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Abstract
In this paper, a novel methodology is introduced for the inverse optimal control of non-affine,
nonlinear and discrete-time systems. Although inverse optimal control of affine systems is
studied in detail in technical literature, there is no adequate research about its implementation
on non-affine systems. here are two main contributions of this work. Firstly using the input–
output data of the system to be controlled its NARMA-L2 model is obtained using a multi-
layer feedforward neural network, this step provides a conversion from a non-affine to affine
system model. After the affine system model is obtained, the inverse optimal control law
is applied. The second contribution of this paper is the computation of the inverse optimal
control signal. The selection of the P matrix in the control law is crucial since its value
directly affects the control performance. Here a novel method is proposed where an adaptive
and optimal P matrix is computed online using a recurrent neural network to minimize a
predefined cost function. The performance of the proposed control method is evaluated by
simulations performed on benchmark problems. The robustness of the method is also tested
by additional simulationswhere noise and disturbance is imposed on the system. The obtained
results justify the applicability of the proposed approach.

Keywords Adaptive control · Inverse optimal control · NARMA-L2 Model · Non-linear
nonaffine systems

1 Introduction

Optimal control theory is a well-established area with an abundance of both theoretical and
practical applications. The formulation of the optimal control law yields the Hamiltonian–
Jacobi–Bellman (HJB) equation. Solution of the HJB equation for linear systems leads to
the linear regulator problem and the optimal control law can be obtained using the Ricatti
equation. However, solving HJB equation for nonlinear systems is not a feasible task and
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the solution cannot be easily computed. An alternative method for the optimal control of
nonlinear systems is the inverse optimal control methodology.

The inverse optimal control (IOC) method has been implemented for the solution of
numerous control problems. Numerical methods and machine learning algorithms have also
been integrated with inverse optimal control.

Derivative-free global optimization methods have frequently been employed in order to
optimize the parameters of the inverse optimal control method. A doubly fed induction gen-
erator (DFIG) was controlled by utilizing particle swarm optimization algorithm together
with discrete-time inverse optimal control [1]. Model predictive control (MPC) method
was merged with inverse optimal control using big bang-big crunch (BB-BC) optimiza-
tion algorithm for estimation of a candidate control Lyapunov function [2]. Germinal center
optimization algorithm (GCO) was employed to model a non-uniform competitive-based
particle distribution to establish temporal leadership. This method was used in the design
of a recurrent high order neural network (RHONN) to identify the model of the system to
be controlled, then inverse optimal control law is designed with this identified model [3]. A
linear quadratic regulator (LQR) has been designed based on Jaya algorithm (JA), teaching-
learning algorithm (TLBO) and advanced teaching-learning (ATLBO) and the performance
of these algorithms were compared in optimizing the cost function for a multi agent system
with a focus on inverse optimal approach [4]. Inverse optimal control method with a recurrent
neural network predictor structure has been applied to the control of a hydropower plant via
adjustment of parameters by using the particle swarm optimization (PSO) algorithm [5].

Machine learning based methods have also been integrated with inverse optimal control
technique. Inverse reinforcement learning (IRL) algorithm has been used to solve a tracking
control problem where learning performance objective indices and control policies are based
on inverse optimal control [6]. In another study, an inverse reinforcement learning algorithm
was proposed which is able to infer the reward function without assuming a cooperative
reward and instant communication for diverse set of agents. The proposed method was also
extended to continuous inverse optimal control [7]. Additionally, fuzzy/neural-based adaptive
optimal control strategies for continuous and discrete time nonlinear affine systems have also
been developed. Fuzzy logic systems have been utilized for the investigation of the adaptive
fuzzy inverse optimal control problem for a class of uncertain strict-feedback nonlinear
systems [8]. The immeasurable states in nonlinear uncertain systems were identified by an
observer-based fuzzy adaptive inverse optimal output feedback controller design [9]. For
the quarter-car active suspension system (ASS) model, an adaptive fuzzy output feedback
inverse optimal controller has been applied [10].

