
Neural Processing Letters (2024) 56:78
https://doi.org/10.1007/s11063-024-11442-1

Breaking Time Invariance: Assorted-Time Normalization for
RNNs

Cole Pospisil1,2 · Vasily Zadorozhnyy1 ·Qiang Ye1

Accepted: 20 October 2023
© The Author(s) 2024

Abstract
Methods such as Layer Normalization (LN) and Batch Normalization have proven to be
effective in improving the training of Recurrent Neural Networks (RNNs). However, exist-
ing methods normalize using only the instantaneous information at one particular time step,
and the result of the normalization is a preactivation state with a time-independent distribu-
tion. This implementation fails to account for certain temporal differences inherent in the
inputs and the architecture of RNNs. Since these networks share weights across time steps, it
may also be desirable to account for the connections between time steps in the normalization
scheme. In this paper, we propose a normalization method called Assorted-Time Normaliza-
tion (ATN),which preserves information frommultiple consecutive time steps and normalizes
using them. This setup allows us to introduce longer time dependencies into the traditional
normalization methods without introducing any new trainable parameters. We present the-
oretical derivations for the gradient propagation and prove the weight scaling invariance
property. Our experiments applying ATN to LN demonstrate consistent improvement on
various tasks, such as Adding, Copying, and Denoise Problems and Language Modeling
Problems.

Keywords Normalization methods · ATN · Layer Normalization · LN · LSTM

Cole Pospisil and Vasily Zadorozhnyy contributed equally to this work.

B Qiang Ye
qye3@uky.edu

Cole Pospisil
pospisilcole@gmail.com

Vasily Zadorozhnyy
vasily.zadorozhnyy@gmail.com

1 Mathematics Department, University of Kentucky, 719 Patterson Office Tower, Lexington, KY
40506, USA

2 NSWC Crane, 300 Highway 361, Crane, IN 47522, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11442-1&domain=pdf

 78 Page 2 of 18 C. Pospisil et al.

1 Introduction

TheRecurrent Neural Network (RNN) [8, 20], and variants such as Long Short TermMemory
(LSTM) [6] or Gated Recurrent Unit (GRU) [2, 11, 18], are some of the core architectures
used for modeling time-series data in Deep Learning today. While LSTMs and GRUs are
effective in avoiding problems with vanishing gradients, all of these recurrent models are still
subject to issues with exploding gradients, as well as over-fitting. One of the most successful
ideas that have been introduced over the years is the normalization of RNNs using methods
such as Layer Normalization (LN) [1] and Batch Normalization (BN) [3, 9]. These methods
recenter and rescale the preactivation information using the statistics of that time step. This
allows for the norm of the model’s states and gradients to be controlled, which speeds up
training and prevents exploding gradients.

While these normalization methods have been successful, their applications to RNNs do
not involve adaptations to some of the primary characteristics of this class of models, namely
that the variation across time imparts usable information. For example, the LN or BNmodels
are invariant to the scaling in the input at any time step and are, therefore, independent of
the norm of the input vector at each time step. Depending on the applications, this may
have devastating consequences. Additionally, LN and BN produce a preactivation state with
a distribution that is invariant across time. Such time invariance properties may affect the
architectural structure of RNN’s ability to exploit the temporal dependencies fully. Since
RNNs share weights across time steps, it would be quite natural to introduce this dependency
into the normalization method as well. An attempted version of this involving averaging
statistics across time was mentioned in [3] but was unsuccessful and was presented without
much detail. It appears that simply averaging over every time step is an overcorrection
that makes the statistics susceptible to diluted averages and loses effectiveness further into
the sequence. Instead, we argue that by collecting the mean and variance across a smaller
subsequence, one can gain the benefits of these time dependencies without overly weakening
the impact of a single time step.

In this paper, we propose a normalization method called Assorted-Time Normalization
(ATN), which preserves information from multiple consecutive time steps and normalizes
using them.OurATNmethod can be combinedwith other normalizationmethods, such as LN
and BN, that normalize input information along some dimensions but not time. It maintains a
short-term memory of the previous k time steps, which allows it to account for the temporal
dependencies in a way in which previous methods were incapable. We use that memory to
calculate the statistics with respect to which we normalize, giving us an output that has a
controlled mean and variance while still being capable of changing between time steps. By
using just a limited subsequence at each point in time, we can avoid the problems that come
from using all or none of the sequences and find the length best suited to the dataset. Since
this process adds a time component to the normalization method, it is adapting without the
introduction of any new learnable parameters.

We present theoretical derivations for the gradient propagation and prove the weight
scaling invariance property. Our experiments demonstrate consistent improvement using
our method on various tasks, such as Adding, Copying, and Denoise Problems as well as
Language Modeling Problems. Our code is available at https://github.com/vasily789/atn.

123

https://github.com/vasily789/atn

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 3 of 18 78

2 RelatedWork

One of the earliest attempts to use some normalization technique throughoutmodel layerswas
Batch Normalization (BN) [9]. It was proposed for Fully Connected (FC) and Convolutional
(CNN) Neural Networks to normalize network activations across the batch dimension. BN
is known often to provide a more stable and accelerated training regimen while improving
generalizations. The Instance Normalization (IN) [23] method, contrary to BN, acts like
contrast normalization and has primarily been used for image-containing datasets. The paper
points out that the output stylized images should not rely on the contrast of the input image
content, and hence normalizing the instances helps. The Group Normalization (GN) [24]
method, which is primarily used for CNNs, normalizes a 3D feature in a convolutional layer
by dividing its channels into groups and then normalizing the features in the group in all
three dimensions. Although these normalization methods can be applied at each time step
to a recurrent neural network with sequential data, there have been no known successful
implementations yet.

