(t, ̺)d̺

−
∫ 1

0

ℜT (t− ζ, ̺)Vℜ(t− ζ, ̺)d̺. (9)

By virtue of boundary condition and integration by parts, we get

∫ 1

0

ℜT (t, ̺)UD∂
2ℜ(t, ̺)
∂̺2

d̺ =
[

ℜT (t, ̺)UD∂ℜ(t, ̺)
∂̺

]̺=1

̺=0

−
∫ 1

0

∂ℜT (t, ̺)

∂̺
UD∂ℜ(t, ̺)

∂̺
d̺

=ℜT (t, 1)UD
∫ 1

0

ψ(t)d̺

−
∫ 1

0

∂ℜT (t, ̺)

∂̺
UD∂ℜ(t, ̺)

∂̺
d̺. (10)

To get ℜ̄(t, ̺) = 0, we introduce a new state variable ℜ̄(t, ̺) = ℜ(t, ̺)−ℜ(t, 1)
and satisfy the following condition:

∂ℜT (t, ̺)

∂̺
UD∂ℜ(t, ̺)

∂̺
=
∂ℜ̄T (t, ̺)

∂̺
UD∂ℜ̄(t, ̺)

∂̺
. (11)

Applying Lemma 1, we have

∫ 1

0

ℜT (t, ̺)UD∂
2ℜ(t, ̺)
∂̺2

d̺ =ℜT (t, 1)UD
∫ 1

0

ψ(t)d̺

− 1

2

∫ 1

0

∂ℜT (t, ̺)

∂̺
UD∂ℜ(t, ̺)

∂̺
d̺

− 1

2

∫ 1

0

∂ℜ̄T (t, ̺)

∂̺
UD∂ℜ̄(t, ̺)

∂̺
d̺

≤
∫ 1

0

(

ℜT (t, ̺)− ℜ̄T (t, ̺)
)

UDψ(t)d̺

− π2

8

∫ 1

0

ℜT (t, ̺)UDℜ(t, ̺)d̺

− π2

8

∫ 1

0

ℜ̄T (t, ̺)UDℜ̄(t, ̺)d̺. (12)
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Based on Assumptions (H1) and (H2), we have

−2ℜT (t, ̺)Uα
(

ℜ(t, ̺)
)

β
(

ℜ(t, ̺)
)

=− 2U
n
∑

i=1

ℜi(t, ̺)αi

(

ℜi(t, ̺)
)

βi
(

ℜi(t, ̺)
)

=− 2U
n
∑

i=1

αi

(

ℜi(t, ̺)
)[

ℜi(t, ̺)βi
(

ℜi(t, ̺)
)]

≤− 2U
n
∑

i=1

αiγiℜ2
i (t, ̺)

≤− 2ℜT (t, ̺)PUQℜ(t, ̺). (13)

By virtue of Assumption (H3) and Lemma 2, we get

2ℜT (t, ̺)α
(

ℜ(t, ̺)
)

UAf
(

ℜ(t, ̺)
)

=ℜT (t, ̺)α
(

ℜ(t, ̺)
)

UAf
(

ℜ(t, ̺)
)

+ fT
(

ℜ(t, ̺)
)

ATUαT
(

ℜ(t, ̺)
)

ℜ(t, ̺)
≤ℜT (t, ̺)α

(

ℜ(t, ̺)
)

UAW−1
1 ATUαT

(

ℜ(t, ̺)
)

ℜ(t, ̺)
+ fT

(

ℜ(t, ̺)
)

W1f
(

ℜ(t, ̺)
)

≤ℜT (t, ̺)PUAW−1
1 ATUPℜ(t, ̺)

+ ℜT (t, ̺)χ1W1ℜ(t, ̺), (14)

similarly

2ℜT (t, ̺)α
(

ℜ(t, ̺)
)

UBg
(

ℜ(t− ζ, ̺)
)

≤ℜT (t, ̺)PUBW−1
2 BTUPℜ(t, ̺)

+ ℜT (t− ζ, ̺)χ2W2ℜ(t− ζ, ̺), (15)

2ℜT (t, ̺)α
(

ℜ(t, ̺)
)

