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Abstract
Recently, image deblurring task driven by the encoder-decoder network has made a tremen-
dous amount of progress. However, these encoder-decoder-based networks still have two
disadvantages: (1) due to the lack of feedback mechanism in the decoder design, the
reconstruction results of existing networks are still sub-optimal; (2) these networks intro-
duce multiple modules, such as the self-attention mechanism, to improve the performance,
which also increases the computational burden. To overcome these issues, this paper pro-
poses a novel feedback-mechanism-based encoder-decoder network (namely, FMNet) that is
equipped with two key components: (1) the feedback-mechanism-based decoder and (2) the
dual gated attention module. To improve reconstruction quality, the feedback-mechanism-
based decoder is proposed to leverage the feedback information via the feedback attention
module, which adaptively selects useful features in the feedback path. To decrease the com-
putational cost, an efficient dual gated attention module is proposed to perform the attention
mechanism in the frequency domain twice, which improves deblurring performance while
reducing the computational cost by avoiding redundant convolutions and feature channels.
The superiority of FMNet in terms of both deblurring performance and computational effi-
ciency is demonstrated via comparisons with state-of-the-art methods on multiple public
datasets.
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1 Introduction

Image blur is one of the most common artifacts introduced via unpredictable factors such as
camera shake, fast-moving objects, etc. Once an image is blurred, post-processing procedures
(e.g. object detection [1] and image segmentation [2]) become tougher tasks. Therefore,
the image deblurring task has drawn broad attention in the research community, aiming at
improving the image quality for various subsequent vision tasks. However, image deblurring
is known to be a challenging ill-posed problem.Most classical deblurringmethodswere based
on optimization, using assumptions on image prior distributions to constrain the solution
space, such as the L0 sparse prior [3] and dark channel prior [4]. However, severe blur is
often difficult to remove with such limited and simple hand-crafted prior assumptions.

In recent years, deep learning-based methods in an end-to-end mode have been intro-
duced in many studies [5–12]. These networks learn the non-linear mapping from the blurred
images to the deblurred ones directlywithout blur kernel estimation beforehand. For example,
a deep multi-scale convolutional neural network (CNN) based on a coarse-to-fine strategy
was proposed for recovering the blurred images [5]. In another work, an encoder-decoder-
based deblurring network was proposed to improve the deblurring result [6]. Furthermore,
several improvements were introduced to the encoder-decoder network, including the multi-
scale (MS) [7, 8], multi-patch (MP) [9–11], and multi-temporal (MT) [12] modules. These
improved encoder-decoder networks obtained encouraging deblurring performance. How-
ever, these methods still cannot recover sufficient texture details due to the fact that the
decoder path is a one-way procedure for image reconstruction. As a result, if incorrect fea-
tures are generated in the decoder path, such as checkerboard artifact [13], these errors will
be propagated to subsequent layers and cannot be easily corrected in the one-way procedure.
Therefore, the methods based on the one-way encoder-decoder network usually produce sub-
optimal deblurred results. To solve this issue, we propose to introduce a feedback mechanism
into the decoder path.

The feedback mechanism is of great importance in the human visual perception system
[14]. It transmits the output information into the input information to optimize the result. The
feedback mechanism was already utilized and achieved significant success in many vision
tasks [15–18]. Inspired by these methods, we combine the feedback mechanism and the
decoder, thereby proposing a feedback-mechanism-based decoder for the proposed image
deblurring network. Different from [16], which fed the feedback information directly into
the input data, ignoring the fact that incorrect features may occur in any layer of the decoder,
we send the feedback information into each layer of the decoder network to improve recon-
struction quality. Furthermore, in contrast to the integrated approach proposed in [16], which
incorporates the feedback information and input data directly, the proposed feedback atten-
tion module (FAM) integrates feedback information and input data via attention mechanism
to adaptively exploit useful features in the feedback path.

