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Abstract

Approximation of the value functions in value-based deep reinforcement learning induces
overestimation bias, resulting in suboptimal policies. We show that when the reinforcement
signals received by the agents have a high variance, deep actor-critic approaches that over-
come the overestimation bias lead to a substantial underestimation bias. We first address
the detrimental issues in the existing approaches that aim to overcome such underestima-
tion error. Then, through extensive statistical analysis, we introduce a novel, parameter-free
Deep Q-learning variant to reduce this underestimation bias in deterministic policy gradients.
By sampling the weights of a linear combination of two approximate critics from a highly
shrunk estimation bias interval, our Q-value update rule is not affected by the variance of the
rewards received by the agents throughout learning. We test the performance of the introduced
improvement on a set of MuJoCo and Box2D continuous control tasks and demonstrate that
it outperforms the existing approaches and improves the baseline actor-critic algorithm in
most of the environments tested.
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1 Introduction

Policy optimization in reinforcement learning (RL) has achieved notable successes in a wide
range of sequential decision-making tasks, such as for neural network systems [1-4] or the
control of partially observable systems [5, 6]. However, in the deep setting of RL, where
deep neural networks approximate value functions and policies, there exist several issues [7].
The systematic estimation bias that prevents the learning agents from attaining maximum
performance and applicability of the deep techniques to diverse real-world tasks is one of the
difficulties originating from the function approximation [7, 8]. For discrete action spaces, the
estimation bias on the value estimates has been widely investigated for the value-based RL
algorithms [9-13]. In addition, similar work is done in the continuous action domains with
actor-critic techniques for the subtype of the estimation bias, namely, overestimation bias
[7]. However, our recent work [14] demonstrated that actor-critic methods that overcome the
overestimation bias and accumulated high variance induce an underestimation bias on the
action-value estimates.

In continuous control, the estimation bias on the action-value estimates is generally exam-
ined under underestimation and overestimation [14]. Overestimation bias, caused by the
maximization of the noisy estimates in traditional Q-learning [15], results in a cumulative
estimation error on the action values (state-action values or Q-values) throughout the learning
stage [7]. As deep neural networks represent the action and value functions in the deep RL
setting, such a function approximation noise is inevitable [7]. Due to the temporal-difference
(TD) learning [8], this inaccuracy in the value estimation is further amplified [ 7]. The underes-
timation bias, in contrast, is an outcome of Q-learning [15] variants that focus on eliminating
the accumulated overestimation bias [14]. Although a recent objective function proposal in
the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [7], Clipped Dou-
ble Q-learning, is shown to eliminate the overestimation bias and accumulated variance, it
can nevertheless decrease an RL agent’s performance by assigning low values to optimal
state-action pairs and thus, may result in suboptimal policies and divergent behaviors [14].

In the Clipped Double Q-learning algorithm [7], two Q-networks with identical struc-
tures and different parameters are initialized before the learning process [7]. The minimum
of these critics’ estimates is utilized to form the objective of Q-networks during learning.
Despite the decoupled actor and critics, using the minimum Q-value in learning the targets
results in persistent underestimation of the state-action values [14]. Recent works, Weighted
Delayed Deep Deterministic Policy Gradient (WD3) [16] and Triplet-average Deep Deter-
ministic Policy Gradient (TADD) [17], focus on this existing underestimation bias in the TD3
algorithm [7] and introduce a linear combination of the functions of action-value estimates
in forming the objective of Q-networks. Although the recent objective function proposals
[16, 17] are shown to reduce the underestimation bias and improve the TD3 algorithm [7],
their theoretical assumptions on the underestimation of Q-values are either on a strict basis
or infeasible assumptions that prevent their approach to be adapted to the oft-policy learn-
ing. Furthermore, our recent work for the underestimation bias problem, Triplet Critic Deep
Deterministic Policy Gradient (TCD3) [14], heuristically searches for an alternative for the
Q-network objective and proposes a combination of three approximate critics. However,
maintaining three deep networks comes with an intensive computational complexity com-
pared to the TD3 algorithm [7].

In this paper, we extend our previous study [14] on the estimation bias such that we first
examine the current strategies that aim to overcome the underestimation bias in deterministic
policy gradient (DPG) [18] algorithms. We address the detrimental issues in these algorithms
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and explain the infeasible assumptions in their theoretical background. We then derive a
closed-form expression for the estimation error yielded by the Clipped Deep Q-learning
algorithm [7] and our previous work TCD3 [14], without any statistical assumptions that
violate the off-policy RL paradigm, which was not introduced in our previous work. Using
the derived closed-form expressions, we introduce a new variant of Deep Q-learning [19],
Stochastic Weighted Twin Critic Update, that achieves superior performance to our previous
work but with using only two critics and hence, having 33% less time complexity. Our
approach derives a parameter-free linear combination of the functions of two approximate
critics. The weights are sampled from a bias interval corresponding to a significantly smaller
underestimation bias than the existing approaches. In addition to our previous work on the
underestimation bias, the main contributions of this study can be summarized as follows:

e We first address the issues with the existing algorithms that focus on the underestimation
in deterministic policy gradient [ 18] methods. We explain why the statistical assumptions
made in those works cannot be adapted to the off-policy deep RL in continuous action
spaces.

e We derive a closed-form expression for the estimation bias in the Clipped Double Q-
learning algorithm [7] and TCD3 [14]. Theoretically, we show that if the rewards that the
agent receives vary on a large scale, the underestimation of the action-value estimates
detrimentally increases.

e Through an extensive statistical analysis of the expected error in the existing approaches
and derived closed-form expressions, we introduce a stochastic Q-network update rule
in which weights are sampled from a bias interval that is substantially smaller than the
expected errors in the existing approaches and TCD3 [14].

e We empirically verify our claims by comparing the actual and estimated Q-values pro-
duced by the WD3 [16] and TADD [17] algorithms and demonstrating that an increasing
variance of the received reward signals increases the underestimation throughout the
learning.

e Our method is not affected by the variance of the reward signals as it samples the weights
of the Q-networks from an interval, the lower bound of which is linearly decreased. An
extensive set of empirical studies in several challenging OpenAl Gym [20] tasks reflect
our theoretical claims and show that the introduced approach outperforms the competing
methods and improves our previous study in most of the MuJoCo [21] and Box2D [22]
continuous control tasks or provides nearly the same result.

e The source code of our algorithm is publicly available at our GitHub repository! to ensure
reproducibility.

2 Related Work

Prior studies on the approximation error in reinforcement learning have been done by [23,
24] regarding the estimation bias and resulting high variance build-up. This paper focuses
on one of the function approximation error outcomes, namely, underestimating the action-
values. In the following, we extensively investigate the background of the estimation error
phenomenon in deep reinforcement learning.