CUJℑ(t, ̺) ≤ℜT (t, ̺)PCUJW−1
3 JTUCTPℜ(t, ̺)

+ ℑT (t, ̺)W3ℑ(t, ̺), (16)

2ℜT (t, ̺)α
(

ℜ(t, ̺)
)

Uφ(t, ̺) ≤ℜT (t, ̺)PUW−1
4 UPℜ(t, ̺)

+ φT (t, ̺)W4φ(t, ̺). (17)

Noting that U , D, and UD are positive definite matrices, we get

2
(

ℜT (t, ̺)− ℜ̄T (t, ̺)
)

UDψ(t) ≤
(

ℜT (t, ̺)− ℜ̄T (t, ̺)
)

UD
(

ℜ(t, ̺)− ℜ̄(t, ̺)
)

+ ψT (t)UDψ(t). (18)

By virtue of Assumption (H4), we obtain that

trace
[

σT (t)Uσ(t)
]

≤Πmax(U)
[

δ1ℜT (t, ̺)ℜ(t, ̺)

+ δ2ℜT (t− ζ, ̺)ℜ(t− ζ, ̺)
]

. (19)
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Combining the inequalities (9)–(19), we have

LV
(

ℜ(t, ̺)
)

≤
∫ 1

0

{

ℜT (t, ̺)
[

− 2PUQ+ 2PCUJ +
(

1− π2

4

)

UD + V

+Πmax(U)δ1 + χ1W1 + PUAW−1
1 ATUP + PUBW−1

2 BTUP
+ PCUJW−1

3 JTUCTP + PUW−1
4 UP

]

ℜ(t, ̺)−ℜT (t, ̺)UDℜ̄(t, ̺)

+ ℜ̄T (t, ̺)
(

1− π2

4

)

UDℜ̄(t, ̺)− ℜ̄T (t, ̺)UDℜ(t, ̺) + ℜT (t− ζ, ̺)

×
[

− V + χ2W2 +Πmax(U)δ2
]

ℜ(t− ζ, ̺)
}

d̺+Πmax(W3)‖ℑ(t, ̺)‖2

+Πmax(W4)‖φ(t, ̺)‖2 +Πmax(UD)‖ψ(t)‖2. (20)

By the definition of tq+1, since ℵ(t, ̺) ≤ 0 for t ∈ [tq, tq+1). That is,

ℵ(t, ̺) = ‖ℑ(t, ̺)‖2 − ε1‖ℜ(tq, ̺)‖2 − ε2 ≤ 0,

and so

‖ℑ(t, ̺)‖2 ≤ε1‖ℜ(tq, ̺)‖2 + ε2

≤ε1‖ℑ(t, ̺) + ℜ(t, ̺)‖2 + ε2

≤ε1
(‖ℑ(t, ̺)‖2

1− τ
+

‖ℜ(t, ̺)‖2
τ

)

+ ε2

‖ℑ(t, ̺)‖2 ≤ (1− τ)ε1
τ(1− τ − ε1)

‖ℜ(t, ̺)‖2 + (1− τ)ε2
1− τ − ε1

. (21)

From the inequalities (20) and (21), we get

LV
(

ℜ(t, ̺)
)

≤
∫ 1

0

ξT (t, ̺)Ωξ(t, ̺)d̺+Πmax(W3)
(1− τ)ε2
1− τ − ε1

+Πmax(W4)‖φ(t, ̺)‖2 +Πmax(UD)‖ψ(t)‖2, (22)

where

ξT (t, ̺) =
[

ℜT (t, ̺) ℜ̄T (t, ̺) ℜT (t− ζ, ̺)
]

.