Another reason that severe blur is difficult to handle is the small receptive field of existing
encoder-decoder networks. Consequently, some networks employ multiple modules, such as
self-attention mechanism (SA) [19] to capture the long-range dependencies between distant
blur pixels. However, the shortcoming of these modules is that the computation complexity
grows quadratically as the image size increases. Therefore, a few computationally efficient
variants of SA [20–22] have been proposed. Although the method achieved promising per-
formance, it is still computationally expensive, especially for high-resolution images in the
deblurring tasks. We note that the high cost mainly comes from two major computational
bottlenecks: (1) the redundant convolutions [23] and (2) the channel redundancy [24]. To
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address these bottlenecks, we propose an efficient dual gated attention module (DGAM),
where several key improvements were introduced to the network architecture to reduce
model redundancies. Tunable hyperparameters are introduced to reduce channel numbers
and avoid channel redundancy. Previous works (e.g. [21]) adopt redundant convolutions to
capture long-range dependencies in the frequency domain, which is costly. Inspired by [25], a
learnable matrix is leveraged to model the long-range dependencies in the frequency domain.
It is worth noting that previous works (e.g. [21]) usually capture the dependencies only once,
while more than one order of interactions is beneficial to enhancing feature representation
ability [26]. Consequently, we propose the dual gated attention module to model long-range
dependencies in the frequency domain twice, effectively improving the deblurring perfor-
mance. Through the integration of a feedback-mechanism-based decoder and DGAM, we
present a novel feedback-mechanism-based deblurring network. The main contributions of
our work are as follows:

(1) We propose a feedback-mechanism-based decoder, which leverages the feedback
attention module to adaptively select useful features in the feedback path to improve the
reconstruction quality.

(2) We propose an efficient dual gated attention module, which captures the long-range
dependencies in the frequency domain twice, and reduces the computational cost by avoiding
redundant convolutions and channels.

(3) We propose a feedback-mechanism-based encoder-decoder deblurring network
(namely, FMNet), which equips a feedback-mechanism-based decoder and dual gated atten-
tion module. Extensive experiments on public datasets prove the outstanding deblurring
performance and excellent computational efficiency of our FMNet.

2 RelatedWork

In this section, we will give a brief review on the development of image deblurring methods,
the self-attention mechanism, and the feedback mechanism.

2.1 Image DeblurringMethods

Image deblurring is known as a challenging low-level vision task. In the early times, most
deblurringmethods are optimization-basedmethods. To improve the deblurring performance,
deep learning has been introduced to the deblurring task recently. As a pioneering work, Nah
et al. [5] proposed a deep convolutional neural network based on a coarse-to-fine strategy to
restore a blurred image to its sharp version. After that, Gao et al. [6] presented an encoder-
decoder-based network to improve the stability of training by integrating parameter sharing
and skip connection. Inspired by [6], many deblurring works adopt the encoder-decoder net-
work as the baseline for the deblurring tasks. For instance, Zhang et al. [9] proposed a neural
network with stacked layers, each of which employed a decoder-encoder network to restore a
blurred image to its latent sharp image. Zamir et al. [10] used two encoder-decoder networks
to learn contextually relevant features, and then combined themwith high-resolution branches
that preserve local information. Based on an encoder-decoder network, Park et al. [12] intro-
duced the recurrent neural networks (RNN) to perform image deblurring. In recent years,
inspired by the great success of transformer [27] in high-level vision tasks, several methods
[28, 29] have attempted to introduce transformer for image deblurring in an encoder-decoder
network. While transformer enables the network to capture global dependencies to improve
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performance, it also brings high computational complexity. Hence, NAFNet [30] builds a
more efficient fully convolutional network with gating and attention mechanisms designed
to improve the performance, but excessive stacking of attention modules and convolutional
layers also imposes a heavy computational burden. Different from [28, 29], the proposed
DGAMs are stacked at the lowest image scale in an encoder-decoder network, and then the
global dependencies are captured with O(N ) complexity in frequency domain to reduce the
computational complexity.

2.2 Self-AttentionMechanism

While promising deblurring performance has been demonstrated based on the encoder-
decoder-based networks, severe blur is still a challenging task due to the small receptive
field of these networks. Therefore, many researchers applied some modules, such as the self-
attentionmechanism [19], to capture the long-range dependencies for increasing the receptive
field of the encoder-decoder network. For instance, Purohit et al. [19] introduced SA to cap-
ture the long-range dependencies to improve the deblurring performance for images with
severe blur. However, SA also brings high computational cost. Hence, some works attempted
to overcome this shortcoming and proposed variants of SA. For example, Zhang et al. [20]
proposed the spatial SA and channel SA to capture the global contextual dependence of
features. Huang et al, [22] designed a network with parallel processing of convolution and
self-attention mechanisms to allow capturing both local and global information at the same
time. Rao et al. [25] proposed a learnable global filter to learn long-range dependencies in
the frequency domain to reduce computational complexity. Zhou et al. [21] proposed a self-
attention module in an encoder-decoder network to model long-range dependencies in the
frequency domain for medical image reconstruction. Rao et al. [26] designed a high-order
spatial interaction strategy to capture the long-range dependencies efficiently.