! https://github.com/baturaysaglam/SWTD3.
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2.1 Estimation Bias

The estimation error induced by the maximization of Q-values has been extensively studied in
discrete action spaces. For Deep Q-learning [19], many techniques were proposed to mitigate
the impacts of the overestimation bias caused by the function approximation and policy
optimization. Hasselt et al. [9] address the function approximation error for discrete action
spaces in their work, Deep Double Q-learning (DDQN), which is one of the successor studies
to Deep Q-learning [19]. By employing two independent and identically structured Q-value
approximators, DDQN [9] obtains unbiased Q-value estimates. Lan et al. [10] modify Deep
Q-learning [19] by utilizing of multiple action-value estimators. Their approach, Maxmin Q-
learning, uses multiple action-value estimates selected through partial maximum operators,
the minimum of which constructs the Deep Q-learning target [ 19]. Additionally, methods that
employ multi-step returns are shown to overcome the estimation bias [11-13, 25] and have
proven to be effective through distributed approaches [12], weighted Q-learning [25], and
importance sampling [11-13, 26]. Lastly, [27] proposed a one-step improvement to reduce
the contribution of each erroneous estimate by reducing the discount factor in a structured
manner.

Although [10] primarily aims to eliminate the overestimation, they show that their method
may yield an underestimation [10]. In contrast to our method, their approach is also not
generalizable to continuous action domains since they do not consider actor networks; hence,
it only operates in discrete action domains. Furthermore, methods that rely on multi-step
returns [11-13, 25] introduce a trade-off between the biased action-value estimates and
accumulated variance, as shown by Schmitt et al. [26]. Compared with the one-step solutions
to the bias-variance trade-off, employing multi-step returns might also be impractical due to
the increased memory demands caused by collecting long trajectories, i.e., the temporally
correlated experiences used in the multi-step TD-learning [8, 11].

While the estimation bias in discrete action space is overcome by the existing Deep
Q-learning [19] variants, they cannot be adapted to the control of the continuous systems
since they do not consider the existence of a separate actor network that chooses continuous
actions [7]. As infinitely many intractable actions exist in continuous action domains, the
maximization of Q-networks cannot be used to select actions. Hence, these mentioned works
cannot be used in continuous action domains, in contrast to our introduced algorithm.

2.2 Function Approximation Error

In continuous control, a direct and one-step solution to the overestimation and variance accu-
mulation has been proposed by Fujimoto et al. [7]. It is shown to It is shown to effectively
eliminate the function approximation error for the deep setting of RL. Their research demon-
strates that the deep function approximation of Q-values causes overestimation bias and
cumulative variance in continuous action domains, which causes the approximate gradient
of the actor network to diverge from the actual gradient. An extension of temporal-difference
learning [11] in the DPG [18] methods, Clipped Double Q-learning [7], on which we build
our algorithm, presents a direct remedy to the overestimation problem by employing two
identically structured Q-networks. On top of Clipped Double Q-learning [7], the delayed
actor updates and target policy regularization through additive policy noise constitute the
TD3 algorithm [7]. TD3 [7] overcomes the overestimation build-up by performing the tar-
get Q-value computation through a minimum of two approximate critics. Their introduced
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update rule, Clipped Double Q-learning [7], is further used in many state-of-the-art contin-
uous control algorithms.

While the improvements introduced by Clipped Double Q-learning [7] can eliminate
cumulative estimation error, using the minimum of two critics causes an underestimation bias
in the Q-value estimations, as empirically shown [14, 16, 17, 28, 29]. First, Wang et al. [29]
focused on the function approximation error in Ensemble Q-learning, in which multiple
function approximators are used to estimate the action values. While the estimation bias
heavily relies on the ensemble size, determining it is highly nontrivial because of the time-
varying nature of the function approximation errors during the learning process. The authors
first derived an upper and lower bound on the estimation bias to tackle such a challenge.
Based on these bounds, the ensemble size is then adjusted to reduce the estimation bias
to nearly zero, effectively mitigating the effects of the time-varying approximation errors.
The proposed method, Adaptive Ensemble Q-learning (AdaEQ), has been shown to improve
learning performance in the MuJoCo benchmark [21]. Secondly, Pan et al. [30] investigated
the use of the Boltzmann softmax operator in updating value functions in actor-critic methods
and showed that it has several advantages that make it preferable. They provided a new
analysis indicating that the error between the value function under the softmax operator and
the optimal can be bounded. Using this finding, they incorporated the softmax operator into the
actor-critic setting to form the Softmax Deep Deterministic Policy Gradient (SD2) algorithm,
which has been shown to reduce the overestimation bias and improve the Deep Deterministic
Policy Gradient (DDPG) [31] algorithm. Next, they extended their technique to double Q-
value estimators, i.e., TD3 [7]. They proposed the Softmax Deep Double Deterministic
Policy Gradient (SD3) algorithm, which has been demonstrated to produce more accurate
value estimations than TD3 [7].

Several techniques have also been proposed for the linear combination of the Q-value
estimates by approximate critics to compute the objective for Q-network update [16, 17].
Specifically, the Weighted Delayed Deep Deterministic Policy Gradient (WD3) algorithm
[16] uses the linear combination of the minimum and average of two Q-networks, where
the hyper-parameter 8 controls the underestimation. The Triplet-average Deep Deterministic
Policy Gradient (TADD) algorithm [17] adopts the same approach yet includes the estimates
of an additional Q-network. Lastly, Cicek et al. [28] extended the WD3 algorithm [16] by an
adaptive B parameter computed using the reward of the terminal transition in each episode.
As the final reward of an episode is not discounted, the Q-value estimate for the terminal
transition corresponds to the reward achieved in the terminal step. Using this, the Adaptive-
WD3 (AWD3) algorithm [28] updates the 8 value through the difference between the reward
and Q-value estimate for the terminal transition.