Let b = Πmin(−Ω). Since Ω < 0, we have b > 0. Thus, we obtain that

LV
(

ℜ(t, ̺)
)

≤− b‖ℜ(t, ̺)‖2 +Πmax(W3)
(1− τ)ε2
1− τ − ε1

+Πmax(W4)‖φ(t, ̺)‖2 +Πmax(UD)‖ψ(t)‖2. (23)

From the LKF (8), we get

Πmin(U)‖ℜ(t, ̺)‖2 ≤ V
(

ℜ(t, ̺)
)

≤Πmax(U)‖ℜ(t, ̺)‖2
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+ Πmax(V)
∫ t

t−ζ

‖ℜ(ℓ, ̺)‖2dℓ. (24)

By using Theorem 1 in [43], there exist a unique constant µ > 0 such that

µΠmax(U) + µΠmax(V)ζeµζ = b. (25)

By virtue of Dynkin formula and inequality (23), we obtain

EeµtV
(

ℜ(t, ̺)
)

− EV
(

ℜ(0, ̺)
)

=E

∫ t

0

L
(

eµℓV
(

ℜ(ℓ, ̺)
))

dℓ

=E

∫ t

0

eµℓ
(

µV
(

ℜ(ℓ, ̺)
)

+ LV
(

ℜ(ℓ, ̺)
)

dℓ

≤E

∫ t

0

eµℓ
[

µΠmax(U)‖ℜ(ℓ, ̺)‖2

+ µΠmax(V)
∫ ℓ

ℓ−ζ

‖ℜ(z, ̺)‖2dz

− b‖ℜ(ℓ, ̺)‖2 +Πmax(W3)
(1− τ)ε2
1− τ − ε1

+Πmax(W4)‖φ(t, ̺)‖2 +Πmax(UD)‖ψ(t)‖2
]

dℓ

≤E

∫ t

0

eµℓ
[

µΠmax(U) + µΠmax(V)ζeµζ − b
]

× ‖ℜ(ℓ, ̺)‖2dℓ+Πmax(V)µζeµζ
∫ 0

−ζ

Eeµℓ

× ‖ℜ(ℓ, ̺)‖2dℓ+
∫ t

0

eµℓΠmax(W3)
(1− τ)ε2
1− τ − ε1

dℓ

+

∫ t

0

eµℓΠmax(W4)‖φ(t, ̺)‖2dℓ

+

∫ t

0

eµℓΠmax(UD)‖ψ(t)‖2dℓ

≤Πmax(V)µζ2eµζ sup
−ζ≤z≤0

E‖̟(z, ̺)‖2

+
(1− τ)ε2
1− τ − ε1

Πmax(W3)
1

µ
(eµt − 1)

+ Πmax(W4)‖φ(t, ̺)‖2∞
1

µ
(eµt − 1)

+ Πmax(UD)‖ψ(t)‖2∞
1

µ
(eµt − 1). (26)
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From the inequalities (24)–(26), we have

Πmin(U)eµtE‖ℜ(t, ̺)‖2 ≤Πmax(U)E‖ℜ(0, ̺)‖2

+Πmax(V)µζ2eµζ sup
−ζ≤z≤0

E‖̟(z, ̺)‖2

+
(1− τ)ε2
1− τ − ε1

Πmax(W3)
1

µ
(eµt − 1)

+ Πmax(W4)‖φ(t, ̺)‖2∞
1

µ
(eµt − 1)

+ Πmax(UD)‖ψ(t)‖2∞
1

µ
(eµt − 1)

≤
[

Πmax(U) + Πmax(V)µζ2eµζ
]

sup
−ζ≤z≤0

E‖̟(z, ̺)‖2

+
(1− τ)ε2
1− τ − ε1

Πmax(W3)
1

µ
(eµt − 1)

+ Πmax(W4)‖φ(t, ̺)‖2∞
1

µ
(eµt − 1)

+ Πmax(UD)‖ψ(t)‖2∞
1

µ
(eµt − 1). (27)

By virtue of (27), we obtain

E‖ℜ(t, ̺)‖2 ≤ 1

Πmin(U)
[

Πmax(U) + Πmax(V)µζ2eµζ
]

e−µt sup
−ζ≤z≤0

E‖̟(z, ̺)‖2

+
Πmax(W4)

Πmin(U)µ
‖φ(t, ̺)‖2∞ +

Πmax(UD)

Πmin(U)µ
‖ψ(t)‖2

+
(1− τ)ε2Πmax(W3)

(1− τ − ε1)Πmin(U)µ
= λe−µt sup

−ζ≤z≤0
E‖̟(z, ̺)‖2 + η1‖φ(t, ̺)‖2∞ + η2‖ψ(t)‖2∞ + θ, (28)

where

λ =
1

Πmin(U)
[Πmax(U) + Πmax(V)µζ2eµζ ], η1 =

Πmax(W4)

Πmin(U)µ
,

η2 =
Πmax(UD)

Πmin(U)µ
, θ =

(1− τ)ε2Πmax(W3)

(1− τ − ε1)Πmin(U)µ
.