2.3 FeedbackMechanism

The feedback mechanism plays a crucial role in the human visual perception system [14].
The mechanism has already been employed in various tasks, such as image segmentation
and image super-resolution (SR). For example, Tsuda et al. [15] leveraged the feedback
mechanism in an encoder-decoder network for cellular image segmentation. Girum et al.
[16] proposed a feedback network to improve the accuracy of medical image segmentation.
In image super-resolution tasks, Li et al. [17] designed a negative feedback mechanism to
continuously finetune the SR images. Based on [17], Liu et al. [18] introduced the self-
attention into the feedback network to obtain better SR images. The feedback mechanism
brings significant improvement in those vision tasks.

3 The ProposedModel

Figure 1 illustrates the overall architecture of FMNet. The network consists of three main
components: an encoder, a latent space module, and a feedback-mechanism-based decoder.
We first use the encoder to extract multi-scale features from the image. Specifically, the
encoder consists of two encoder blocks (EBs). Each block is composed of a convolutional
layer followed by a residual block [5]. The first EB block (named EB1 in Fig. 1) uses 3 × 3
convolution to extract low-level features from the input image, while the second EB block
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Fig. 1 The architecture of proposed FMNet. The decoder contains a structure with a feedback mechanism
(marked as red line), which is named feedback-mechanism-based decoder

(named EB2 in Fig. 1) uses 2 × 2 convolution with a stride of 2 for down-sampling and
feature extraction. Then, the features from the encoder are fed into a latent space mod-
ule consisting of cascades of multiple DGAMs to obtain critical deblurring cues from the
encoder features. Finally, a feedback-mechanism-based decoder is employed to reconstruct
the deblurred image.

3.1 Feedback-Mechanism-Based Decoder

To improve the performance of image reconstruction, we propose to integrate the feedback
mechanism into the decoder path and propose the feedback-mechanism-based decoder. More
precisely, our decoder includes two reconstruction processes: the feedforward process and
the feedback process. Since image reconstruction is performed twice in the decoder via a
feedback loop, more texture details can be recovered and incorrect predictions from the
preceding feedforward path can be suppressed.

As shown in Fig. 1, the feedforward path of the decoder is illustrated with black lines. The
up-sampling operations in the decoder are implemented via PixelShuffle [31], followed by
residual blocks for feature reconstruction. The output of the decoder after the feedforward
process, dubbed Id , is obtained by progressive reconstruction from the output of DGAM.
Next, the feedback process is used to improve the reconstruction result, as illustrated by
red lines in Fig. 1. To improve the reconstruction quality at each layer of the decoder, we
down-sample Id by 2 and 4 times, respectively, to obtain feedback information (Id1 and
Id2) for the decoder at two different scales. Specifically, the feedback information (Id1 and
Id2) are fed into the feedback attention module to estimate attention maps used to reweight
the features obtained in the feedforward path. Accordingly, FAM can efficiently utilize the
feedback information to extract informative features and suppress the artifacts in the feed-
forward feature maps, leading to an improvement in image reconstruction quality. Then, the
reweighted features, I

′
d1 and I

′
d2, are fed into the corresponding decoder layers to generate

improved deblurred image I
′
d (see red lines in Fig. 1). It is worth noting that the weights of

residual blocks and convolution layers in the decoder are shared between the feedforward
and feedback processes.
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Fig. 2 The architecture of the proposed feedback attention module (FAM)

Fig. 3 The architecture of the proposed DGAM. � is the element-wise multiplication operation to perform
the gated attention. We perform the attention to capture the long-range dependencies in the frequency domain
twice

3.2 Feedback AttentionModule

The structure of the proposed feedback attention module is shown in Fig. 2. For illustrative
purposes, we describe the FAM at the bottom layer of the decoder in detail, while the FAMs
at other layers are constructed similarly. As shown in Fig. 2, we denote the input of FAM (i.e.,
output from DGAM) as Fin and the feedback information as Id2. First, a 3 × 3 convolution
followed by sigmoid activation is applied on Id2 to derive the attention map Fatten . Then, Fin
is fed into a 3×3 convolution layer, and multiplied by Fatten to adaptively select informative
features and generate residual information. Finally, we add the residual information to the
original Fin to obtain the final reweighted output Fout .