Consider the typical structure of an RNN, also known as an RNN cell:

h(t) = f
(
Whh

(t−1) + Wxx
(t) + βh

)
(1)

y(t) = Wyh
(t) + βy (2)

where f is a nonlinear activation function applied entrywise, Wh is the hidden-to-hidden
weight, Wx is the input-to-hidden weight, Wy is the hidden-to-output weight, βh is the
hidden state bias, βy is the output bias, x (t) is the t th entry in the input sequence, h(t) is the
t (th) hidden state, and y(t) is the t (th) entry in the output sequence.

The Recurrent Batch Normalization [3] method applies BN to the hidden-to-hidden and
memory cell parts of the LSTM model, which aims to reduce the internal covariate shift
between consecutive time steps. Salimans andKingma [21] proposed aWeightNormalization
(WN) method. Their idea lies in decoupling the magnitude from the direction of the weight
vector to change the parameters of the network, which helps speed up learning. Unfortunately,
WN appears not widely used in practice due to its limited stability compared to BN [5].

Layer Normalization (LN) was proposed in Ba et al. [1] to normalize activations along
the hidden dimension for both FC networks and RNNs and has since become very popular
in RNNs. LN normalizes the preactivation state as follows:

h(t) = f
(
LN

(
Whh

(t−1)
)

+ LN
(
Wxx

(t)
)

+ βh

)
(3)

y(t) = LN
(
Wyh

(t)
)

+ βy (4)

where the LN operator is defined by

μt = 1

n

n∑
i=1

a(t)
i σ 2

t = 1

n

n∑
i=1

(
a(t)
i − μt

)2
(5)

y(t) = LN (a(t); γ, β) = γ � a(t) − μt√
σ 2
t + ε

+ β (6)

with γ and β being trainable gain and bias parameters which we omitted from the LN
operator notation in Eqs. 3 and 4 to allow for cleaner notation, and ε is a small value included
to prevent division by zero.

123

 78 Page 4 of 18 C. Pospisil et al.

Fig. 1 Illustration of the ATN method combined with LN using k = 3 time steps: consider the preactivation
state tensor in R5×3×3. At t = 1, we use a standard LN; at t = 2, we normalize using information from time
steps 1, 2; at t = 3 ATN method uses information from time step t = 1, 2, 3; at t = 4, we normalize with
respect to time steps t = 2, 3, 4; and so on after that

Such a setup helps eliminate the BN batch dependency and simplifies the application to
RNNs.

More recently, Adaptive Normalization (AdaNorm) [25] made a thorough analysis of
LN and concluded that the rescaling and recentering factors, γ and β in (6), are not as
essential as the backward gradients of the mean and variance inside of the LN method.
In addition, they proposed a new method, AdaNorm, which replaces weight and bias with
some new transformation function. The key observation of this paper is that all the existing
normalization methods do not account for the temporal variations for RNNs. Normalization
at each time point may leverage the unique properties of the RNN architecture and provide
improved performance similar to how Instance Norm and Group Norm did with CNNs.

3 Assorted Time Normalization

One undesirable property of the adaptation of LN to RNNs is that the statistics for the
normalization are calculated at each time step, resulting in a post-normalization state which
hasmean and variance that are invariant across time. This prevents themodel from effectively
representing the shifting distributions across time thatmight be critical inmodeling sequential
data. For example, the normalization LN

(
Wxx (t)

)
in (3) is invariant to scaling in x (t), which

restricts the model from learning the changing norm of x (t). This may be mitigated by
including a bias in the linear term, which is often used in implementations; see Sect. 5.1 for
more discussion. Most of the above discussions also apply to BN.

Wepropose a newnormalizationmethod to break this time invariance.Consider a sequence
a = {

a(t)
} ⊂ R

n produced in an RNN, such as the preactivation state that we wish to
normalize. At time step t of the RNN, we maintain a memory of the previous k entries,
a(t)
k = {

a(t−k+1), . . . , a(t−1), a(t)
} ⊂ a, in the normalization layer, using this extended set to

compute themean and variance to be used for normalization. This can be combinedwith other
normalization methods. Combining with Layer Normalization, for example, these statistics
are calculated at time-step t for a sequence of n-dimensional inputs as follows:

μt,k = 1

nk

k−1∑
j=0

n∑
s=1

a(t− j)
s (7)

σ 2
t,k = 1

nk

k−1∑
j=0

n∑
s=1

(
a(t− j)
s − μt,k

)2
(8)

See Fig. 1 for a visual depiction of our method. The computational cost of LN-ATN scales
linearly with k as a multiple of the normal cost of Layer Normalization.