The proof is completed.

The next theorem is control gain matrix designed to obtain the practically
exponential input-to-state stabilization of system (5).
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Theorem 2 Suppose that Assumptions (H1) − (H4) holds, and the event-triggered
parameters ε1, ε2 ∈ R+ satisfy 0 ≤ ε1 < 1−τ, ε2 ≥ 0, and 0 < τ < 1, the system (5)
is practically exponentially input-to-state stabilizable if there exist positive definite
matrices U ,V,W1,W2,W3,W4, and a constant matrix K such that the following
LMI feasible for

(ii) ℧ =





















℧11 −UD 0 PUA PUB PCK PU
∗ ℧22 0 0 0 0 0
∗ ∗ ℧33 0 0 0 0
∗ ∗ ∗ −W1 0 0 0
∗ ∗ ∗ ∗ −W2 0 0
∗ ∗ ∗ ∗ ∗ −W3 0
∗ ∗ ∗ ∗ ∗ ∗ −W4





















< 0, (29)

where

℧11 = sym(PCK − PUQ) +
(

1−
π2

4

)

UD + V +Πmax(U)δ1 + χ1W1

+Πmax(W3)
(1− τ)ε1

τ(1− τ − ε1)
, ℧22 =

(

1−
π2

4

)

UD, ℧33 = −V + χ2W2 +Πmax(U)δ2.

Moreover, the control gain matrix J is defined by

(iii) J = KU−1
. (30)

Proof: Clearly, the proof of this theorem follows from Theorem 1 and
Lemma 3.

Remark 1 Compared with the existing results [43, 51–53], the following are the key
elements and advantages of this paper:

• We introduce the reaction-diffusion terms to analyze its dynamic behaviors.
This gives our research findings more practical significance.

• In this paper, the designed controller are simpler and more powerful than.
• In Theorem 1 and Theorem 2, new sufficient criterions of SRDDCGNNs
are obtained by construct a suitable LKF, and using the Neumann bound-
ary condition, Wirtninger’s inequality, event-triggered control mechanisms,
and LMI approach to guarantee PEISS and practically exponential input-
to-state stabilization, respectively. These stability criterions are formulated
without algebraic conditions, which can be lead to less conservative results.

Remark 2 In [17–19], the authors studied the stabilization of CGNNs without
stochastic disturbance and diffusion effects. In fact, noise was a major problem in
the way information was sent, and it affected every part of how the neuron sys-
tems worked. In NNs, diffusion effects are essentially inevitable because electrons
move through nonuniform electromagnetic fields. Thus, the introduction of stochas-
tic disturbance and diffusion effects into the CGNNs. It is more suitable for practical
applications such as image encryption, Alzheimer’s disease, and COVID-19.

Remark 3 The main results in this paper are more general than the results obtained
in [37–42]. In [37–41], the authors investigated the EISS of CGNNs. In [42], the
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author investigated the PES of CGNNs. The preceding results only addressed system
stability, not system stabilization. In this paper, we investigate the practically expo-
nential input-to-state stabilization of SRDDCGNNs with distributed and boundary
external disturbances via event-triggered control.

Remark 4 If the distributed external disturbance φ(t, ̺) = 0, and boundary exter-
nal disturbance ψ(t) = 0 in the system (5), then the corresponding system can be
rewritten as follows:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − α
(

ℜ(t, ̺)
)

(

β
(

ℜ(t, ̺)
)

−Af
(

ℜ(t, ̺)
)

−Bg
(

ℜ(t− ζ, ̺)
)

− CJ
(

ℑ(t, ̺) + ℜ(t, ̺)
)

) ]

dt

+σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],

ℜ(t, 0) = 0,
∂ℜ(t,̺)

∂̺ |̺=1= 0.