In contrast to the studies by Wang et al. [29] and Pan et al. [30], we only use the existing
Q-networks in the standard TD3 algorithm [7] to achieve accurate value estimates. While
Wang et al. [29] proposed to overcome the function approximation error in ensemble-based
methods, our emphasis is on double Q-value estimators. Second, the approach of Pan et
al. [30] requires the initialization of an additional actor network, which crucially increases
the computational complexity. The AWD3 algorithm [28] is also not generalizable since
success or failure is defined on the terminal states only for some tasks [32]. Lastly, we note
that WD3 and TADD are extensively reviewed along with our previous work, TCD3 [14], in
later sections and, we use them in our empirical studies to compare our algorithm.
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3 Background

The reinforcement learning paradigm considers an agent interacting with its environment to
learn the optimal, reward-maximizing behavior. In this study, we consider the reinforcement
learning setting represented by a fully observable, finite-horizon Markov decision process
(MDP) defined by the tuple (S, A, R, p, y), where S and A denote the state and action
spaces, respectively, R(s, a,s’) € R is the reward function which can be deterministic or
stochastic depending on the environment, p(s’|s, a) is the transition dynamics, and y is the
constant discount factor. At each discrete time step ¢, the agent observes its state s € S and
chooses an action a € A according to its policy 7, which can be stochastic or deterministic.
Then, based on its action decision given the observed state, the agent receives a reward
r ~ R(s,a,s’) and observes a next state s’ such that s’ ~ p(-|s, a). The objective of the
agent is to maximize the cumulative reward defined as the discounted sum of future rewards
R, = ZZT:t yi~'r;, where T is the index of the terminal time step, r; ~ R(si, a;, Si11)-
The discount factor y € [0, 1) downscales the long-term rewards to prioritize the short-term
rewards more.

The agent learns the optimal policy 7 * that maximizes the expected return Eg; ~ .. 4, ~x [ Ro].
In actor-critic settings where the action space is continuous, parameterized policies 7 repre-
sented by deep neural networks with parameters ¢ are optimized by computing the gradient
of the expected return Vy J (¢) through a policy gradient technique. In this study, we consider
the deterministic policy gradient algorithm expressed by:

Vot (9) = Es~p, [Va Q" (s, @) la=r(s) VoTrs (5], ey

where p, denotes the distribution over the visited states. The expected return after taking the
action a given the observed state s under the current policy 7 is computed by the critic (action-
value function or Q-function) Q7 (s, a) = Es~p, a~x[R:|s, a] which values the quality of
the action decision given the observed state while following the current policy 7. The critic
evaluates and improves the agent’s policy such that it chooses the actions that yield higher
future rewards.

In Q-learning [15], the action-value function Q7 is estimated through recursive Bellman
optimization [33] given the transition tuple (s, a, r, s'):

0(s,a) < Q(s,a) + & [r +yEy #[0G",aN] = QGs, @)]5 @' ~ 7 (s, (@)

where X is the learning rate. For large state and action spaces, the action-value function is
usually estimated by function approximators Qg (s, a) parameterized by 6, also known as
the Q-networks. In the deep setting of Q-learning [15], the Q-network is updated through the
temporal-difference learning [11] by a secondary frozen target network Qg (s, a) to construct
the objective for behavioral Q-network, also known as Deep Q-learning [19]:

y=r+yQu(s'.a); d ~my(s), 3)

where the subsequent action given the observed next state can be obtained from a separate
target actor network 7y for actor-critic settings in continuous control. The target networks
are either updated by a small proportion t at each time step, i.e., 8’ < 70 + (1 — )8, called
soft-update, or periodically to exactly match the behavioral networks called hard-update.
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4 The Underestimation Bias in Deterministic Policy Gradients
4.1 An Informative Analysis on the Existing Approaches to the Underestimation Bias

We start by explaining the current approaches to the underestimation bias in the literature
and emphasize specific points through remarks. Mainly, we investigate the WD3 [16] and
TADD [17] algorithms and the theoretical background of these algorithms. These studies
extend the Clipped Double Q-learning algorithm [7] by replacing the Q-networks’ objective
with a fixed linear combination, as discussed. Let us first consider the WD3 algorithm [16].
In the simplest terms, Q-networks are updated as follows:

2
. /o~ 1— ’o~
y=r+y<ﬂggge;<s,a>+fZQ9;<s,a>>, @)

i=1
J(6) = lly — Qg (s, @)l 5)

where d@’ is the action chosen by the target policy in the next state s” perturbed by a zero-mean
Gaussian noise, i.e., @’ = my (s") + N'(0, 0), o is the standard deviation of the perturbation
noise, and J(6;) is the loss associated with critic Qg,. Here, B € [0, 1] is a parameter that
controls the underestimation since the minimum operator yields the underestimation of Q-
values [7, 14]. Note that this additive exploratory noise does not alter the expected function
approximation error by having a zero mean [7].

The TADD algorithm [17] adopts a similar approach through an additional third critic
employed in Q-learning [15]. In addition, the last K parameters of the third critic are stored
in a critic network buffer, which is used to construct the objective for the Q-networks:

~/ 1 - Y
y=r+y<ﬂg}f12Q9;(S’,a)+( Kﬁ);Q%‘k(s,a)), ©

J©6) = lly = Qs (s, ®)|*. (N

Taking the average of the last K parameters reduces the variance of the Q-value estimates
[17]. In these studies, the errors by the employed Q-networks are represented by probability
distributions, which is feasible as the employment of deep neural networks and bootstrapping
in the Q-learning introduce noise in the action-value estimates [7, 8]. Based on such a prob-
abilistic representation, these works make two assumptions based on the error distributions.
First, it is stated that the error by each of the critics can be represented either by a zero-mean
Gaussian or a zero-mean uniform distribution. Second, error distributions by the two critics
are independent and identically distributed, as shown by Theorems 1 and 2 in [16] and by
Theorem 1 in [17]. Formally, we express the made assumptions in [16, 17] as:

N; ~N(0,6), Z; ~ uniform[-3§, §]; )
(Qo;(s.a) — Q*(s.a)) ~ N; v Z; : ©
P(N1 N N2) =P(N1)P(N2), (10)
P(Z1 N Zy) = P(Z1) P(Zy), (11)

for some parameters § and &, where Q* denotes the actual Q-value of the state-action pair
(s, a). However, the zero-mean assumption violates the existence of the estimation bias:

E[Qg, (s, a) — Q*(s, )] = 0, 12)
E[Qg, (s, a)] = Q" (s, a). (13)
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The latter equation is satisfied since Q*(s, a) is the fixed point of the Bellman operator
77" [33] under the optimal policy 7* [13]. Then, from (13), we infer that each Q, (s, a)
is an unbiased estimator of Q*(s, a), which contradicts the existence of an estimation bias.
Furthermore, the errors of the two critics cannot be entirely independent due to the employ-
ment of the opposite critic in learning the targets and the same replay buffer [7]. Therefore,
assumptions made in the current approaches to the underestimation bias violate the nature of
the Q-learning in off-policy and deterministic policy gradient [18] methods. Finally, we can
conclude this section with the following remarks.

Remark 1 The estimation errors by the two critics in the Clipped Double Q-learning algo-
rithm [7] cannot follow a zero-mean probability distribution. If so, then the existence of an
estimation bias is violated.

Remark 2 The error distributions by the two critics in the Clipped Double Q-learning algo-
rithm [7] are not independent due to the employment of the opposite critic in learning the
targets and the use of the same replay buffer.