Neural network based methods have also been implemented with inverse optimal control
methodology. For trajectory tracking of nonlinear systems with constrained inputs a recur-
rent higher order neural network (RHONN) was used in the inverse optimal control design
[11]. RHONN structure has been integrated with inverse optimal control in many diverse
applications [1–4, 12–20]. For trajectory tracking problem of uncertain complex networks,
a neural network based inverse optimal pinning control strategy has been proposed [21].
A neural identifier based on RHONN was used to identify the dynamics of a robot and
inverse optimal control was applied for its tracking control [22]. In another study, a neu-
ral affine system has been implemented to calculate the insulin delivery rate to control the
glucose level in the blood for type 1 diabetes mellitus T1DM patients in order to prevent
hyperglycemia [23]. An inverse optimal neural controller was utilized also in visual feed-
back control of mobile robots with non-holonomic constraints [24]. In an attempt to apply
inverse optimal control to data obtained via motion capture of collaborative manipulation in
a shared workspace, human-robot collaboration was actualized to learn a cost function that
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predicts how humans move [25]. RHONN was employed to obtain the mathematical model
of a linear induction motor with uncertainties and inverse optimal control was applied for its
control [26]. RHONN was also applied for the identification of impulsive systems and using
the obtained model, impulsive neuro-control method was proposed using inverse optimal
control technique [27]. Based on the neural model obtained under the presence of unknown
bounded disturbances and parameter uncertainties, an inverse optimal neural control method
has been developed by using the passivity concept. The proposed method was used to stabi-
lize a bio-fuel production process [28]. In another application of RHONN, it was employed
for online identification for both charge and discharge processes of a battery bank. A super-
vised control method was developed based on inverse optimal control to solve the reference
tracking problem of the battery bank [29]. There are several other applications of RHONN
integrated with inverse optimal control method. Neural inverse optimal control approach
has been developed to improve the low-voltage ride-through capacity for a grid connected
doubly fed induction generator. In this work, RHONN was utilized to identify the doubly
fed induction generator and DC-link dynamics [30]. By using a RHONN identifier, a neural
inverse optimal control algorithm based controller has been designed to represent the viral
dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients and
schedule theoretical therapies for curing the disease [31]. Neural network architectures other
than RHONN have also been utilized with inverse optimal control. Neural networks have
been employed in prediction, an inverse optimal control based predictor has been designed
for strict-feedforward systems with input delays [32]. Additionally, linearizable nonlinear
systems with input delays have been converted to linear systems based on inverse optimal
predictors by using a differential game approach [33]. In another work, neural networks have
been utilized based on the backstepping technique in the controller with the aim of identifying
the unknown dynamics. An adaptive neural inverse optimal based consensus control method
which minimizes a meaningful cost function has also been proposed [33].

In all of these examples from the technical literature, inverse optimal control methodology
was implemented for the control of affine nonlinear systems, where the control input can be
separated from the nonlinear system dynamics in the mathematical model of the system.
However, the inverse optimal control technique has not been extensively studied for non-
affine systems. In this paper, we propose a method for non-affine nonlinear systems, where
we first convert the non-affine system model to an affine model, by using NARMA-L2
modelling technique. This makes it possible for us to utilize the inverse optimal control
formulation derived for affine nonlinear systems. The NARMA-L2 model is obtained by
using a feedforward neural network. Next, a control Lyapunov function is constructed by
employing a recurrent neural network. The neural network is utilized online to compute the
Lyapunov function continuously, hence the inverse optimal control method is implemented
in an adaptive control architecture.

In a nutshell, the novel contributions of this paper are:

– A neural network based inverse optimal controlmethod is proposed for non-affine nonlin-
ear systems, where NARMA-L2modelling technique is used to convert from the original
non-affine systemmodel to affine systemmodel. A feedforward neural network is utilized
in obtaining the NARMA-L2 model.

– The P matrix in the control Lyapunov function is updated continuously using a recurrent
neural network.

– An adaptive control architecture is implemented for inverse optimal control method
where the optimal values of the P matrix components are computed online using a
neural network.
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The proposed method has been tested by simulations on two different benchmark prob-
lems. The simulation results verify that the introduced control method can successfully
provide stabilization and trajectory tracking control. Moreover, robustness of the method
is also justified by the simulation results obtained under disturbance and noise.

After this brief introduction, Sect. 2 summarizes the principles of inverse optimal control
method. Sections3 and 4 recap the essentials of affine and non-affine systems and NARMA-
L2 models respectively. The proposed method is given in detail in Sect. 5. Simulation results
are presented in Sect. 6. The paper ends with a brief conclusion in Sect. 7.

2 Inverse Optimal Control

Inverse optimal control is an approach where a candidate control Lyapunov function (CLF)
is used to construct an optimal control law directly without solving the HJB equation. A
storage function is used as a CLF candidate and the inverse optimal control law is selected
as an output feedback control, which is obtained as a result of solving the Bellman equation.
Essential features of inverse optimal control are described below [17, 18, 34].

Consider a nonlinear, discrete and affine system given as [20, 35, 36]:

xn+1 = f (xn) + g(xn)un (1)

where xn ∈ R
n , un ∈ R

m , f : Rn → R
n ,g : Rn → R

n×m . Here, xn denotes the state,
un represents the control input at time n ∈ Z+ and f (·), g(·) are smooth functions where
f (0) = 0 and g(xn) �= 0 for all xn �= 0.
For the system given in Eq. (1) it is desired to find a control law which minimizes the

following control Lyapunov functional:

V (xn) =
∞∑

i=n

l(zn) + uTn Qun (2)

In Eq. (2), V : Rn → R
+ represents the Lyapunov function, l : Rn → R

+ is a positive
semi-definite function and Q : Rn → R

m×m denotes a real symmetric and positive definite
weighting matrix. We can rewrite Eq. (2) as:

V (xn) = l (xn) + uTn Run +
∞∑

i=n+1

l (xn) + uTn Run

= l (xn) + uTn Run + V (xn+1) . (3)

From Bellman’s optimality principle [37], it is clear that the value function V ∗(xn) becomes
time-invariant and satisfies the discrete-time Bellman equation for the infinite horizon opti-
mization case [37].