(31)

In Theorem 2, we have following corollary.

Corollary 1 Suppose that Assumptions (H1)− (H4) holds, and the event-triggered
parameters ε1, ε2 ∈ R+ satisfy 0 ≤ ε1 < 1 − τ, ε2 ≥ 0, and 0 < τ < 1, the system
(31) is said to be practically exponentially stabilizable if there exist positive definite
matrices U ,V,W1,W2,W3, and a constant matrix K such that the following LMI
feasible for

(iv) Φ =

















Φ11 0 0 PUA PUB PCK

∗ −π2

4 UD 0 0 0 0
∗ ∗ −V + χ2W2 +Πmax(U)δ2 0 0 0
∗ ∗ ∗ −W1 0 0
∗ ∗ ∗ ∗ −W2 0
∗ ∗ ∗ ∗ ∗ −W3

















< 0, (32)

where

Φ11 = sym(PCK − PUQ)−
π2

4
UD + V +Πmax(U)δ1 + χ1W1 +Πmax(W3)

(1− τ)ε1
τ(1− τ − ε1)

.

Moreover, the control gain matrix J is defined by (30).

3.2 Practically exponential input-to-state stabilization of

SRDDCNNs

Let α
(

ℜ(t, ̺)
)

= 1 and β
(

ℜ(t, ̺)
)

= Fℜ(t, ̺) in system (5). Then, the system
(5) turns out to be the following SRDDCNNs with distributed and boundary
external disturbances:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − Fℜ(t, ̺) +Af
(

ℜ(t, ̺)
)

+Bg
(

ℜ(t− ζ, ̺)
)

+CJ
(

ℑ(t, ̺) + ℜ(t, ̺)
)

+ φ(t, ̺)
]

dt

+σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],
ℜ(t, 0) = 0, ∂ℜ(t,̺)

∂̺
|̺=1= ψ(t).

(33)
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Corollary 2 Suppose that Assumptions (H3)− (H4) holds, and the event-triggered
parameters ε1, ε2 ∈ R+ satisfy 0 ≤ ε1 < 1−τ, ε2 ≥ 0, and 0 < τ < 1, the system (33)
is practically exponentially input-to-state stabilizable if there exist positive definite
matrices U ,V,W1,W2,W3,W4, and a constant matrix K such that the following
LMI feasible for

(v) Ξ =





















Ξ11 −UD 0 UA UB CK U
∗ Ξ22 0 0 0 0 0
∗ ∗ Ξ33 0 0 0 0
∗ ∗ ∗ −W1 0 0 0
∗ ∗ ∗ ∗ −W2 0 0
∗ ∗ ∗ ∗ ∗ −W3 0
∗ ∗ ∗ ∗ ∗ ∗ −W4





















< 0, (34)

where

Ξ11 = sym(CK − UF ) +
(

1−
π2

4

)

UD + V +Πmax(U)δ1 + χ1W1

+Πmax(W3)
(1− τ)ε1

τ(1− τ − ε1)
, Ξ22 =

(

1−
π2

4

)

UD, Ξ33 = −V + χ2W2 +Πmax(U)δ2.

Moreover, the control gain matrix J is defined by (30).

3.3 Practically exponential input-to-state stabilization of

SRDDHNNs

Let A = 0 in system (33). Then, the system (33) turns out to be the following
SRDDHNNs with distributed and boundary external disturbances:























dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − Fℜ(t, ̺) +Bg
(

ℜ(t− ζ, ̺)
)

+ CJ
(

ℑ(t, ̺)
+ℜ(t, ̺)

)

+ φ(t, ̺)
)]

dt+ σ
(

ℜ(t, ̺),ℜ(t− ζ, ̺)
)

dω(t),

ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−ζ, 0],
ℜ(t, 0) = 0, ∂ℜ(t,̺)

∂̺
|̺=1= ψ(t).

(35)

In Corollary 2, we have following corollary.