4.2 Derivation of the Closed-Form Expression for the Underestimation Bias

By representing the error distributions through Gaussian distributions with non-zero mean
and considering the dependence of the Q-networks, i.e., following Remarks 1 and 2, we begin
to derive a closed-form expression for the estimation bias in the Clipped Double Q-learning
algorithm [7] in a realistic manner. We follow the Gaussian distribution representation for
estimation errors throughout the paper in both our statistical analysis and constructing our
algorithm. The Gaussian assumption is realistic as Q-networks are deterministic function
approximators, that is, each state-action pair corresponds to a single estimation error value.
Additionally, using deep neural networks introduces noise in the estimates, which corresponds
to the variance of the Gaussian error distributions [32]. This is highlighted in Remark 3.

Remark 3 A practical assumption to represent the Q-value estimation error is to use Gaus-
sian distributions, with the mean corresponding to the actual estimation error value and the
standard deviation arising from using deep neural networks.

Fujimoto et al. [7] previously highlighted the presence and effects of overestimation in
actor-critic settings through the gradient ascent in the policy updates. However, using the
minimum operator to compensate for overestimating Q-values may result in underestimated
action-value estimates. We begin by proving through basic assumptions and claims that the
underestimation phenomenon exists in DPG [18] algorithms for environments with varying
reinforcement signals. We follow the gradient ascent approach in [7] to show such underes-
timation.

In the TD3 algorithm [7], the policy is updated using the minimum value estimate by two
approximate critics, Qg, and Qg,, parameterized by 6; and 6,, respectively. Without loss
of generality, we assume that both critics overestimate the action-values, and the policy is
updated with respect to the first approximate critic Qg, (s, a) through the DPG algorithm [18].
The assumption on the overestimation of both Q-networks is valid as the single Q-network
in the Deep Deterministic Policy Gradient (DDPG) algorithm [31] already overestimates the
Q-values, as shown by [7]. First, let ¢approx define the parameters from the actor update by
the maximization of the first approximate critic Qg, (s, a):

¢approx =¢+ leEyvpn [V¢7T¢ ($)Vq QGl (s, a)|a:7'r¢(s)], (14)
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where Z| is the gradient normalizing term such that Z~'|E[-]|| = 1, and 5 > Ois the learning
rate. As the actor is optimized with respect to Qg, (s, a) and the gradient direction is a local
maximizer, there exists ¢ sufficiently small such that if n < ¢, then the approximate value
of the policy, Tapprox, by the first critic will be bounded below by the approximate value of
the policy by the second critic:

]E[QGI (s, 7Tapprox(s))] = E[QGZ (s, ”approx(s))]- (15)

Note that for the latter equation, there could be a local maximizer for which E[Qy,
(s, Tapprox ()] > E[Qp, (s, Tapprox (s))]. However, such a possibility can be neglected in
actor-critic algorithms that utilize Clipped Double Q-learning [7] since the actor is always
optimized with respect to the first critic Qg, [7]. Then, we can treat the function approximation
error for both critics as distinct Gaussian random variables:

Qp, (s,a) — Q%(s, @) = Ny ~ N'(ui, 01),
00, (s, @) — Q%(s, a) = No ~ N (u2, 02).

Following (15) and Remark 1, we have ;1 > uy > 0. As the same experience replay buffer
[34] and opposite critics are used in learning the target Q-values and critics, error Gaussian’s
denoted by (16) are not entirely independent according to Remark 2. Through the first moment
of the minimum of two correlated Gaussian random variables [35], the expected estimation
error for the Clipped Double Q-Learning algorithm [7] becomes:

(16)

E{min (N}}] = 2 + (u = ) @(H—L2) — oy (H—L2), (17)

where 0 = \/012 + 022 — 2po102, p is the correlation coefficient between N; and N;, and
®(-) and ¥ () are the cumulative distribution function (CDF) and probability density function
(PDF) of the standard normal distribution, respectively. Due to the delayed actor updates, the
mean function approximation errors by both critics are not very distant due to the decoupled
actor and first critic. Since the policy updates are delayed, we can assume | ~ Uz, as
extensively used in the reinforcement learning literature [14]. Using this, (17) reduces to:

_ B 0
E[irll}g{Ni}] = — Wi (18)

since ®(0) = 0.5, ¥ (0) = 1/+/2w. Hence, if o1, 02 > /7 /(1 — p)u1, then the action-value
estimate will be underestimated:

]E[gl}nz{Qei (s,a)} — Q*(s,@)] < 0. 19)

From 01,00 > +/7/(1 — p)u; condition, if the pair of critics are highly correlated,
underestimation does not exist. However, a moderate correlation exists between the pair of
critics due to the delayed policy updates, which increases the underestimation possibility [7].

Although the improvements by Fujimoto et al. [7] aim to reduce the estimation error
growth, the variance of the Q-values cannot be eliminated as they adhere to the variance
of the future value estimates and rewards [7]. Furthermore, the Bellman equation [33] in
function approximation settings cannot be exactly satisfied [7], which results in erroneous
Q-value estimates as a function of the actual TD error expressed by (16). Then, we can show
that the variance of the value estimates increases as the agent receives reward signals that
vary on a large scale due to the exploration [32]. As shown in [7], the Q-value estimates can
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Fig. 1 Measuring estimation bias of fine-tuned TD3 versus SWTD3 while learning on MuJoCo and Box2D
environments over 1 million time steps. Estimated and unbiased approximate Q-values are computed through
Monte Carlo simulation for 1000 samples

be expressed in terms of the expected sum of discounted future rewards:

T T
Q0,(5,@) =By aimen LY ¥ ril 1 Yy v (20)

i=t i=t
If the expected estimation errors by both critics are constant, varying reinforcement signals
increase the variance of the Q-value estimates resulting in an increasing underestimation bias.
Since extensive exploration is a mandatory requirement for continuous action spaces [32],
the variance of the reinforcement signals usually increases throughout the learning phase.
Therefore, the underestimation bias on the value estimates becomes unavoidable. Moreover,
the estimation error is not accumulated in the underestimation case due to the TD learning
[8, 11]. Thus, the underestimation bias is far preferable to the overestimated Q-values in the
actor-critic setting [7]. Nevertheless, underestimated action-values may discourage agents
from choosing good state-action pairs for an extended period and reinforce agents to value

suboptimal state-action pairs more frequently [14].

Remark 4 A varying set of reinforcement signals increase the variance of the Q-value esti-
mates, which results in an increasing underestimation bias.