V ∗ (xn) = min
un

{
l (xn) + uTn Run + V ∗ (xn+1)

}
. (4)

It must be noted that the Bellman equation is resolved backward in time. In order to deter-
mine the requirements that the optimal control law must meet, we define the discrete-time
Hamiltonian H (xn, un) as:

H (xn, un) = l (xn) + uTn Run + V ∗ (xn+1) − V ∗ (xn) (5)
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This is used to obtain the control law un by calculating

min
un

H (xn, un) (6)

The value of un , which achieves this minimization, is a feedback control law denoted as
un = ū(xn), then

min
un

H (xn, un) = H (xn, ū (xn)) (7)

A necessary condition, which the feedback optimal control law u(xn) must satisfy [38] is:

H (xn, ūn) = 0 (8)

u(xn) is obtained by computing the gradient of the right-hand side of Eq. (5) with respect to
un and equating it to zero.

0 = 2Run + ∂V ∗ (xn+1)

∂un

= 2Run + gT (xn)
∂V ∗ (xn+1)

∂xn+1
. (9)

The optimal control law is formulated as:

u∗
n = ū (xn)

= −1

2
R−1gT (xn)

∂V ∗ (xn+1)

∂xn+1
, (10)

Here u(0) = 0 and u(xn) is a state feedback control law. Hence, V (xn) becomes a Lyapunov
function and the boundary condition V (0) = 0 in Eqs. (2) and (3) is satisfied. The notation
u∗
n is used to stress that u∗

n is the optimal solution.
Moreover, if H (xn, un) is quadratic in un and R > 0, then the inequality:

∂2H (xn, un)

∂u2n
> 0 (11)

holds as a necessary condition such that the optimal control law given in (10) minimizes the
performance index given in (2). When (10) is substituted in (4), we get

V ∗ (xn) = l (xn) +
(

−1

2
R−1gT (xn)

∂V ∗ (xn+1)

∂xn+1

)T

× R

(
−1

2
R−1gT (xn)

∂V ∗ (xn+1)

∂xn+1

)
+ V ∗ (xn+1)

= l (xn) + V ∗ (xn+1) + 1

4

∂V ∗T (xn+1)

∂xn+1
g (xn) R

−1gT (xn)
∂V ∗ (xn+1)

∂xn+1
(12)

which can be rewritten as

l (xn) + V ∗ (xn+1) − V ∗ (xn) + 1

4

∂V ∗T (xn+1)

∂xn+1
g (xn) R

−1gT (xn)
∂V ∗ (xn+1)

∂xn+1
= 0 (13)

Equation (13) is known as the discrete-timeHJBequation [37]. Solving this partial differential
equation for V ∗(xn) is not straightforward. This is one of themain drawbacks in discrete-time
optimal control for nonlinear systems. To overcome this problem, inverse optimal control
method has been proposed.
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Definition 1 (Radially unbounded function) A positive definite function V (xn) satisfying
V (xn) → ∞ as ‖xn‖ → ∞ is said to be radially unbounded.

Definition 2 (Control Lyapunov function) Let usmake the assumption that V (xn) is a radially
unbounded function, with V (xn) > 0, ∀xn �= 0 and V (0) = 0. If for any xn ∈ R

n there
are real values un such that ΔV (xn, un) < 0, where the difference in Lyapunov function is
defined asΔV (xn, un) = V ( f (xn)+g(xn)un)−V (xn), then V (·) is said to be a discrete-time
control Lyapunov function (CLF) for (1).

Theorem 1 (Global asymptotic stability) The equilibrium point xn = 0 of (1) is globally
asymptotically stable if there exists a function V : Rn → R such that

(i) V is a positive definite function, decrescent and radially unbounded.
(ii) −ΔV (xn, un) is a positive definite function, where ΔV (xn, un) = V (xn+1) − V (xn).

Theorem 2 [39]

u∗
n = −1

2
R−1gT (xn)

∂V (xn+1)

∂xn+1
(14)

is inverse optimal if

– The equilibrium point xn = 0 achieves exponential (global) stability for system (1).
– It minimizes a cost functional defined at (2) for

V̄ := V (x(n+1)) − V (xn) + u∗
n
T Ru∗

n ≤ 0 (15)

where the boundary condition is V (0) = 0.

In the practical implementation of the inverse optimal controlmethod for stabilization control,
a CLF satisfying the required properties [39] is selected as:

V (xn) = 1

2
xTn Pxn P = PT 
 0 (16)

where P a symmetric positive definite matrix, i.e., P = PT 
 0 Then a system given by (1)
with the control law given u∗

n:

u∗
n = −1

2
(R + P1(xn))

−1P2(xn) (17)

where P1(xn) = gT (xn)P f (xn) and P2(xn) = 1
2 g

T (xn)Pg(xn), ensures stability.