Corollary 3 Suppose that Assumptions (H3)− (H4) holds, and the event-triggered
parameters ε1, ε2 ∈ R+ satisfy 0 ≤ ε1 < 1−τ, ε2 ≥ 0, and 0 < τ < 1, the system (35)
is practically exponentially input-to-state stabilizable if there exist positive definite
matrices U ,V,W1,W2,W3,W4, and a constant matrix K such that the following
LMI feasible for

(vi) ∆ =

















∆11 −UD 0 UB CK U
∗ ∆22 0 0 0 0
∗ ∗ ∆33 0 0 0
∗ ∗ ∗ −W2 0 0
∗ ∗ ∗ ∗ −W3 0
∗ ∗ ∗ ∗ ∗ −W4

















< 0, (36)
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where

∆11 = sym(CK − UF ) +
(

1−
π2

4

)

UD + V +Πmax(U)δ1 +Πmax(W3)
(1− τ)ε1

τ(1− τ − ε1)
,

∆22 =
(

1−
π2

4

)

UD, ∆33 = −V + χ2W2 +Πmax(U)δ2.

Moreover, the control gain matrix J is defined by (30).

4 Numerical Simulation

In this section, two numerical examples are presented to show how well the
event-triggered controller works.

Example 1 Consider the following 3-dimensional SRDDCGNNs with distributed and
boundary external disturbances:































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 −ℜ(t, ̺)
(

3ℜ(t, ̺)− 2A tanh
(

ℜ(t, ̺)
)

−B tanh
(

ℜ(t− 0.5, ̺)
)

− Cu(t, ̺)− 0.2 sin(t) cos(̺)
)]

dt

+
[

0.2ℜ(t, ̺) + 0.3ℜ(t− 0.5, ̺)
]

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−0.5, 0],

ℜ(t, 0) = 0,
∂ℜ(t,̺)

∂̺ |̺=1= 0.2 cos(t),

(37)

where

D =





0.5 0 0
0 0.5 0
0 0 0.5



 , A =





3.5 5.5 −2.5
2.5 3.2 −4.2
2.1 1.1 3.3



 ,

B =





4.5 2.6 −3.5
2.8 1.5 −4.5
5.1 2.1 4.2



 , C =





2.5 1.6 2.5
1.4 2.5 3.5
1.1 2.5 3.5



 .

The initial values of (37) are






̟1(z, ̺) = 0.4 sin(z) + 0.4 sin(0.4π̺), z ∈ [−0.5, 0],
̟2(z, ̺) = 0.2 sin(z) + 0.3 sin(0.9π̺), z ∈ [−0.5, 0],
̟3(z, ̺) = 0.3 sin(z) + 0.4 sin(0.6π̺), z ∈ [−0.5, 0].

By virtue of Theorem 2, solve LMI (29) with the MATLAB LMI toolbox, and the
feasible solutions are obtained as follows:

U =





1.0971 −1.4402 −0.6595
−1.4402 1.3108 −0.4440
−0.6595 −0.4440 0.3370



 , V =





15.3418 0.5919 −1.0466
0.5919 15.9819 0.7796
−1.0466 0.7796 16.2925



 ,

W1 =





5.0941 −1.3161 −0.0415
−1.3161 5.6957 −0.6536
−0.0415 −0.6536 6.0423



 , W2 =





8.4699 0.8105 −1.1363
0.8105 9.2787 0.9399
−1.1363 0.9399 9.7374



 ,

W3 =





13.0513 3.2221 2.4566
3.2221 11.2726 2.8923
2.4566 2.8923 11.7852



 , W4 =





14.7244 3.6218 1.7195
3.6218 15.0787 −1.5598
1.7195 −1.5598 16.3115



 ,
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Fig. 1 State responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (37) without control

K =





−4.2015 −1.2587 1.3441
−1.2587 0.0082 −0.8091
1.3441 −0.8091 −1.7524



 .

Furthermore, the control gain matrix J is obtained as follows:

J =





−0.0076 0.6812 4.8708
0.8233 1.1618 0.7411
1.5922 0.7696 −1.0701



 . (38)

The state responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (37) without
control are depicted in Fig. 1. It is clearly shown that the system (37) does not realize
stabilization without control. Under the event-triggered controller (2) and control
gain matrix (38), Fig. 2 shows that the event-triggered controller (2) can guarantee
practically exponential input-to-state stabilization of the system (37). Thus, our
proposed event-triggered controller is effective.