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 5 of 18 78

Once these statistics are calculated, we then normalize only the current term a(t) and
optionally recenter and rescale using γ and β, two trainable parameters shared across time
while adding a small epsilon to the variance to prevent division by zero, similar to the LN
method in (6).

y(t) = AT N (a(t)
k ; γ, β) := γ � a(t) − μt,k√

σ 2
t,k + ε

+ β (9)

This differs from the process in (6) in that we include multiple time steps in our statistic
calculations, giving us a double sum instead of the single one for LN. This definition of the
statistics is more stable in time, at least for large k, changing modestly at each time step with
only one term in the set being replaced. This results in a normalized output that is not expected
to have a uniform mean and variance across time steps. We argue that this is desirable for
sequential problems. Having this potential for variation allows for the model to account for
changing norms of the inputs across the sequence, providing additional information about
the distribution that is lost with previous methods.

We may consider using all previous terms in the sequence to compute the statistics, but
this causes variation in the weight of information between early and later time steps. Since
the first few steps have fewer terms to normalize over, the effect in each step is heightened,
while at the end of the sequence, each step is normalized over a large number of terms so their
effect is dampened. By keeping only k time steps and not the entire sequence, the statistics
will vary gradually across time, and we are able to fix the memory and computational costs,
which could be significant for long sequences.

Using the information from multiple time steps also effectively provides a larger set on
which to calculate statistics. This allows a more accurate approximation to gain a clearer
glimpse at the underlying distribution of the dataset. In other words, ATN uses statistics
over a larger set that is more stable across time so that the normalized state can retain more
variations in time. In contrast, the traditional normalization methods use high-frequency
statistics at each time step to produce a normalized state that becomes time-invariant. In
particular, the ATN network depends on the scaling of the input vector at a time step, while
LN and BN do not. However, ATN preserves the desirable weight scaling invariant property,
which we show as follows:

Let H and H̃ be weight matrices for two sets of model parameters, θ and θ̃ respectively,
which differ by a scaling factor of δ, i.e. H̃ = δH . Then the outputs of ATN are the same:

ỹ(t) = γ

σ̃t,k
�

(
H̃a(t) − μ̃t,k

)
+ β = γ

σt,k
�

(
Ha(t) − μt,k

)
+ β = y(t) (10)

where σ̃t,k = δσt,k and μ̃t,k = δμt,k . Since ATN is applied before the activation function,
equivalence at this stage guarantees equivalence post-activation. This invariance property
makes the ATN network independent of the norm of H , mitigating the exploding/vanishing
gradient problems.

It is also easy to see that ATN is also invariant to the rescaling of the whole input sequence,
since the rescaling factor can be pulled out of the summation across the sequence. Likewise,
ATN is not invariant under the rescaling of an individual element in the sequence since such
factoring is not possible.

During training, we backpropagate the gradients with respect to the model parameters.
With ATN, a key step is to propagate the gradient through the normalization layer, i.e.,

123

 78 Page 6 of 18 C. Pospisil et al.

∂ y(t)
i

∂a(t−m)
i

. The following proposition gives the formulas for computing these derivatives. The

proof is provided in “Appendix A”.

Proposition 1 Consider ATN for a sequence a = {a(t)} ⊂ R
n produced in a RNN and let

y(t) = AT N (a(t)
k ; γ, β). Then, for 0 ≤ m ≤ k − 1, we have:

∂ y(t)
i

∂a(t−m)
i

= γ �

∂a(t)
i

∂ y(t−m)
i

∂ y(t−m)
i

∂a(t−m)
i

− ∂μt,k

∂a(t−m)
i√

σ 2
t,k + ε

− γ � a(t)
i − μt,k

2
(
σ 2
t,k + ε

)3/2
∂σ 2

t,k

∂a(t−m)
i

(11)

where

∂μt,k

∂a(t−m)
i

= 1

nk

∑m
j=0

∂a(t− j)
i

∂a(t−m)
i

(12)

∂σ 2
t,k

∂a(t−m)
i

= 2

nk

m∑
j=0

(
a(t− j)
i − μt,k

) ∂a(t− j)
i

∂a(t−m)
i

−
k−1∑
j=0

n∑
s=1

(
a(t− j)
s − μt,k

) ∂μt,k

∂a(t−m)
i

.

(13)

Note that the computations of
∂ y(t)

i

∂β
and

∂ y(t)
i

∂γ
are straightforward and are omitted.

In our experiments, we will use ATN (combined with LN) on LSTM networks. Follow-
ing [1, 3], our ATN method for LSTM is as follows:

⎛
⎜⎜⎝

f (t)

i (t)

o(t)

g(t)

⎞
⎟⎟⎠ = AT N (Whh

(t−1)) + AT N (Wxx
(t)) + b (14)

c(t) = σ(f (t)) � c(t−1) + σ(i (t)) � tanh(g(t)) (15)

h(t) = σ(o(t)) � tanh(AT N (c(t))) (16)

where � is the Hadamard product and σ(·) is the sigmoid function.
This model has comparable computational costs as the LN-LSTM model since each LN-

ATN block has the cost of an LN block scaled linearly in k. This is a small portion of the
overall cost of the model and can be regulated by the choice of k.

4 Experiments

We have performed a series of experiments which include the Copying [7], Adding [7],
and Denoise problems [4, 11] as well as Language Modeling on character level Penn Tree-
bank dataset [15] and word level WikiText-2 dataset [16]. All experiments compare LSTM
models with no normalization (LSTM), Layer Normalization (LN), and Assorted Temporal
Normalization combined with Layer Normalization (ATN).