For a detailed proof of the Theorem 2, refer to [39].

Theorem 3 [23] Define the tracking error for xn as zn = xn − xδ,n where xδ,n is the desired
trajectory of xn.

The cost functional given in Eq. (2) must be minimized. We need the boundary condition
V (0) = 0 so V (zn) becomes a Lyapunov function. The optimal control law to achieve
trajectory tracking is formulated as:

ucn = −1

2
R−1gT (xn)

∂V (zn+1)

∂zn+1
(18)

When optimal control theory is implemented for the trajectory tracking problem, HJB
equation is obtained as:

l(zn) + V (zn+1) − V (zn)
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+ 1

4

∂V T (zn+1)

∂zn+1
gT (xn)R

−1(zn)g(xn)
V (zn+1)

∂zn+1
= 0 (19)

Equation (18) is an inverse optimal (globally) stabilizing control input along xδ,n if the
following two conditions are satisfied:
Condition (1) Equation (18) provides (global) asymptotic stability of xn = 0 for the system
given by (1) along xδ,n .
Condition (2) The positive definite and radially unbounded CLF V (zn) satisfies:

V := V (zn+1) − V (zn) + uTcn R(zn)ucn (20)

If l(zn) := −V , then V (zn) is a solution for Eq. (19) and it follows that the cost functional
of the tracking error is minimized.

In the practical implementation of the inverse optimal control method for trajectory track-
ing control problem, a CLF satisfying the necessary properties [23] is selected as:

V (zn) = 1

2
zTn Pzn P = PT 
 0 (21)

with the tracking error (zn):

zn = xn − xδ,n =

⎡

⎢⎢⎢⎢⎣

(x1,n − x1δ,n)
·
·
·

(xn,n − xnδ,n)

⎤

⎥⎥⎥⎥⎦
(22)

The P parameter must be selected as symmetric positive definite. This is the minimum
condition that P must satisfy. After that it can be optimized to minimize the stabilization or
tracking error. Various methods have been proposed for the optimization and this is one of
the main focuses of the research on inverse optimal control. In our paper we proposed a novel
method where we optimize the P parameter adaptively with a recurrent neural network.

The inverse optimal control law can be formulated as:

ucn =
∣∣∣∣∣−

1

4
R−1gT (xn)

∂zTn+1Pzn+1

∂zn+1

∣∣∣∣∣

=
∣∣∣∣−

1

2
(R + P2(xn))

−1P1(xn, xδ,n)

∣∣∣∣ (23)

where

P1(xn, xδ,n) =
{
gT (xn)P( f (xn) − xδn+1) for f (xn) � xδ,n+1

gT (xn)P(xδ,n+1 − f (xn)) for f (xn) � xδ,n+1
(24)

and

P2(xn) = 1

2
gT (xn)Pg(xn) (25)

The control input given in (23) is the inverse optimal control law and it ensures the mini-
mization of the cost function given in (21).

The detailed proof of Theorem 3 can be found in [23, 36, 39].
By the given theorem above, the inverse optimal control law can be computed with selec-

tion of appropriate matrix P for discrete time affine-in-input nonlinear system models.
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3 Non-Affine Nonlinear Systems

A nonlinear and affine continuous system is represented as:

ẋ = f (x) + g(x)u (26)

Here x ∈ Rn is the vector of system states, u ∈ Rm is the control input signal vector, f (·)
and g(·) are nonlinear and smooth functions. Note that in this representation, the control
input signal appears linearly and this provides practicability in implementation. However
most of the physical systems cannot be modelled using the affinity assumption since they are
inherently nonlinear. The most general formulation for nonlinear systems is:

ẋ = f (x, u) (27)

When f (x, u) is a smooth function, Eq. (27) can be rewritten in Taylor series expansion form
as in (28) [40]:

ẋ = f0(x) +
k∑

j=1

f j (x)u
[ j] + R(x, u) (28)

In the Taylor series expansion, the terms higher than the first order terms can be neglegted,
which suggests the use of affine system model to approximate nonlinear systems. The com-
mon assumptions in modelling are that the plant under study is affine, i.e., model is linear in
the input variables and the nonlinearities are linearly parameterized by unknown parameters.
Nevertheless, many practical systems, e.g., chemical reactions, PH neutralization processes,
etc., are inherently nonlinear, whose input variables may not be expressed in an affine form.

Feedback linearization method has frequently been applied for non-linear systems [41–
43]. The prominent issue in control of non-linear systems is stabilization. According to
Artstein’s theorem [44], if aCLFexists for affine systems, thismeans that continuous feedback
control also exists. For affine systems a general formulation for feedback law using CLF
is provided in [45]. However for non-affine systems other formulations are provided for
stabilization [40].