Example 2 Consider the following 3-dimensional SRDDCNNs with distributed and
boundary external disturbances:
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Fig. 2 State responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (37) with event-
triggered controller (2)































dℜ(t, ̺) =
[

D
∂2ℜ(t,̺)

∂̺2 − Fℜ(t, ̺) + 2A tanh
(

ℜ(t, ̺)
)

+B tanh
(

ℜ(t− 1.5, ̺)
)

+ Cu(t, ̺) + 0.15 sin(t) cos(̺)
]

dt

+
[

0.2ℜ(t, ̺) + 0.3ℜ(t− 1.5, ̺)
]

dω(t),
ℜ(z, ̺) = ̟(z, ̺), ̺ ∈ (0, 1), z ∈ [−1.5, 0],

ℜ(t, 0) = 0,
∂ℜ(t,̺)

∂̺ |̺=1= 0.2 cos(t),

(39)

where

D =





0.5 0 0
0 0.5 0
0 0 0.5



 , F =





0.4 0 0
0 0.4 0
0 0 0.4



 , A =





2.5 4.5 −1.5
1.5 2.2 −3.2
1.5 0.8 2.5



 ,

B =





4.5 2.6 −3.5
2.8 1.5 −4.5
2.1 1.1 3.5



 , C =





1.1 1.3 1.5
0.4 0.5 1.1
0.9 0.5 0.7



 .

The initial values of (39) are






̟1(z, ̺) = 0.5 sin(z) + 0.5 sin(0.5π̺), z ∈ [−1.5, 0],
̟2(z, ̺) = 0.1 sin(z) + 0.4 sin(0.8π̺), z ∈ [−1.5, 0],
̟3(z, ̺) = 0.5 sin(z) + 0.6 sin(0.9π̺), z ∈ [−1.5, 0].

By virtue of Corollary 2, solve LMI (34) with the MATLAB LMI toolbox, and the
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Fig. 3 State responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (39) without control

feasible solutions are obtained as follows:

U =





1.1153 −1.4179 −0.7106
−1.4179 1.0248 −0.6354
−0.7106 −0.6354 0.2996



 , V =





16.4835 0.6872 −1.5768
0.6872 15.9922 0.2981
−1.5768 0.2981 17.1515



 ,

W1 =





4.2841 −0.2275 0.6700
−0.2275 5.0450 −0.7077
0.6700 −0.7077 5.8816



 , W2 =





9.6055 0.8889 −1.6958
0.8889 8.9933 0.4047
−1.6958 0.4047 10.4564



 ,

W3 =





11.6451 1.5904 1.4176
1.5904 9.8221 0.9108
1.4176 0.9108 10.3236



 , W4 =





14.8356 1.9517 1.1434
1.9517 14.9079 −1.6159
1.1434 −1.6159 15.7424



 ,

K =





−0.9387 0.9700 −3.5086
0.9700 0.5706 −3.1165
−3.5086 −3.1165 2.7482



 .

Furthermore, the control gain matrix J is obtained as follows:

J =





1.9039 2.7948 −1.2675
1.8624 1.8325 −2.0984
−0.8317 −0.8670 5.3620



 . (40)

The state responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (39) without
control are depicted in Fig. 3. It is clearly shown that the system (39) does not realize
stabilization without control. Under the event-triggered controller (2) and control
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Fig. 4 State responses Eℜ2(t, ̺) and state norm E‖ℜ(t, ·)‖2 of system (39) with event-
triggered controller (2)

gain matrix (40), Fig. 4 shows that the event-triggered controller (2) can guarantee
practically exponential input-to-state stabilization of the system (39). Thus, our
proposed event-triggered controller is effective.

5 Application

The application of chaotic systems to image encryption has become a popular
research area in recent years [3–7]. This section will explore the implementation
of chaotic SRDDHNNs through the secure transmission of cameraman image.
The structure of the image encryption and decryption algorithm is shown in
Fig. 5. Some security analysis are given to illustrate the efficiency of encryption
system.