All experiments were run using Python 3.7.0, PyTorch 1.1.0, and CUDA 9.0 on a single
NVIDIA Tesla V100 GPU.

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 7 of 18 78

Fig. 2 Results on the copying problem for sequence lengths T = 100 and T = 200. The LSTMand LN-LSTM
(LN) models are provided here for comparison purposes with our ATN-LSTM (ATN) method

4.1 Synthetic Tasks

4.1.1 Copying

The copying problem is a common synthetic task that is used to test RNNs, which was
originally proposed in Hochreiter and Schmidhuber [7]. For this problem, a string of 10
digits is fed into the RNN sampled uniformly from the integers between 1 and 8. A sequence
of T zeros follows this, and a 9, marking the start of a string of 9 zeros, for a total length
of T + 20. The objective of the task is to output the initial string of 10 digits beginning at
the marker’s location, copying the initial string from the front to the back. Cross-entropy
loss is used to evaluate this model, with a baseline expected cross-entropy of 10 log (8)

T+20 which
represents selecting digits 1–8 at random after the 9.

Implementation details The models were trained with a batch size of 128, a single LSTM
layer with a hidden size of 68, an RMSProp [22] optimizer with a learning rate of 10−4, and
T values of 100 and 200. The ATN model is implemented with k = 45 for both T values.
All models were trained for 40 epochs using cross-entropy loss.

Results For each of the sequence lengths tested, the plain LSTM is incapable of achieving
losses below the baseline.While the LN-LSTM is able to do so to some extent on the T = 100
version, see Fig. 2a, it also gets stuck at the baseline loss on the T = 200 task, Fig. 2b. For
both of these tasks, our ATN-LSTMmodel demonstrates eventual losses below those reached
by the LN-LSTMmodel, Fig. 2a, b. We also note that the initial rate of convergence is at least
as steep if not steeper than that of the LN-LSTMmodel, demonstrating that the ATN-LSTM
positively contributes to training in both the short and long term. Formore quantitative results,
see Table 1.

123

 78 Page 8 of 18 C. Pospisil et al.

Table 1 Copying results: attained minimum values

Sequence length Loss × 10−1 ↓ Loss × 10−2 ↓
T = 100 T = 200

Train Validation Train Validation

LSTM 1.677 ± 0.006 1.684 ± 0.006 9.129 ± 0.311 9.114 ± 0.311

LN 1.483 ± 0.080 1.480 ± 0.074 8.343 ± 0.153 8.282 ± 0.110

ATN 1.260 ± 0.091 1.267 ± 0.134 7.719 ± 0.517 7.608 ± 0.533

↓—denotes the smaller, the better the result

Table 2 Adding results: attained minimum values

Sequence length Loss ×10−3 ↓ Loss ×10−3 ↓
T = 100 T = 200

Train Validation Train Validation

LSTM 1.036 ± 0.232 0.988 ± 0.154 1.907 ± 0.322 2.216 ± 1.225

LN 0.996 ± 0.348 0.696 ± 0.256 1.511 ± 0.720 1.813 ± 0.967

ATN 0.481 ± 0.086 0.459 ± 0.074 1.208 ± 0.133 1.172 ± 0.226

↓—denotes the smaller, the better result

4.1.2 Adding

The adding problem is another synthetic task for RNNs proposed in Hochreiter and Schmid-
huber [7]. Our implementation of this problem is a variation of the original problem. The
RNN takes a 2-dimensional input of length T. The first dimension consists of a sequence of
zeros except for two ones placed randomly in the first and second half of the sequence. The
second dimension is a sequence of numbers selected uniformly from [0, 1). The goal of the
task is to take the numbers from the second dimension in positions corresponding to the ones
and to output their sum.

Implementation details The models were trained with a batch size of 50, a single LSTM
layer with a hidden size of 60, and an RMSprop [22] optimizer with a learning rate of 10−3.
We use T values of 100 and 200. This task is trained and evaluated with a mean-squared
error (MSE) loss function. The ATN model is implemented with k values of 25 for T = 100
and 5 for T = 200. The models were trained for 10 epochs.

ResultsOur model shows consistent improvement over the LSTM and LN-LSTMmodels.
For each example, the ATN shows a rapid initial convergence before settling into a slower
rate which is roughly parallel to that of the LN-LSTM. In Fig. 3a, this initial conversion
almost manages to take the model to the same loss as is achieved by the LN-LSTM after the
entirety of the training. In Fig. 3b, the LN-LSTM is able to separate itself further from the
LSTM than in Fig. 3a but is still at a higher loss than the ATN for all but the very beginning
of training. For more quantitative results, see Table 2.

4.1.3 Denoise Task

The Denoise Task [4, 11] is another synthetic problem that requires filtering out the noise out
of a noisy sequence. This problem requires the forgetting ability of the network as well as
learning long-term dependencies coming from the data [11]. The input sequence of length T

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 9 of 18 78

Fig. 3 Results on the adding problem for sequence lengths T = 100 and T = 200

contains 10 randomly located data points, and the other T − 10 points are considered noise
data. These 10 points are selected from a dictionary {ai }n+1

i=0 , where the first n elements are
data points, and the other two are the “noise” and the “marker” respectively. The output data
consists of the list of the data points from the input, and it should be outputted as soon as it
receives the “marker”. The goal is to filter out the noise and output the random 10 data points
chosen from the input.