In discrete-time, the representations of non-affine and affine systems are given respectively
as:

x(n+1) = f (xn, un) (29)

x(n+1) = f (xn) + g(xn)un (30)

In this work, a technique to apply inverse optimal control method to non-affine systems
is proposed. This method is based on derivation of the NARMA-L2 model of the system to
be controlled and hence converting from a non-affine to affine system model.

4 NARMA-L2 System Identification

In the adaptive control of non-linear systems with unknown model, the first step is the
identification of the system. In other words, a model that relates the inputs and outputs of
the system with minimum error must be obtained. Design of controllers in general depends
on the correct identification of the system model, so the system model should be precisely
obtained for a good control performance. A discrete-time nonlinear and non-affine system
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Fig. 1 A schematic diagram for NARMA-L2 model

can generally be represented by:

y[n + d] = Factual(u[n], . . . , [n − k + 1], y[n], . . . , y[n − k + 1]) (31)

where y[n] is the system output, u[n] represents the control input and d is relative degree.
If the Taylor series expansion of (31) is written down and only the first order terms are
considered, NARMA-L2 model is obtained. Hence, in the neighborhood of an equilibrium
state NARMA-L2 model can be expressed as:

ŷ[n + d] = f̂ (x[n]) + ĝ(x[n])u[n] (32)

Here, f̂ (·) and ĝ(·) are two nonlinear functions to be approximated and x[n] = [u[n −
1] · · · u[n − nu], y[n], . . . , y[n − ny + 1]]T is the input vector for the estimators. nu and ny
symbolize the instances of past control inputs and system outputs included in the input vector.
It is clearly seen from (32) that the control input u[n] appears linearly, separated from the
nonlinear dynamics. So, the NARMA-L2 model represents an affine system. An illustration
of the NARMA-L2 model is given in Fig. 1.

Themain advantages of theNARMA-L2model are its simplicity in implementation and its
requirement of only two submodels to be estimated. Also, in NARMA-L2 model, the control
signal appears linearly, thus it yields an affine model, which is easier to deal with. There are
various control applications based on the NARMA-L2 model in the literature [46–50].

Up to now, the work on inverse optimal control method based on CLF in the literature
mainly concentrates on affine systems. In this study, we propose a method to obtain the
inverse optimal control law for non-affine systems, by making use of the NARMA-L2 model
of the plant to be controlled. Hence, given the input–output data for the non-affine NARX
model of the system, the NARMA-L2 model is computed, and using this model the CLF-
based inverse optimal control law can be obtained. For this purpose, f̂ (·) and ĝ(·) submodels
must be estimated. It is essential that these submodels are precisely estimated since they are
utilized in the computation of the inverse optimal control law given in (23). In this study, we
have employed a feedforwardmultilayer neural network to estimate f̂ (·) and ĝ(·) submodels,
the neural network parameters are trained in order to minimize the error between system and
model outputs [(e(n + d) = y[n + d] − ŷ[n + d]). After identifying the dynamics of the
system as in the model given in Eq. (1), the obtained submodels are used to compute the
inverse optimal control law.
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Fig. 2 NARMA-L2 neural network structure for system identification

5 Neural Network Based Adaptive Inverse Optimal Controller For
Non-Affine Systems

In the technical literature, there are numerous implementations of inverse optimal control
methodology for affine systems,where the control input appears linearly in themodel [51–56].
However, there is no research on application of inverse optimal control method to non-affine
systems. In this paper, a novel approach for the inverse optimal control of non-affine nonliner
systems is proposed. This method is based on converting from a NARXmodel to a NARMA-
L2 model, hence an originally non-affine system can be represented as an affine model. The
overall method consists of two steps. In the first step, the input–output data of the plant to be
controlled is derived, then a feedforward neural network is utilized to obtain the NARMA-
L2 model of the plant from the obtained dataset. When the input–output data is collected
from the plant, this data represents the NARX model of the system, which is a non-affine
model. By converting from NARX model to NARMA-L2 model, an affine model is attained
from a non-affine model. The schematic diagram for the feedforward neural network used in
converting from the NARX model to NARMA-L2 model is given below (Fig. 2):

The inputs to the neural network are the input–output data of the plant to be modelled.
The input and output data are multiplied by different sets of weights in the first layer, they
are fed into the activation function after a bias value is added. The neural network consists of
four layers, in the first, second and third layers hyperbolic tangent function is used and in the
last layer linear function has been utilized. The output of the neural network is the submodel
of the NARMA-L2 model, separate neural networks are employed to estimate f̂ (·) and ĝ(·)
separately. This identification step for the NARMA-L2 model is carried out offline. After
the identification of the plant to be controlled is completed, the second stage is the adaptive
online implementation of the inverse optimal control methodology. The formulation of the
inverse optimal control law has been given in Eqs. (18) and (17), in Sect. 2. In this equation
the P matrix is critical, its value has a direct effect on the control performance. Hence various
methods have been proposed in the literature for the optimization of the P matrix [57–59].