We can show the existence of the underestimation bias in practice by comparing the
unbiased and estimated approximate Q-values while an agent under the TD3 algorithm [7]
is learning on a set of OpenAl Gym [20] continuous control tasks over a training duration of
1 million time steps. The simulation results are reported in Fig. 1. We randomly select 1000
state-action pairs at every step and obtain the estimated Q-values by the first Q-network.
The unbiased approximate Q-values are obtained at every 100,000 time steps by computing
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the discounted sum of rewards starting from a randomly sampled 1000 states following the
current policy. The Monte-Carlo simulation [36] is used over the randomly selected states
and state-action pairs to obtain the average unbiased and estimated approximate Q-values.
Note that the label “Mean Q-value” in Fig. 1 refers to the mean deviation of the Monte Carlo
samples.

From Fig. 1, we observe an apparent underestimation bias throughout the learning phase
such that the estimated Q-values are smaller than the unbiased ones except for a small propor-
tion of the initial time steps. The underestimation bias arises depending on the environment
and either grows or settles to a fixed level. These simulation results verify our claims; the
approximate critics overestimate the actual Q-values at the initial steps. However, when the
agent starts exploring the environment and encounters varying rewards, the variance of the
value estimates increases, and the underestimation bias starts growing. For BipedalWalker
and LunarLanderContinuous, the underestimation bias becomes fixed after a duration. This
is due to the span of the reward space. If the agent encounters a sufficiently large subspace
at the beginning of the learning, the underestimation bias cannot become larger. However,
suppose the agent does not receive a significantly large subspace. In that case, the underes-
timation bias keeps growing even with the delayed target and actor updates as in the rest of
the environments. Although the continuous, multi-dimensional, and large state-action spaces
contribute to the growth of error, the scale of the current RL benchmarks is still very small
compared to real-world tasks [32]. Hence, the underestimation bias will be more detrimental
and inevitable when larger-scaled tasks are introduced.

To overcome the shown underestimation bias, we start by deriving the expected error
induced by the update rule in TCD3 [14] and reducing the number of Q-networks to two
while obtaining the same expected error. Then, through an extensive analysis of the WD3
[16] and TADD [17] algorithms, we introduce our novel, hyper-parameter-free modification
on the target Q-value update that can further reduce the underestimation bias while preventing
the overestimation.

5 Algorithm
5.1 Methodology

To construct our algorithm to overcome the estimation error problem in continuous control
deep RL, we start with an extensive statistical analysis for further comparison with the existing
methods of WD3 [16], TADD [17], and our previous approach TCD3 [14]. For this, we first
consider the Q-network update rule in our previous work, the TCD3 algorithm [14]:

v =r+ymin <g?>§<Q9; ' 70 (). Qo (s, 7 (s’))) , @)

where we employed an additional third critic Qp, with corresponding estimation error
distribution N3 ~ A (w3, 03). As the first critic is used to optimize the policy and due to
the randomness in transition sampling, the same probability distribution can represent the
errors corresponding to the second and third critics, i.e., N3 ~ N (2, 02). We previously
showed that this update rule can upper- and lower-bound the Q-value estimates by taking
the minimum of the maximum of the first two critics and the third critic. Now, let us derive
the expected function approximation error induced by the Q-value target expressed by (21).
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First, expand min(max(Ny, N2), N3) in terms of the maximum of error Gaussian’s:
1 1 1
min(max(Ny1, N2), N3) = Emax(Nl, N>) + §N3 — §|max(N1, N>) — N3|. (22)

It is not trivial to compute the expectation of the latter term in the right-hand side of (22).
However, we can rewrite (22) in terms of the maximum of three correlated Gaussian’s and
use the derivation for its expectation for equal means case from [37]. For this purpose, let
Nmax = max(max(Ny, N2), N3) = max(Ny, N2, N3). Then, the expected value of (22) can
be expressed as:

min(max(Ny, N2), N3) + Nmax = max(Ny, N2) + N3, (23)
E[min(max(Ni, N2), N3)] = E[max(Ni, N2)] + E[N3] — E[Nmax]. (24

Under the assumption made in Sect.4 that w1 ~ py = w3, let us define u (= p; =
2 = p3. Now, we can directly import the special case for the expectation of the maximum

of correlated Gaussian’s from [37]. The equal means case states that if N; ~ N (u, o7), then
the expected value of the maximum of three Gaussian’s can be expressed as:

1
E[max(Ni, No, N3)] = u + ——(012 + 613 + 62.3), 25
[max(Ny, N2, N3)] = 2\/5( 12+613+623) (25)

where 0; ; = \/ 012 + sz — 2po;o ;. Due to the same experience replay [34] used in updating

the Q-networks and decoupled actor and the first critic, without loss of generality, we can
further assume that 6 := 0; » = 0 3 = 6, 3. Then, (25) reduces to:

30
23/27

Furthermore, using the exact distribution of E[max(N1, N2)] from [35], similar to (17), we
have:

E[Nmax] = E[max(N1, N2, N3)| = u + (26)

M1 — K2 M1 — K2
E[E%{Ni}] =u2+ (1 — Mz)‘D(T) + 9¢(T)~ 27
Using the assumptions made, we can simplify (27) into:
0
E[max(Ni, No)] = pu + —(=. (28)
o 2w
Inserting (26), (28) and E[N3] = u into (24), we derive:
0
E[min(max(Ny, N2), N3)] = u — . 29)
1 2 3 128 Zm

Replacing p with o, we can express the expected function approximation error for
min(max(Q1, Q2), Q3) in terms of the expected error for the Clipped Double Q-learning
[7] denoted by (17) as:

E[ min {N;}] + p2

=1,

E[min(max (N, N2), N3)] = (30)

2

This expected estimation bias is slightly less than the average of the underestimation in TD3
[7] and overestimation in the DDPG algorithm [31]. As the variance of the value estimates
by two correlated critics are greater than the expected function approximation error, (30) is
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still an underestimation. We can further reduce this underestimation by replacing uo with 1
in (30) as uy > po2 > 0:

S g <ir£}l'12(Q9i’(s/! 7T¢/(S/))) 4 Qel, (S” 7'[¢/(S’))> . 31

Note that although we assume p := pu; = pp = 3 to benefit from the special case for
the expectation of maximum of correlated Gaussian’s across (26)-(29), we use u; > U2
to derive the latter equation. While the actor network is optimized with respect to Qg,,
there can be uy > p for some states since Qg, and Qp, are not independent due to the
use of the same experience replay buffer [7]. Nevertheless, this possibility remains for the
minority of the encountered states since the actor is always optimized with respect to Qpg,
[7]. Therefore, the relation 1 = o + « holds for « > 0 in reality since we consider the
expectation over the visited states. However, x becomes smaller compared to 1 and p7 in
the expectation when we account for the possibility of ;o> > 1. Nonetheless, to obtain the
same expected function approximation error of TCD3 but with two Q-networks, we approach
(30) in a realistic manner by using the precise fact of 1 > > to derive (31). Observe that
the expected value of (21) and (31) are the same. We eliminate the computational burden
introduced by employing the third Q-network while attaining the same expected error. Hence,
the computational complexity is reduced by 33%.