Implementation details The models were trained using a batch size of 128, a single LSTM
layer with a hidden size of 100, and Adam [12] optimizer with a learning rate of 10−2, and a
cross-entropy loss function.We use T values of 100 and 200. TheATNmodel is implemented
with k values of 20 and 60 for T = 100 and T = 200, respectively. The models were trained
for 10,000 iterations.

Results For both sequence lengths, our models outperform the LSTM and matched the LN-
LSTM throughout training curves as can be seen in Fig. 4a, b.Whilewe hadwider fluctuations
during training, our model converged to a lower loss with a tighter band than both other
models. For more quantitative results, see Table 3.

4.2 LanguageModels

Language modeling is one of many natural language processing tasks. It is the development
of probabilistic models that are capable of predicting the next word or character in a sequence
using information that has preceded it. For both of the Language Modeling problems, we
based our experiments on the AWD-LSTM model [17].

123

 78 Page 10 of 18 C. Pospisil et al.

Fig. 4 Results on the Denoise task for sequence lengths T = 100 and T = 200

Table 3 Denoise results: attained minimum cross entropy loss values

Sequence length Loss ×10−2 ↓ Loss ×10−3 ↓
T = 100 T = 200

Train Validation Train Validation

LSTM 13.875 ± 5.855 13.835 ± 5.966 74.739 ± 1.594 75.243 ± 1.543

LN 3.555 ± 1.013 3.339 ± 0.097 11.235 ± 1.580 12.258 ± 1.629

ATN 3.272 ± 0.595 3.226 ± 0.056 11.151 ± 2.448 10.399 ± 4.194

↓—denotes the smaller, the better result

4.2.1 Metrics

There are two widely used metrics in natural language processing and language modeling:
Bits Per Character (bpc) and Perplexity (PPL).

Bits PerCharacter (bpc)measures the average number of bits required to represent a single
character in a given text or data. Lower bpc values indicate more efficient compression or
encoding.

Perplexity (PPL) is a metric particularly used in the evaluation of probabilistic language
models, introduced in [10]. PPL measures how well a language model predicts a sample of
text. Lower PPL values indicate that the language model is better at predicting the text and
has a better understanding of the language.

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 11 of 18 78

Table 4 Character level Penn
treebank results: attained
minimum values

bpc ↓
Validation Test

LSTM 1.824 ± 0.101 1.705 ± 0.019

LN 1.535 ± 0.003 1.551 ± 0.016

ATN 1.504 ± 0.002 1.547 ± 0.018

↓—denotes the smaller, the better result

4.2.2 Character Level Penn Treebank

The models were tested on their suitability for language modeling tasks using the character
level Penn Treebank dataset [15] also known as character-PTB or simply cPTB dataset.
This dataset is a collection of English-language Wall Street Journal articles. The dataset
consists of a vocabulary of 10,000 words with other words replaced as <unk>, resulting
in approximately 6 million characters that are divided into 5.1 million, 400 thousand, and
450 thousand character sets for training, validation, and testing, respectively with a character
alphabet size of 50. The goal of the character-level Language Modeling task is to predict the
next character given the preceding sequence of characters.

Implementation details For this task, we partitioned the training sequence into 220 character
length subsequences. The models were trained using a batch size of 32, a single LSTM layer
with a hidden size of 1000, an Adam [12] optimizer with a learning rate of 10−2, gradient
clipping by norm at 3, and learning rate decay by a factor of 10 at epoch 80 and 90. The ATN
model is implemented with a k value of 10. The models were trained for 150 epochs.

Results Our model shows improvement over the LSTM and the LN-LSTM models, the
comparison results are presented in Table 4.

4.2.3 WikiText-2

The WikiText-2 dataset was introduced in Merity et al. [16]. It is approximately two times
the size of the Penn Treebank dataset and contains preprocessed Wikipedia articles while
maintaining the original structure, punctuation, and symbols. TheWikiText-2 dataset consists
of approximately 2.2 million words: 2 million for the training set and 200 thousand for the
validation and test sets, with a vocabulary size of 33,278. This task is a word-level Language
Modeling problem with the goal to predict the next word given the preceding sequence of
words.

Implementation details We used a batch size of 32; three LSTM layers with embedding and
hidden sizes of 400 and 1150, respectively; BPTT values of 70; gradient clipping on the
norm of 0.25; and learning rate of 30 with Stochastic Gradient Descent (SGD) optimizer
without any momentum or learning rate decay, and switch to ASGD [19] optimizer using
nonmono criteria from [17] with value 5 (our experiments showed that switching happens
approximately between epochs 20 and 30 for all models: LSTM, LN, and ATN). The ATN
model is implemented with a k value of 25. All models were trained for 500 epochs.

Results In this experiment, the ATNmethod shows improvement over LSTM and LNmethod
in both training and validation PPL, see Table 5.