3.3 Dual Gated AttentionModule

It has been shown that self-attention module is beneficial in reducing severe blur [19] as it
can capture the long-range dependencies to increase the receptive field. However, these SA
modules often come with high computational complexity, especially when processing high-
resolution images that are common in deblurring tasks. To reduce computational burden and

123



Image Deblurring using Feedback Mechanism... Page 7 of 14 88

improve the efficiency of the deblurring process, we propose dual gated attention module,
the structure of which is shown in Fig. 3. As the figure shows, the input of DGAM (denoted
Fin) is first fed into a LayerNorm layer for normalization. Then, a 1× 1 convolution is used
to expand the number of channels from C to (2r1 + r2)C where r1 ≤ 1 and r2 ≤ 1 are
hyperparameters that control the reduction factor for removing channel redundancy. The
(2r1 + r2)C channels are divided into three streams, each with r1C , r1C and r2C channels,
to capture the long-range dependencies.

Next, we capture the long-range dependencies in the frequency domain in two streams
(i.e., F0 and F1 in Fig. 3.). The long-range dependencies are captured twice to improve the
deblurring performance. The existing work [21] used vanilla convolution to capture long-
range dependencies, which resulted in redundant convolutions and increased computational
cost. In our work, we propose to use a learnable H × W × C matrix ω (of the same size as
the feature map) to model the dependencies in the frequency domain. Taking the F1 stream
in Fig. 3 as an example, the feature map is first transformed to the frequency domain using
2D fast Fourier transform (2D FFT) to obtain FFFT (see Fig. 3). Then, the learnable matrix
ω is multiplied (entrywise) with FFFT to capture the dependencies in the frequency domain
and obtain the feature F

′
FFT. Afterwards, the F

′
FFT acts as a gating signal for the feature map

from r2C channel to perform gated attention. Compared with vanilla convolution [21], the
computational complexity is reduced from O(N 2) for convolutional operations to O(N ) for
the element-wise matrix multiplication, where N denotes all pixel points in a feature map.

3.4 Loss Function

We adopt the L1 loss to minimize the distance between the deblurred image I
′
d and the

ground truth Igt. Note that the final deblurred image I
′
d is the result of the feedback process.

We further use the Fourier loss [32] as an auxiliary loss. The total loss is given by:

�total =
∥
∥
∥I

′
d − Igt

∥
∥
∥
1
+ λ

∥
∥
∥F(I

′
d) − F(Igt)

∥
∥
∥
1

(1)

where F denotes the Fourier transform and λ is the weight of the auxiliary loss, The value
of λ is empirically set to 0.1 according to reference [32].

4 Experiments

4.1 Implementation Details

We introduce two publicly available datasets for comparison: the GoPro [5] and RealBlur
[33] datasets. The GoPro dataset [5] consists of 3214 pairs of blurred and sharp images,
2103 of which are leveraged for training, and the rest 1111 images are used for testing. The
RealBlur dataset [33] consists of 1960 paired images, all of which are used for testing. We
adopt the AdamW optimizer (β1=0.9, β2= 0.99, weight decay = 1 × 10−3) and train our
model on NVIDIA RTX 4000 GPU. All test experiments are implemented under the same
computer. The training is carried out in two stages. In the first stage, we randomly crop the
input image into 256 × 256 patches and set the batch size as 4 for 3000 epochs. The initial
learning rate is set as 1 × 10−3 and decays to 1 × 10−7 with the cosine annealing strategy.
Then, the second training stage increases the input size to 384 × 384 with a batch size of
1 for 500 epochs, with an initial learning rate of 1 × 10−4. Additionally, random rotation
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Table 1 Performance comparison on the GoPro and RealBlur test dataset