In this paper, a novel approach is proposed where P matrix is determined optimally in
an adaptive manner. A recurrent neural network which works online computes the optimal
values of the components of the P matrix continuously, so that a metric which is a function of
the control error is minimized. The schematic diagram of the proposed control architecture
is illustrated in Fig. 3.
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Fig. 3 Proposed control structure

Fig. 4 Recurrent neural network structure for the calculation of controller parameters

In this architecture the NARMA-L2 sub-blocks f̂ (·) and ĝ(·), which have been identified
with the feedforward neural network, are used to compute the estimated system output y[n+
d]. In order to compute the P matrix entries, a recurrent neural network is employed as
depicted above (Fig. 4):

The optimal P∗ matrix is computed by the recurrent neural network as:

P∗ = Wi (n)T PWi (n) (33)

The weights are updated so that a discrete Lypunov function is minimized.
For stabilization, the Lyapunov function is defined as:

V ∗(xn) = 1

2
xTn P∗xn (34)

For trajectory tracking, it is formulated as:

V ∗(zn) = 1

2
zTn P

∗zn (35)

For trajectory tracking problem, an error is calculated as the difference between the ref-
erence signal and the estimated system output:

et [n] = r [n] − ŷ[n + d] (36)

For stabilization problem, error is obtained as the change in Lyapunov function:

es[n] = V (x(n+1))
∗ − V (xn)

∗ (37)
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If there exists a control Lyapunov function, then the system given in Eq. (1) is stabilizable.
Thus we may utilize the Lyapunov function as the error to the Recurrent Neural Network for
the calculation of the P matrix of the inverse optimal controller.

Hence, for trajectory tracking the weights are updated according to:

Wi (n + 1) = Wi (n) − αP
N∑

k=1

∣∣∣
et
n

∣∣∣ (38)

For stabilization, weights are updated as:

Wi (n + 1) = Wi (n) − αP
N∑

k=1

∣∣∣
es
n

∣∣∣ (39)

Consequently, the elements of the P matrix are updated.
The step by step procedure of the computation of the optimal P∗ matrix by the recurrent

neural network is given in the following:
STEP1—OFFLINE SYSTEM IDENTIFICATION

1. Initialize controller and model parameters:
– P, R,Wi ,W , nu, ny .
– Generate a control input signal u(n). Apply this signal to the
plant to be controlled to compute system output y(n).

2. – Obtain a training dataset by forming
[
u(n) y(n)

]T
by using the

input–output pairs generated in Step 1.
– Here

u(t) = [
u(n) u(n − 1)u(n − 2) u(n − 3)

]

y(t) = [
y(n) y(n − 1)y(n − 2) y(n − 3)

] (40)

3. Construct feedforward neural networks as described in detail
above and train them using the dataset constructed in Step 2 to
estimate NARMA-L2 submodels f̂ (·) and ĝ(·). Separate feedfor-
ward neural networks are employed to estimate f̂ (·) and ĝ(·).

STEP2—ADAPTIVE ONLINE CONTROL

1. By using the estimated submodels f̂ (·) and ĝ(·), compute the esti-
mated system output as given in:

ŷ[n + d] = f̂ (x[n]) + ĝ(x[n])u[n] (41)

– This is going to be used as the information on actual system
output.

2. Compute the error et [n]. For trajectory tracking problem, the dif-
ference between the reference signal and the estimated system
output is computed:

et [n] = r [n] − ŷ[n + d] (42)

123



Neural Network Based Adaptive Inverse Optimal Control… Page 13 of 32    46 

Compute the error es[n]. For stabilization problem the change in
Lyapunov function is computed:

es[n] = V (xn+1)
∗ − V (xn)

∗ (43)

3. Update the weights (Wi ) of the constructed recurrent neural net-
work, described in detail above using problem specified error, in
order to minimize the error:

Wi (n + 1) = Wi (n) − αP
N∑

k=1

∣∣∣
et
N

∣∣∣ (44)

or

Wi (n + 1) = Wi (n) − αP
N∑

k=1

∣∣∣
es
N

∣∣∣ (45)

4. The output of the recurrent neural network is P∗, the optimal P
matrix. Use the computed weights to obtain the elements of P∗,
matrix:

P∗ = (Wi (n + 1))T P(Wi (n + 1)) (46)

5. Using the obtained P matrix , compute the inverse optimal control
law:

un
∗ = α (xn) = −1

2
(R (xn) + P2 (xn))

−1 P1 (xn) (47)

– where

P1 (xn) = ĝT (xn) P∗ f̂ (xn)
)

(48)

and

P2 (xn) = ĝT (xn) P∗ĝ (xn)
)

(49)

6. Apply this computed control input signal to the system to be con-
trolled.

6 Simulation Results

The performance of the proposed neural network based conversion method from non-affine
to affine systemmodel using NARMA-L2 model and adaptive online inverse optimal control
method has been tested by numerous simulations on two different benchmark systems. On
each benchmark system, first the simulation results for the identification of the NARMA-
L2 model by feedforward neural networks is depicted. The identification performance for
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the benchmark systems can be observed in Figs. 5 and 12, respectively. In the identification
step, an affine model is obtained for the non-affine system. Then the simulation results are
illustrated for the adaptive inverse optimal control methodology where the optimal P matrix
is evaluated online by recurrent neural networks.Additionally, simulations are repeated for
the case when a sinusoidal disturbance with a magnitude of 2 units is applied and also for
the case when a white noise with a signal-to-noise ratio (SNR) of 2dB is applied to the
system. It is assumed that disturbance and noise act on the system throughout the simulation.
Consequently, the trajectory tracking problem is simulated for the nominal case when there
is no disturbance or noise, for the case when disturbance is added to the system and also for
the case when noise is added.