Let us show the expected error by the WD3 [16] and TADD [17] algorithms. Update rules
in these methods were previously expressed in (4) and (6), respectively. Using the Gaussian
error distributions in (16) and the expectation of the minimum of two correlated Gaussians
in (18), the expected error of WD3 [16] is expressed as:

1-8 & 0 1-p2
E[B min N; 72 1= —B— 75 N,
[5,&1}{‘2 i+ > L nil = Bui ﬂer > L i

0
~ By 80 1 (32)
Bu ﬂ\/271+( B,

0
=P A

Note that (32) is satisfied as u ~ 1 &~ o = p3. Similarly, TADD [17] yields the following
expected error:

E[p min Ni + < ﬁ) ZN3 Kl =B — ﬂr Zm ks
~ B — B—— + (1 — B, (33)
Bu ﬂ\/E—H B
0
=M — ’BE’

where again, the latter equations are satisfied by 1 ~ u; ~ uy = u3. Essentially, from (32)
and (33), we observe that the estimation bias in the WD3 [16] and TADD [17] algorithms
are the same. Moreover, by (30), we can infer that the following equations hold:

ercp3 < €wps = €tapp if B, < 0.5, (34)
€1CcD3 > €wp3 = €tapp if B > 0.5,
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where € denotes the estimation bias. We highlight our theoretical findings in the following
Remarks.

Remark 5 The Q-network update rule in the WD3 [16] and TADD [17] algorithms yield the
same estimation bias.

Remark 6 1f B > 0.5, the expected estimation bias induced by TCD3 [14] is larger than the
bias induced by WD3 [16] and TADD [17], and vice versa.

Although the WD3 [16] and TADD [17] approaches violate Remarks 1 and 2, utilizing
a  parameter enables the control of the underestimation bias. However, having a fixed 8
is a task-specific greedy approach that cannot prevent the increasing underestimation bias
as the variance of the reward signals increases throughout the learning. To overcome such
an issue, we uniformly sample the B parameter from an interval, the lower bound of which
linearly decreases throughout the learning, consistent with the increasing variance of the
reinforcement signals. To specify the upper and lower bounds for such sampling interval,
we leverage the findings in our previous work [14]. In [14], we showed that the estimation
error by the Triplet Critic Update remains an underestimation, the absolute value of which
is significantly smaller than that of Clipped Double Q-learning [7]. Although the estimation
bias is not completely eliminated, the existing yet significantly decreased underestimation
could dramatically improve the performance since underestimation is more preferable to
overestimation [7]. As our previous work [14] corresponds to 8 = 0.5 in (32) and (33), we
set the upper and lower bound of the interval to 0.5 at the beginning of the learning. Then,
we linearly decrease the lower bound so that the contribution of an increasing variance of
the rewards is also decreased throughout the learning. As we do not know the exact values
of u; and 6, we are sure that & = 0 yields overestimation, the final lower bound cannot be 0
but should be a small number, slightly larger than 0. For this, we set the final lower bound of
the bias interval to a small number « = 0.05. Formally, we obtain the 8 parameter as:

O 05, )

50 (g0 gO)] (36)

/3(’) ~ uniform[ﬂ/(t), ,3/(0)]’ 37)
0 _

D g0 _ ﬁ#"‘ X (t + 1), (38)

where ) is the sampled S value at time step 7, 8’*) is the lower bound of the sampling
interval at time step ¢, and 7T is the number of total training iterations. One concern with this
update rule is that, as the exact estimation error cannot be known in theory, it may result
in overestimation for some time steps. In addition, estimation error accumulates through
subsequent updates in which Q-values are overestimated [7]. Nevertheless, the accumulated
error will be clipped once a § value that yields underestimation is sampled. Therefore, due to
the randomness, the estimation error does not accumulate over a significant number of time
steps throughout the learning, and the RL agents can tolerate such slightly overestimated
Q-values [14].

This forms our parameter-free update rule, Stochastic Weighted Twin Critic Update.
As a result, our modification offers accurate Q-value estimates without introducing hyper-
parameters and networks. We summarize our introduced approach in Algorithm 1 and the
resulting algorithm built on the TD3 algorithm [7], Stochastic Weighted Twin Delayed Deep
Deterministic Policy Gradient (SWTD3), in Algorithm 2.
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Remark 7 Due to the decreased lower bound of the 8 sampling interval and hence the mean
of the g distribution, the introduced Q-network update rule is not affected as much as when
B is fixed.

Remark 8 The estimation error induced by Stochastic Weighted Twin Critic Update may
result in overestimation for some training iterations, especially in the later stages of learning,
since the lower bound of the f interval becomes very small. However, if a 8 value correspond-
ing to the underestimation is sampled, the overestimation will be clipped. Hence, estimation
error does not accumulate over a significant number of time steps in the SWTD3 algorithm
throughout learning due to its stochastic nature.

Algorithm 1 Stochastic Weighted Twin Critic Update (SWT)
Require: Q"i’ Qgé, s’ a, O 8, T

1: B ~ uniform[8’, B'©]

2y<r+y <ﬂiril%f12(Q9; ', 7 () + (1 = B Qg (', gy (s/))>

©0) _
3: ﬂ’eﬁ’(o)—ﬁﬂ%x(hkl)

4: return y, 8’

Algorithm 2 SWTD3
1: Initialize critic networks Qg, , Qp,, and actor network 7y with randomly initialized parameters 0y, 62, ¢
2: Initialize target networks ¢’ < ¢, 6] < 61,6} < 6,
3: Initialize replay buffer B
4: Initialize the lower bound of the 8 sampling interval g © 05
5:fort =1to T do
: Select action with exploration noise a ~ 7y (s) + N (0, 0), and observe reward r and new state s’
Store transition tuple (s, a, r, s")in B
Sample mini-batch of K transitions (s, a, r, s") from B
a < my (s") + clip(N(0, o), —c, ¢)
10: 3. p < SWT(Qy. Q.5 a. 'V p/.1.T)
11:  Update critics 6; < argmingt_ Sy — Qg (s, a))z/K
12:  if t mod d then

0%

13: Update ¢ by the deterministic policy gradient:
14 Vel @) = ¢ X VaQp, (5. lazry, Vo7 (s)
15: Update target networks:

16: 91./ <~ 10+ (1 - ‘17)91./

17: ¢ —1p+(1—1)¢

18:  endif

19: end for

5.2 Algorithmic and Complexity Comparison with the Existing Strategies
We investigate how our method differs from the previously examined approaches to the

underestimation bias. First, we derive our method by assuming positively biased Q-value
estimators and dependence of the approximate critics, which are mandatory and realistic in
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practice. These requirements were previously summarized in Remarks 1 and 2, respectively.
Second, our method does not introduce any hyper-parameter to be tuned in contrast to the
WD3 [16] and TADD [17] algorithms that require the § parameter to be tuned, which controls
the underestimation.