Methods GoPro RealBlur Param FLOPs Time
PSNR SSIM PSNR SSIM

MSCNN 29.08 0.914 30.19 0.834 11.72 336 2702

DFG 29.81 0.937 N/A N/A 3.1 N/A N/A

SRN 30.26 0.934 32.11 0.907 6.8 167 5150

DG 28.70 0.858 30.88 0.868 6.06 35 1671

DGv2 29.55 0.934 31.98 0.905 60.9 42 178

DBGAN 31.10 0.942 29.35 0.827 11.58 759 651

MTRNN 31.15 0.945 32.11 0.906 2.63 27 74

DMPHN 31.20 0.940 32.06 0.904 21.7 235 29

SAPHN 32.02 0.953 N/A N/A N/A N/A N/A

RADN 31.76 0.953 N/A N/A N/A N/A N/A

MIMO+ 32.45 0.957 31.585 0.892 16.1 154 25

MPRNet 32.66 0.959 32.34 0.912 20.1 760 206

BANet 32.54 0.957 31.91 0.896 18 263 25

KiT 32.70 0.959 N/A N/A N/A N/A N/A

DGUNet 32.71 0.960 31.83 0.9136 17.3 865 254

IPT 32.58 N/A N/A N/A 114 N/A N/A

MAXIM 32.86 0.961 32.30 0.911 22.2 339 17373

FMNet 32.95 0.961 32.34 0.916 10.4 71 143

The best results are highlighted in bold. Param (the number of parameters in the network) is measured in
millions (M). FLOPs represent the floating point operations and are measured in giga (G). Time denotes the
running time and is measured in milliseconds (m’s)

and vertical flipping are utilized for data augmentation to improve generalization capability.
Note that the comparison methods included in the experiments follow their original training
strategies.

4.2 Method Comparison

4.2.1 Quantitative Comparison

To further evaluate our method, we compared FMNet with state-of-the-art deblurring meth-
ods, including MSCNN [5], DFG [34], SRN [35], DG [36], DGv2 [37], MTRNN [12],
DMPHN [9], RADN [19], DBGAN [38], MIMO+ [32], BANet [39], MPRNet [10], HINet
[40], DGUNet [41], KiT [42], SAPHN [43] and MAXIM [44], IPT [45]. The average PSNR
and SSIM for the GoPro dataset are shown in Table 1. Among these methods, results of DFG
[34], SAPHN [43], RADN [19], KiT [42], and IPT [45] are derived from the original papers,
as the source codes of those methods are not available, results of other methods are obtained
via retraining the corresponding models.

FMNet achieves higher PSNR and SSIM on the GoPro test dataset compared with the
encoder-decoder-based network. For example, FMNet increases the PSNR by 1.8 dB, 0.29
dB and 0.09 dB compared with MTRNN [12], MPRNet [10] andMAXIM [44], respectively.
This can be attributed to the introduction of DGAMwhich enlarges the receptive field and the
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Fig. 4 Visual comparison of different deblurring methods on the GoPro dataset and RealBlur dataset. The top
two rows show results on the GoPro dataset, and the bottom two rows show results on the RealBlur dataset

feedback-mechanism-based decoder which improves the reconstruction quality. Compared
with the methods equipped with self-attention or its variants, FMNet also achieves better
performance and lower computational cost. For instance, FMNet increases the PSNR by 0.93
dB and 1.19 dB compared with SAPHN [43] and RADN [19], respectively. Furthermore,
FMNet reduces the number of parameters by a factor of ten and has higher PSNR compared
with IPT [45]. Meanwhile, MAXIM [44] cost 2 times more parameters and 4 times more
FLOPs than FMNet, but obtain lower PSNR by 0.09 dB. In addition, FMNet also obtains the
best average PSNR and SSIM in the RealBlur dataset, as summarized in Table 1.