In a nutshell, the simulation results for the following cases are presented:

(1) Offline system identification result.
(2) Stabilization performance for the case with no disturbance or noise.
(3) Stabilization performance when sinusoidal disturbance with a magnitude of 2 units is

applied.
(4) Stabilization performance when a white noise with an SNR of 2dB is applied.
(5) Trajectory tracking performance for the case with no disturbance or noise.
(6) Trajectory tracking performancewhen sinusoidal disturbance with amagnitude of 2 units

is applied.
(7) Trajectory tracking performance when a white noise with an SNR of 2dB is applied.

Besides giving the graphs of the simulation results, we also evaluated the performance
of the proposed control method by computing a performance index. For this purpose, we
calculated the integral square error (ISE) performance criterion for each benchmark system
and for each case that was studied. The results are given in Tables 1 and 2. The integral square
error (ISE) performance index is a function of the control error and it is formulated as:

ISE =
∫

e2(t)dt (50)

6.1 Benchmark System I

The first benchmark problem is a non-affine discrete-time systemwith delaywhere the input–
output relation given by:

y(n + 1) = 0.2cos(0.8y(n) + y(n − 1)) + 0.4sin

(
0.8(y(n) + y(n − 1))

+ 2u(n) + u(n − 1) + 0.1(9 + y(n) + y(n − 1))

+2(u(n) + u(n − 1))

10 + cos(y(n))

)
(51)

Figure5 shows the offline system identification result for benchmark system I. It is clearly
observed from the figure that the proposed feedforward neural network structure can success-
fully identify the NARMA-L2 model of the system.The dynamics of this system is described
by a single input–output relation, and the P matrix that is computed to assure stabilization is
1 by 1. Figure6 illustrates the stabilization results for the nominal case. In Figs. 6, 7, 8, 9, 10
and 11, the system output is given together with the computed control input, the error and the
adaptable P matrix component. Figure7 depictures the performance resultswhen a sinusoidal
disturbance with a magnitude of 2 units is applied. Figure8 depicts the stabilization results
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Fig. 5 System identification process based on NARMA-L2 modelling for benchmark system I, a System
identification, b System identification error

Table 1 Results of simulations with respect to ISE performance index for benchmark system I given in (51)

Simulation\cases Nominal Measurement noise Disturbance

Trajectory Tracking 2.36 3.83 2.42

Stabilization 4.850 × 10−8 4.853 × 10−8 4.858 × 10−8

when a white noise with a 2dB power is applied. The figures clearly show that the proposed
control method can successfully provide good stabilization control and also can effectively
deal with disturbance and noise. Figure9 shows the performance of the proposed method
for the trajectory tracking problem. It is clearly seen that the proposed control methodology
can provide successful tracking and the transient effects are quickly diminished. Figure10
illustrates the trajectory tracking performance of the system when a sinusoidal disturbance
is applied and Fig. 11 depicts the case when noise is added.

In Table 1, the integral square error (ISE) performance index computed for each simulated
case for benchmark system I is tabulated.

6.2 Benchmark System II

The second benchmark system is a second order non-affine plant that is characterized by the
equations given in (52).

x1(n + 1) = x2(n)

x2(n + 1) = sin(x1(n)u(n)) + u(n)(5 + cos(u(n)x2(n))

y(n) = x1(n) (52)
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Fig. 6 Stabilization results for the nominal case for benchmark system I. a System output, b Inverse optimal
control law, c Error to the equilibrium point, d P parameter
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Fig. 7 Stabilization results when a sinosoidal disturbance with a magnitude of 2 units is applied for benchmark
system I. a System output, b Inverse optimal control law, c to the equilibrium point, d P parameter
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Fig. 8 Stabilization results with 2dB (SNR) white noise for benchmark system I. a System output, b Inverse
optimal control law, c Error to the equilibrium point, d P parameter
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Fig. 9 Trajectory tracking results for the nominal case for benchmark system I. a System output, b Inverse
optimal control law, c Tracking error, d P parameter
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Fig. 10 Trajectory tracking results when sinusoidal disturbance with a magnitude of 2 units is applied for
benchmark system I. a System output, b Inverse optimal control law, c Tracking error, d P parameter