5.1 Key space analysis:

The encryption system is comprised of the following keys. (i) Initial and
Neumann boundary conditions of SRDDHNNs; (ii) The parameters of event-
triggered controller that changes in SRDDHNNs; (iii) The time delay that
causes chaotic signals in the system; (iv) The number of chaotic SRDDHNNs
iterations. An effective image encryption technique has a huge key space. In
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Fig. 5 Encryption and decryption algorithm

order to prevent brute-force attacks, the space of key should be at least 2128

[4]. Assume the precision of non integer key is considered as 10−14. Thus, key
space of this approach may be large as 1084 > 2128, which is enough to resist
brute force attacks.

5.2 Histogram analysis:

The distribution characteristics of image pixel values are examined using his-
tograms. In order to withstand various statistical attacks, the histogram of a
well encrypted image must be flat and have an even distribution. Histograms
of plain, encrypted, and decrypted images are depicted in Fig. 6. It shows that
histogram of encrypted images are more evenly distributed than those of plain
images, which is a good sign that they can resist statistical attacks.

5.3 Correlation analysis:

The plain image exhibits a high correlation between pixel location in three
directions (horizontal, vertical, and diagonal directions). To make encryp-
tion technologies operate, the correlation between adjacent pixels must be
destroyed. Fig. 7 depicts the distribution correlation of adjacent pixels in
three directions of plain and encrypted images. To check the correlation of
two adjacent pixels in an encrypted image, apply the following mathematical
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Fig. 6 Cameraman image: (a) plain image and its histogram, (b) encryption image and its
histogram, (c) decryption image and its histogram.

Cameraman image Horizontal Vertical Diagonal
Plain 0.9333 0.9569 0.9052
Encrypted (our scheme) -0.0003 -0.0001 0.0010
Encrypted [3] -0.0004 -0.0003 0.0030
Encrypted [4] -0.0031 -0.0006 0.0011
Encrypted [5] -0.0025 -0.0004 0.0035
Encrypted [6] -0.0208 -0.0011 0.0323
Encrypted [7] -0.0186 -0.0053 0.0095

Table 2 Correlation coefficients of pixels location of plain and encrypted image in three
direction

expressions:











































x̄ = 1
N

∑N
r=1 xr,

SD(x) = 1
N

∑N
r=1(xr − x̄)2,

cov(x, y) = 1
N

∑N
r=1(xr − x̄)(yr − ȳ),

̺xy = cov(x,y)√
SD(x)

√
SD(y)

.

(41)

Thus, the results of correlation coefficients of plain and encrypted images in
three direction are shown in Table 2. By virtue of Table 2 and Fig. 7, the
correlation between the pixels location of the plain image are 0.9333, 0.9569
and 0.9052, and the correlation of pixels location of the encrypted image are
-0.0003, -0.0001 and 0.0010, they are nearest to zero.
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Fig. 7 Correlations of pixels location in three direction of plain and encryption image: (a)
horizontal direction, (b) vertical direction, (c) diagonal direction.

6 Conclusion

This paper investigated the practically exponential input-to-state stabiliza-
tion of stochastic Cohen-Grossberg neural networks, where reaction-diffusion,
event-triggered controller, time delays, Neumann boundary condition, dis-
tributed and boundary external disturbances are considered. Then, the
input-to-state stability criteria is obtained by virtue of suitable Lyapunov-
Krasovskii functional, event-triggered mechanism, and some famous inequality
techniques. It should be point out that the practically exponential input-to-
state stabilization performance investigated through the control gain matrix
for event-triggered controller. Furthermore, the obtained results are success-
fully applied to stochastic reaction-diffusion cellular neural networks and
stochastic reaction-diffusion Hopfield neural networks. Finally, the numeri-
cal simulations are presented to show that the efficiency of the proposed
event-triggered controller matches the theoretical results, and the proposed
Hopfield neural networks are applied to image encryption. In the future, we
will focus on the event-triggered boundary synchronization and stabilization
problems of fractional-order stochastic Cohen-Grossberg neural networks with
reaction-diffusion terms.
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