As we explained previously, the TD3 [7] and WD?3 [16] algorithms maintain two critics
while TADD [17] trains three critics. Although the Q-network objective computation requires
the estimation of target Q-networks, the behavioral Q-networks must be maintained as the
soft or hard update is used to update the corresponding target networks. Moreover, the TADD
algorithm [17] uses estimations of K target Q-networks in constructing the Q-network objec-
tive. Nevertheless, the time complexity of backpropagation through a network matches or
is larger than the forward propagation. Hence, we consider the time complexity as the only
number of backpropagated Q-networks. Therefore, SWTD3, TD3 [7] and WD3 [16] match in
terms of the run time and are bounded by the time complexity of TADD [17]. The following
Remarks are made to conclude this comparison.

Remark 9 Our method introduces an analytical solution to the underestimation bias for deter-
ministic policy gradients by considering biased Q-value estimators and dependence of the
Q-networks in Clipped Double Q-learning [7], contrasting with the WD3 [16] and TADD
[17] studies.

Remark 10 Our method does not introduce any hyper-parameter to be optimized, in contrast
to WD3 [16] and TADD [17], in which the underestimation control parameter 8 requires to
be tuned for each continuous task.

Remark 11 The time complexity of the TD3 [7], WD3 [16], and SWTD3 algorithms match
and are bounded by the time complexity of the TADD algorithm [17].

Lastly, the previously mentioned Weighted Q-learning algorithm (WQ-L) [25] employs
an update rule similar to ours, that is, the weighted average of two value estimators is used
to construct the Q-network target. However, WQ-L [25] uses a hypothetical approach based
on the Kullback-Leibler divergence to determine the weight values. In contrast, we consider
the increasing variance of reinforcement signals to uniformly sample the weight value from
an interval, the lower bound of which linearly decreases throughout learning. Furthermore,
a single Q-value estimator is updated per learning step in the WQ-L algorithm [25], chosen
uniformly. This cannot be adapted to actor-critic algorithms for continuous control. First, the
actor’s performance is assessed under the first Q-network. Thus, the first Q-network should
have credible knowledge about the action-values. Second, the first Q-network is updated
through the learning target constructed by its Q-value estimates in conjunction with the
second Q-network’s estimates. For the first Q-network to gain reliable knowledge about
action-values, estimates of the second Q-networks should also be reliable since they both
form the Q-network target y. This cannot be achieved under the WQ-L algorithm for actor-
critic methods since one Q-network is updated at a time, which would substantially slow the
learning of the actor network. In summary, update rules in our approach and WQ-L have
similar formulations, yet the selection of the weight parameter and the algorithms’ operation
domain are significantly different.

6 Experiments

We evaluate the performance of our estimation bias correction approach by first demonstrating
the estimated and actual Q-values of SWTD?3 versus TD3 [7], WD3 [16], and TADD [17].
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Table1 WD3 and TADD

environment specific weight Environment WD3 TADD

values Ant-v2 0.75 0.95
BipedalWalker-v3 0.5 0.5
HalfCheetah-v2 0.45% 0.95%
Hopper-v2 0.50% 0.95%
HumanoidStandup-v2 0.30° 0.30P
Humanoid-v2 0.30° 0.30°
InvertedDoublePendulum-v2 0.75% 0.95%
InvertedPendulum-v2 0.75% 0.95%
LunarLanderContinuous-v2 0.45> 0.45>
Reacher-v2 0.152 0.95%
Swimmer-v2 0.45° 0.20
Walker2d-v2 0.45% 0.95%

4As given in the paper
YFine-tuned

Then, we evaluate the learning performances of RL agents under the SWTD3, TD3 [7], WD3
[16], and TADD [17] algorithms in MuJoCo [21] and Box2D [22] continuous control tasks
interfaced by OpenAl Gym2 [20]. We also consider our previous work, TCD3 [14], in our
comparative evaluations for discussion. For reproducibility and a fair evaluation procedure,
we directly follow the same set of tasks from MuJoCo [21] and Box2D [22] without modifying
the environment dynamics.

6.1 Implementation Details and Experimental Setup

To implement the TD3 algorithm [7], we use the author’s GitHub repository.> The imple-
mentation of TD3 [7] is the fine-tuned version of the algorithm. This version of TD3 [7]
differs from the one introduced in [7] such that the number of hidden units in all networks is
reduced to 256, the batch size is increased from 100 to 256, learning rates for the behavioral
actor and critic Adam optimizers [38] are decreased from 1073 to 3 x 1074, and 25,000
time steps of pure exploratory policy is employed in all environments. Furthermore, we built
our modification on the TD3 [7] implementation such that the target Q-value computation
is replaced by Algorithm 1. To ensure stability over updates and for consistency with our
theoretical approach, the actor in SWTD3 is always optimized with respect to the first critic,
as in the TD3 [7] and TCD3 [14] algorithms.

To implement the baseline algorithms, WD3 [16] and TADD [17], we use the TD3 algo-
rithm’s repository. We follow the same parameter, network, and Q-value update structures in
[16] and [17] such that we replace the target Q-value computation and initialize an additional
Q-network if required. For the pre-defined weight parameter §, we use the values for the
environments presented in the respective papers. We manually fine-tune the § value over a
training duration of 1 million time steps for ten random seeds for the rest of the environments.
The values with the highest average of the last ten evaluation return over ten random seeds are
chosen to train WD3 [16] and TADD [17] algorithms. Table 1 presents the used environment-

2 https://gym.openai.com/.
3 https://github.com/sfujim/TD3.
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Fig. 2 Measuring estimation bias produced WD3 versus SWTD3 while learning on MuJoCo and Box2D
environments over 1 million time steps. Estimated and unbiased approximate Q-values are computed through
Monte Carlo simulation for 1000 samples

specific weight parameter 8 values for the WD3 [16] and TADD [17] algorithms. Values that
we fine-tune and presented in [16, 17] are marked.

Each task in the Q-value comparisons is run for 1 million time steps, and curves are derived
through the same procedure explained in Sect.4. We perform evaluations on every task by
running the algorithms over 1 million time steps and evaluating the agent’s performance
in a distinct evaluation environment without exploration noise and learning at every 1000
time steps. Each evaluation report is an average of ten episode rewards. The results are
reported over ten random seeds of the Gym [20] simulator, network initialization, and code
dependencies.