This system has two states, and the P matrix is a 2 by 2 matrix. To assure stabilization, the
non-diagonal entries of the P matrix are assumed to be zero. Two separate neural networks
have been designed to adaptively update the diagonal elements, P11 and P22. Firstly, the
offline system identification step has been carried out for benchmark system II and the result
is illustrated inFig. 12.Thefigure clearly shows the success of this identificationprocess based
on NARMA-L2 modelling. In Fig. 13, the stabilization results are given for the nominal case
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Fig. 11 Trajectory tracking results with 2dB (SNR) white noise for benchmark system I. a System output, b
Inverse optimal control law, c Tracking error, d P parameter
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Fig. 12 System identification process based on NARMA-L2 modelling for benchmark system II, a System
identification, b System identification error

where there is no disturbance or noise. In Figs. 13, 14 and 15, the results that are illustrated
respectively are the states x1 and x2, the control input u, the error in state x1 (the error in state
x2 is not shown since it is one-step delayed version of the error for x1), and the evolution of
the diagonal terms of the P matrix, P11 and P22. Figure14 depicts the obtained results when
a sinusoidal disturbance with a magnitude of 2 units is applied to the system and Fig. 15
shows the stabilization results when a white noise with a SNR of 2dB is applied. It can be
observed from these figures that the proposed control method is successful in stabilizing the
system. Also, it is verified by the obtained results that the effects of the disturbance and noise
can be successfully suppressed.

Next, benchmark system II is used to solve a trajectory tracking problem. State x2 is
selected as the system output to track a given reference trajectory. State x1 is the one step
delayed version of x1. In this case, the adaptable P matrix is 1 by 1, the recurrent neural
network is used to optimize a single parameter. The trajectory tracking results for benchmark
system II are illustrated in Figs. 16, 17 and 18. In these figures, the graphs of the systemoutput,
the computed inverse optimal control law, the trajectory tracking error and the P parameter are
provided. In Fig. 16, the trajectory tracking results for the nominal case with no disturbance
or noise are illustrated. In Fig. 17, results obtained for the case when a sinusoidal disturbance
with amagnitude of 2 units is applied to the systemare shown. Figure18 depictures simulation
resultswhen a 2dBwhite noise is applied to the system.All the results justify that the proposed
control method can successfully provide good trajectory control and also can effectively deal
with the effects of disturbance and noise.

Additionally, the integral square error (ISE) performance index calculated for each sim-
ulated case for benchmark system II is given in Table 2.
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Fig. 13 Stabilization results for
the nominal case for benchmark
system II, a State x1, b State x2,
c Inverse optimal control law, d
Error to the equilibrium point, e
P11 element of P matrix, f P22
element of P matrix
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Fig. 14 Stabilization results
when a sinosoidal disturbance
with a magnitude of 2 units is
applied for benchmark system II.
a State x1, b State x2, c Inverse
optimal control law, d Error to
the equilibrium point, e P11
element of P matrix, f P22
element of P matrix
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Fig. 15 Stabilization results with 2dB (SNR) white noise for benchmark system II. a State x1, b State x2, c
Inverse optimal control law, d Error to the equilibrium point, e P11 element of P matrix, f P22 element of P
matrix
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Fig. 16 Trajectory tracking results for the nominal case for benchmark system II. a System output, b Inverse
optimal control law, c Tracking error, d P parameter

Table 2 Results of simulations with respect to ISE performance index for benchmark system II given in (52)

Simulation\cases Nominal Measurement noise Disturbance

Trajectory tracking 1.46 3.12 2.35

Stabilization 4.855 × 10−8 4.850 × 10−8 4.898 × 10−8
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Fig. 17 Trajectory tracking results when a sinosoidal disturbance with a magnitude of 2 units is applied for
benchmark system II. a System output, b Inverse optimal control law, c Tracking error, d P parameter

7 Conclusion

In technical literature, there are numerous works on inverse optimal control of affine nonlin-
ear systems, however there is no significant research on the application of inverse optimal
control method on non-affine systems. In this paper, a novel control approach is proposed for
non-affine nonlinear discrete time systems, based on inverse optimal control methodology.
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Fig. 18 Trajectory tracking results with 2dB (SNR) white noise for benchmark system II. a System output, b
Inverse optimal control law, c Tracking error, d P parameter

There are two major contributions of this work. The first one is that given the input–output
data of a non-affine nonlinear system, its NARMA-L2 model is obtained using a multilayer
feedforward controller. Hence the non-affine system is converted to an affine model. The
modelling stage is carried offline. Next, the inverse optimal control law is obtained using
the affine NARMA-L2 model of the system to be controlledby computing an adaptive and
optimal P matrix using a neural network based approach. The design of the inverse optimal
control law boils down to the selection of the optimal P matrix which is directly effective
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on control performance. In this work an adaptive control architecture is proposed where
the P matrix is computed online using a recurrent neural network, so P matrix is adapted
at each time step in order to minimize a cost function derived from the control error. The
extensive simulations performed on two different benchmark systems verify the success of
the proposed control methodology.
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