123

 78 Page 12 of 18 C. Pospisil et al.

Table 5 WikiText-2 results:
attained minimum values

PPL ↓
Validation Test

LSTM 80.79 ± 0.861 65.76 ± 1.05

LN 80.08 ± 1.116 58.34 ± 0.54

ATN 78.32 ± 0.695 56.29 ± 0.44

↓—denotes the smaller, the better the result

Fig. 5 Pixel-by-pixel MNIST: ablation study showing the performance impact of time-invariant normalization

5 Ablation Studies

5.1 Input Statistic Invariance Across Time

In most implementations of LN-LSTM, including the one used in the experiments above,
the inputs to the normalization method are the results of a linear layer, including both weight
and bias. This differs slightly from the model proposed in Ba et al. [1] in that their version
placed the LSTM bias outside of the normalization. Using that original architecture, we can
clearly demonstrate the underlying problem with Layer Normalization that we aim to solve,
the loss of input information, by setting the statistics to constant values across time.

To show this, we use the MNIST dataset [14] after applying Gaussian noise with variance
0.1 for the pixel-by-pixel task [13]. This task takes the pixel values of a handwritten digit and
inputs them as an unpermuted sequence of length 784 in order to predict the digit class. Due to
the high probability of pixels having near zero values, we needed to use ε values of 1 in both
normalization schemes.With this task,we can see in Fig. 5 that the use ofLayerNormalization
renders the model completely incapable of training. Because LN takes the information from
each pixel and normalizes it to the exact same distribution, it erases everything the model
could use to learn, making it no better than guessing. The ATN method with k = 10 solves
this problem by using multiple time steps in calculating the mean and variance, meaning
that the normalized outputs will not all have identical statistics. This change allows ATN to
perform quite well, even when Layer Normalization cannot.

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 13 of 18 78

5.2 Post Normalization Statistics

In Fig. 6a–c, we present the statistics of the post-normalization components from a single
iteration of training for the Adding Problem [7] described in Sect. 4.1.2 with T = 75. We
present the statistics from four different models, an LN-LSTM, and three ATN(k) models
with k values of 5, 25, and 55. All of the models did not include the use of trainable bias and
gain parameters inside the normalization methods.

In Fig. 6a, we show the mean and variance after normalization of the product of the
hidden-to-hidden weight and the hidden state, Whh(t−1). While Layer Normalization pro-
duces constant mean and variance, the ATN method allows for the statistics to vary at each
time step, resulting in curves that do not differ too much from those for LN in terms of scale
but do demonstrate the natural fluctuations in the hidden states. From this, we can see that
we are achieving the combination of a controlled output that is still capable of reflecting the
temporal changes of the network.

In Fig. 6b, we show the statistics from the product of the input-to-hidden weight and the
input, Wxx (t). The ATN model provides highly variable means and variances, showcasing
the amount of information about the dataset which is lost when LN resets the statistics to
these constant values.

In Fig. 6c, we show the post-normalization statistics of the memory cell, c(t). These statis-
tics clearly demonstrate the effect of a shorter k value as opposed to a longer one in the mean.
In the early iterations for the k = 5 model, the mean has a larger spike which flattens to a bit
above zero by the end of the iteration. For the larger k values, this initially increased mean
gets maintained throughout a larger portion of the iteration, causing the lower values further
along to have less influence on the statistics.

5.3 Optimal kValue for ATNMethod

To highlight the importance of normalizing with respect to k time steps instead of just one
or all of them, we present a study on various k values. In Fig. 7, we present results on the
Copying Problem [7] described in Sect. 4.1.1 with T = 100. For this experiment, we have
trained LSTM, LN, and three ATN(k) models with values of k being 25, 45, and 65 under
the same conditions.

All ATN models perform better than both LSTM and LN. The ATN (k = 45) model
performs better than ATN (k = 25), which should not be a surprise since the larger k value
would mean we are normalizing with respect to a larger set and getting better statistics for the
mean and variance; however, ATN (k = 65) performs poorer than ATN (k = 45) and even
poorer than ATN (k = 25) which suggests that too large k may actually degrade the result.
Thismay be due to numerical difficulties in propagating derivatives through k steps inATN for
a large k, and due to the overwhelming of the short-term normalization statistic fluctuations
by the long sequence. Since each timestep included in ATN increases the operations required
for the method, adding to the computational cost in both the forward pass and the gradient
computation, limiting k comes with practical benefits. Furthermore, as seen in Proposition 1,
the larger the k value, the more often a particular timestep is used in gradient computation,
allowing for greater propagation of error. This is a common concern with RNN tasks and is
comparable to the reasoning behind the use of truncated backpropagation through time.While
there is some difference between the model performance, based on k value, the difference
within short ranges is not too pronounced so while ATN introduces a tunable hyperparameter
in k, it is not an overly sensitive one.

123

 78 Page 14 of 18 C. Pospisil et al.

Fig. 6 Post normalization statistics for adding problem with T = 75

Fig. 7 Ablation study for optimal k value forATNmethod usingCopying Task (see Sect. 4.1.1)with a sequence
length of T = 100

6 Conclusion

In this paper, we have introduced a method for adapting statistics-based normalization meth-
ods to recurrent neural networks to break the time invariance of the traditional normalization
methods. We have presented theoretical results on the impact this method has on the model’s
gradients, as well as showing the preservation of invariance to the rescaling of the weight

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 15 of 18 78

matrix. Our experiments demonstrate that our ATN-LSTM improves over LN for LSTM in
both training and testing results. In light of the popularity of LN in practical applications,
our method offers an important alternative for further improving RNN performance.

Acknowledgements We thank theUniversity ofKentuckyCenter forComputational Sciences and Information
Technology Services Research Computing for their support and use of the Lipscomb Compute Cluster and
associated research computing resources.