6.2 Discussion
6.2.1 Q-value Comparisons

Actual and estimated Q-value comparisons for our approach versus TD3 [7], WD3 [16], and
TADD [17] over six OpenAl Gym [20] continuous control tasks are reported in Figs. 1, 2,
and 3, respectively. In addition, we provide the Q-value estimation results for our approach
versus the competing methods in a single plot in Fig.4. SWTD3 obtains more accurate Q-
value estimates than TD3 [7] and the baseline algorithms in all of the environments tested.
Our empirical findings indicate several cases. First, we observe in the baseline Q-value
estimations that the underestimation increases since the variance of the received reward
signals grows throughout the learning, reflecting Remark 4. Second, although our method
obtains fairly accurate Q-value estimates and is not affected by an increasing reward variance,
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Fig. 3 Measuring estimation bias produced TADD versus SWTD3 while learning on MuJoCo and Box2D
environments over 1 million time steps. Estimated and unbiased approximate Q-values are computed through
Monte Carlo simulation for 1000 samples

the Q-values are overestimated in the initial steps. This is due to the large 8 values sampled
at the beginning of the learning. However, as we discussed, such overestimated Q-values are
tolerated by the agent, and the estimations reduce to a negligible margin of error, verifying
our claim in Remark 4.

Furthermore, as stated previously, we fine-tune the 8 value for the environments that are
not reported in [16, 17]. Our fine-tuning results show that the corresponding f values in
these environments are the same for WD3 [16] and TADD [17] since the expected function
approximation error is also the same, as highlighted in Remark 5. As a result, the mean
estimation errors in these environments are practically the same for WD3 [16] and TADD [17],
particularly, BipedalWalker, HumanoidStandup, Humanoid, and LunarLanderContinuous.
For the environments that are reported in [16, 17], WD3 [16] obtains more accurate Q-
value estimates than TADD [17] since 8 = 0.95 used in the TADD algorithm [17], which
corresponds to a significant underestimation error due to the large contribution of the negative
reward variance, as shown explicitly in (33). Our method attains substantially more accurate
Q-value estimates than the competing approaches. It overcomes the effects induced by the
increasing variance of the received reinforcement learning signals through sampling from an
estimation error interval, the lower bound of which is constantly decreased, verifying Remark
7.

6.2.2 Evaluation
Table 2 reports the evaluation results in terms of the average of the last ten evaluation rewards

over ten random seeds. Additionally, Fig.5 depicts the corresponding learning curves. From
our experimental results, we observe that our method either matches or outperforms the
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Fig. 4 Measuring estimation bias of WD3, TADD, and fine-tuned TD3 versus SWTD3 while learning on
MuJoCo and Box2D environments over 1 million time steps. Estimated and unbiased approximate Q-values
are computed through Monte Carlo simulation for 1000 samples

performance of TD3 [7] and baseline algorithms in terms of the learning speed and highest
evaluation return. In the environments such as BipedalWalker, Humanoid, and LunarLander-
Continuous, where our algorithm and competing approaches converge to the approximately
same highest evaluation returns, Fig.5 demonstrates that SWTD3 obtains a faster conver-
gence by largely shrinking the underestimation bias and overcoming the increasing reward
variance. Moreover, we do not observe a significant performance difference in trivial envi-
ronments, e.g., InvertedDoublePendulum, InvertedPendulum, and Reacher, as they do not
require complex solutions [39].

We observe that TCD3 [14], WD3 [16], and TADD [17] exhibit a better performance than
TD3 [7]. However, in the environments reported by [17], where B = 0.95, the performance
of TADD [17] is very similar to TD3 [7] as 8 = 1.0 corresponds to the same expected error
in TD3 [7]. Furthermore, from our discussion in Remarks 5 and 6, and theoretical analysis in
(30), (32), and (33), we infer that TCD3 [14], WD3 [16], and TADD [17] yield approximately
the same performance for § = 0.5, which is depicted in the BipedalWalker environment. In
addition, when the S value of WD3 [16] is smaller than that of TADD [17], it outperforms
TADD [17] since a small fixed 8 value often corresponds to a decreased underestimation
error. It exhibits the same performance in contrast when the g values are the same. Overall,
these results are consistent with our Q-value comparisons and reflect the theoretical insights
made in this study.

Ultimately, some methods exhibit a worse performance than what is outlined in the original
articles. This is due to the stochasticity of the environment dynamics, that is, used dependen-
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Fig.5 Learning curves for the set of OpenAl Gym continuous control tasks. The shaded region represents half
a standard deviation of the average evaluation over ten trials. Curves are smoothed uniformly with a sliding
window of size 10

cies, hardware, and random seeds have a large effect on the performance of reinforcement
learning algorithms [39]. Nevertheless, we use the same set of seeds for all algorithms in our
experiments, and evaluation results would be consistent if we used different seeds, which
suffices a fair evaluation procedure [39]. This is also valid for the resulting performances
when the same 8 value is used for WD3 [16] and TADD [17]. The algorithmic differences
alter the pseudorandom number order in the environment dynamics and cause the perfor-
mances to differ slightly even under the same g value. Nonetheless, the overall performances
are practically the same.
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7 Conclusion

In this paper, we focus on the underestimation of the Q-values in deterministic policy gradient
[18] methods. We extend our previous work on the underestimation by addressing the infea-
sible assumptions in the existing approaches that prevent them from adapting to off-policy
actor-critic algorithms. We support our claims through Remarks and show that receiving
different reward signals that vary on a large scale increases the underestimation of the action-
value estimates. Then, through an extensive analysis of the estimation bias induced by the
existing approaches, we introduce our novel Deep Q-learning [19] variant that forms a linear
combination of two Q-value approximators with weights sampled from a shrunk estimation
bias interval. Having our statistical analysis and extensive set of empirical studies combined,
we demonstrate that the introduced approach notably outperforms the existing methods and
improves our previous study. We also provide the exact implementation of the introduced
algorithm at the GitHub repository' for reproducibility concerns.

In future work, a set of possible research directions could be: (i) The estimation bias
interval from which the weights for the Q-value approximators are sampled can be shrunk
in a non-linear manner, e.g., exponentially, instead of the linear decay presented in this work
if further supported by theoretical analysis. Furthermore, a supervised learning method can
also be employed to decrease the lower bound of the estimation bias interval by monitoring
the learning progress of the agents. (ii) Lastly, a different, clipped probability distribution
could be used instead of the uniform distribution to sample the weights of the Q-value
approximators. Overall, we believe that our introduced Q-learning method is an essential step
toward realizing unbiased value estimates in reinforcement learning. We also expect that the
introduce approach would be used in other deterministic policy gradient-based reinforcement
learning algorithms that will be introduced in the future.
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