Author Contributions Not applicable.

Funding Research supported in part by US National Science Foundation under the Grants DMS-2208314 and
IIS-2327113.

Availability of data and materials Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Declarations

Conflict of interest No potential conflict of interest was reported by the authors.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Proof of Proposition 1

We present below the derivation for the propagation of the gradient through the ATNmethod.

Proposition 1 Consider ATN for a sequence a = {a(t)} ⊂ R
n produced in a RNN and let

y(t) = AT N (a(t)
k ; γ, β). Then, for 0 ≤ m ≤ k − 1, we have:

∂ y(t)
i

∂a(t−m)
i

= γ �

∂a(t)
i

∂ y(t−m)
i

∂ y(t−m)
i

∂a(t−m)
i

− ∂μt,k

∂a(t−m)
i√

σ 2
t,k + ε

− γ � a(t)
i − μt,k

2
(
σ 2
t,k + ε

)3/2
∂σ 2

t,k

∂a(t−m)
i

(A1)

where
∂μt,k

∂a(t−m)
i

= 1

nk

m∑
j=0

∂a(t− j)
i

∂a(t−m)
i

(A2)

123

http://creativecommons.org/licenses/by/4.0/

 78 Page 16 of 18 C. Pospisil et al.

and

∂σ 2
t,k

∂a(t−m)
i

= 2

nk

⎛
⎝

m∑
j=0

(
a(t− j)
i − μt,k

) ∂a(t− j)
i

∂a(t−m)
i

−
k−1∑
j=0

n∑
s=1

(
a(t− j)
s − μt,k

) ∂μt,k

∂a(t−m)
i

⎞
⎠

(A3)

Proof Suppose 0 ≤ m ≤ k − 1 then

μt,k = 1

nk

k−1∑
j=0

n∑
s=1

a(t− j)
s (A4)

and

∂μt,k

∂a(t−m)
i

= 1

nk

k−1∑
j=0

n∑
s=1

∂a(t− j)
s

∂a(t−m)
i

(A5)

= 1

nk

(
∂a(t)

i

∂a(t−m)
i

+ ∂a(t−1)
i

∂a(t−m)
i

+ · · · + ∂a(t−m+1)
i

∂a(t−m)
i

+ 1

)
(A6)

= 1

nk

m∑
j=0

∂a(t− j)
i

∂a(t−m)
i

; (A7)

σ 2
t,k = 1

nk

k−1∑
j=0

n∑
s=1

(
a(t− j)
s − μt,k

)2
(A8)

and

∂σ 2
t,k

∂a(t−m)
i

= 1

nk

k−1∑
j=0

n∑
s=1

2
(
a(t− j)
s − μt,k

) (
∂a(t− j)

s

∂a(t−m)
i

− ∂μt,k

∂a(t−m)
i

)
(A9)

= 2

nk

⎛
⎝

m∑
j=0

(
a(t− j)
i − μt,k

) ∂a(t− j)
i

∂a(t−m)
i

−
k−1∑
j=0

n∑
s=1

(
a(t− j)
s − μt,k

) ∂μt,k

∂a(t−m)
i

⎞
⎠ ;

(A10)

y(t) = γ � a(t) − μt,k√
σ 2
t,k + ε

+ β (A11)

and

∂ y(t)
i

∂a(t−m)
i

= γ �

∂a(t)
i

∂a(t−m)
i

− ∂μt,k

∂a(t−m)
i√

σ 2
t,k + ε

− γ � 1

2

a(t)
i − μt,k(

σ 2
t,k + ε

)3/2
∂σ 2

t,k

∂a(t−m)
i

(A12)

where

∂a(t)
i

∂a(t−m)
i

= ∂a(t)
i

∂ y(t−m)
i

∂ y(t−m)
i

∂a(t−m)
i

. (A13)

��

123

Breaking Time Invariance: Assorted-Time Normalization for RNNs Page 17 of 18 78

Table 6 Invariance properties under different normalization methods

BN WN LN ATN-BN ATN-LN

Weight matrix re-scaling Yes Yes Yes Yes Yes

Weight matrix re-centering No No Yes No No

Weight vector re-scaling Yes Yes No Yes No

Dataset re-scaling Yes No Yes Yes Yes

Dataset re-centering Yes No No Yes No

Single training case re-scaling No No Yes No Yes

Input at a single time re-scaling No No Yes No No

BN batch normalization [9], WN weight normalization [21], LN layer normalization [1], ATN-BN assorted-
time normalization built on BN method, ATN-LN assorted-time normalization built on LN method

Appendix B: Invariance Properties

In Table 6 we provide a summary of invariance properties for several normalization meth-
ods. This is an expansion of Table 1 in Ba et al. [1]. Weight matrix re-scaling and re-centering
are the adjustments of the weight matrix by multiplying a constant scaling factor or adding a
constant re-scaling factor. Weight vector re-scaling is similar to weight matrix re-scaling, but
only adjusts a single vector instead of the entire matrix. Dataset re-centering and re-scaling
consist of changing every input example by multiplying or adding a constant. Single training
case re-scaling is when the dataset adjustments are applied to just one example. Of particular
interest is the invariance with respect to the scaling of an input at a single time point, which
was referenced in Sect. 3. This is one of the invariance properties which LN has that its ATN
adaptation does not, and we argue that this is one of the reasons that our method improves
on LN.

References

1. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv:1607.06450
2. Cho K, vanMerrienboer B, Gulcehre C et al (2014) Learning phrase representations using RNN encoder–

decoder for statistical machine translation. https://doi.org/10.48550/ARXIV.1406.1078
3. Cooijmans T, Ballas N, Laurent C et al (2017) Recurrent batch normalization. In: 5th international

conference on learning representations, ICLR 2017, Toulon, France, April 24–26, 2017, conference track
proceedings. OpenReview.net. https://openreview.net/forum?id=r1VdcHcxx

4. Foerster JN, Gilmer J, Chorowski J et al (2016) Input switched affine networks: an RNN architecture
designed for interpretability. https://doi.org/10.48550/ARXIV.1611.09434

5. Gitman I, Ginsburg B (2017) Comparison of batch normalization and weight normalization algorithms
for the large-scale image classification. arXiv:1709.08145

6. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://
doi.org/10.1162/neco.1997.9.8.1735

7. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
8. Hopfield JJ (1982)Neural networks and physical systemswith emergent collective computational abilities.

Proc Natl Acad Sci 79(8):2554–2558. https://doi.org/10.1073/pnas.79.8.2554
9. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal

covariate shift. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine
learning, proceedings of machine learning research, vol 37. PMLR, Lille, France, pp 448–456. https://
proceedings.mlr.press/v37/ioffe15.html

10. Jelinek F, Mercer RL, Bahl LR et al (1977) Perplexity-a measure of the difficulty of speech recognition
tasks. J Acoust Soc Am 62. https://api.semanticscholar.org/CorpusID:121680873

123

http://arxiv.org/abs/1607.06450
https://doi.org/10.48550/ARXIV.1406.1078
https://openreview.net/forum?id=r1VdcHcxx
https://doi.org/10.48550/ARXIV.1611.09434
http://arxiv.org/abs/1709.08145
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://api.semanticscholar.org/CorpusID:121680873

 78 Page 18 of 18 C. Pospisil et al.

11. Jing L, Gulcehre C, Peurifoy J et al (2019) Gated orthogonal recurrent units: on learning to forget. Neural
Comput 31(4):765–783. https://doi.org/10.1162/necoa01174

12. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
13. Le QV, Jaitly N, Hinton GE (2015) A simple way to initialize recurrent networks of rectified linear units.

arXiv:1504.00941
14. Lecun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to document recognition. Proc

IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791
15. Marcus MP, Marcinkiewicz MA, Santorini B (1993) Building a large annotated corpus of English: the

Penn treebank. Comput Linguist 19(2):313–330
16. Merity S, Xiong C, Bradbury J et al (2016) Pointer sentinel mixture models. arXiv:1609.07843
17. Merity S, Keskar NS, Socher R (2018) Regularizing and optimizing LSTM language models. In: Inter-

national conference on learning representations. https://openreview.net/forum?id=SyyGPP0TZ
18. Mucllari E, ZadorozhnyyV, Pospisil C et al (2022)Orthogonal gated recurrent unit withNeumann–Cayley

transformation. https://doi.org/10.48550/ARXIV.2208.06496
19. Polyak BT, Juditsky AB (1992) Acceleration of stochastic approximation by averaging. SIAM J Control

Optim 30(4):838–855. https://doi.org/10.1137/0330046
20. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation.

MIT Press, Cambridge, pp 318–362
21. Salimans T, Kingma DP (2016) Weight normalization: a simple reparameterization to accelerate training

of deep neural networks. In: Lee D, Sugiyama M, Luxburg U et al (eds) Advances in neural information
processing systems, vol 29. Curran Associates Inc, New York

22. Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: divide the gradient by a running average of its recent
magnitude. COURSERA Neural Netw Mach Learn 4(2):26

23. Ulyanov D, Vedaldi A, Lempitsky V (2017) Instance normalization: the missing ingredient for fast
stylization. arXiv:1607.08022

24. WuY, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision
(ECCV)

25. Xu J, Sun X, Zhang Z et al (2019) Understanding and improving layer normalization. In: Wallach H,
Larochelle H, Beygelzimer A et al (eds) Advances in neural information processing systems, vol 32.
Curran Associates, Inc., pp 4381–4391

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1162/necoa01174
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1504.00941
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1609.07843
https://openreview.net/forum?id=SyyGPP0TZ
https://doi.org/10.48550/ARXIV.2208.06496
https://doi.org/10.1137/0330046
http://arxiv.org/abs/1607.08022

	Breaking Time Invariance: Assorted-Time Normalization for RNNs
	Abstract
	1 Introduction
	2 Related Work
	3 Assorted Time Normalization
	4 Experiments
	4.1 Synthetic Tasks
	4.1.1 Copying
	4.1.2 Adding
	4.1.3 Denoise Task

	4.2 Language Models
	4.2.1 Metrics
	4.2.2 Character Level Penn Treebank
	4.2.3 WikiText-2

	5 Ablation Studies
	5.1 Input Statistic Invariance Across Time
	5.2 Post Normalization Statistics
	5.3 Optimal k Value for ATN Method

	6 Conclusion
	Acknowledgements
	Appendix A: Proof of Proposition 1
	Appendix B: Invariance Properties
	References