4.2.2 Visual Comparison

The visual results are depicted in Fig. 4. The test images are selected from the GoPro dataset
and the Realblur test dataset, respectively.We compare FMNet with the state-of-the-art meth-
ods, including MSCNN [5], MTRNN [12], MIMO+ [32], and MPRNet [10]. Among those
methods, MSCNN [5] is the classical method for image deblurring, while other methods are
all encoder-decoder-basedmethods. The deblurring details for different scenes are zoomed in
for visual comparison. As shown in Fig. 4, the earlier CNN-based methods (such as MSCNN
[5]) have poor deblurring results, with significant artifacts remaining on the license plate.
The encoder-decoder-based methods (such as MTRNN [12]) obtain a clearer outline of the
license plate. MIMO+ [32] and MPRNet [10] generate much better deblurring results on
license plates and letters. However, the detailed information from these methods is still not
clear enough, andwith a few blur artifacts remaining in deblurred results. By contrast, FMNet
shows fewer blur artifacts and better image quality, which demonstrates the superiority of
the proposed method.
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Table 2 Ablation studies for the feedback-mechanism-based decoder

Baseline One-P Two-P FAM PSNR Params FLOPs Time (ms)

� 32.74 9.4 51 142.43

� � 32.79 11.3 71 143.06

� � � 32.83 11.3 77 146.34

� � � � 32.95 10.4 71 143.30

Table 3 Ablation studies for the
DGAM

One-T Two-T PSNR Params FLOPs Time

Conv � 31.87 10.4 80 169

ω � 32.49 10.4 67 103

ω � 32.95 10.4 71 143

Table 4 Ablation studies for
hyperparameters in DGAM

r1 r2 PSNR Params FLOPs Time

0.5 0.5 32.59 7.5 62 121

0.5 1 32.95 10.4 71 143

1 1 32.44 13.6 81 179

4.3 Ablation Studies

We also demonstrate the effectiveness of FMNet by validating each component through
ablation experiments. All experiments are implemented on the GoPro dataset.

4.3.1 Ablation study of feedback-mechanism-based decoder

To illustrate the effectiveness of the feedback-mechanism-based decoder, we implement the
original decoder without feedback mechanism in our FMNet as the baseline decoder (named
Baseline in Table 2). First, the feedback mechanism and integrated method proposed in [16]
are embedded in the bottom layer of the original decoder to establish one feedback path
(named One-P in Table 2). It can be observed that the feedback mechanism increases the
value of PSNR by 0.05 dB. To ensure that each layer of the decoder has a feedback path, we
continue to embed the feedback mechanism into the second layer of the decoder to establish
a second feedback path (named Two-P in Table 2), which further increases the value of
PSNR from 32.79 dB to 32.83 dB. It proves that the second layer of the decoder is also
important to improve the reconstruction quality, due to the fact that incorrect features (such
as checkerboard artifact [13]) may occur in any layer of the decoder. Finally, we replace the
integrated method from [16] with the proposed FAM for both of the feedback paths, and
the PSNR significantly increases by 0.12 dB while the number of parameters (Params in
Table 2) decreases by 0.9 M, which demonstrates the advantage of FAM in both deblurring
performance and computational efficiency.
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4.3.2 Ablation Study of DGAM

Experiments are also conducted to evaluate the effectiveness of DGAM. To avoid redundant
convolutions, we introduce the learnable H × W × C matrix ω to replace conventional
convolution, which increases PSNR from 31.87 dB to 32.95 dBwhile using the same number
of parameters, as shown in Table 3. When capturing the long-range dependencies twice in
the frequency domain (named Two-T in Table 3), the PSNR further increases by 0.46 dB
with the same number of parameters compared with the dependencies captured only once
(named One-T in Table 3), demonstrating the benefit of the dual interactions to capture long-
range dependencies. Meanwhile, to study the effect of number of channels, we tune the two
hyperparameters r1 and r2. As shown in Table 4, the best PSNR is obtained when r1 = 0.5
and r2 = 1. When r1 = 1 and r2 = 1, the PSNR decreases by 0.51 dB, which proves that
increasing the number of channels degrades the performance because of the redundancy in
features at different channels.

5 Conclusion

In this study, we propose a feedback-mechanism-based network for image deblurring, which
contains two novel components: a feedback-mechanism-based decoder and a dual gate
attention module. To improve the image reconstruction quality, we introduce a feedback-
mechanism-based decoder, which efficiently extracts useful features in the feedback path
via the proposed feedback attention module. To reduce the computational cost, the proposed
DGAM introduces tunable hyperparameters to reduce channel numbers and avoid channel
redundancy. Furthermore, a learnable matrix is leveraged to replace the costly convolutions
and capture long-range dependencies in the frequency domain, and gated attention is per-
formed twice to improve the performance. Experiments on public datasets show that our
method achieves better deblurring performance while requiring less computational resource
compared with the state-of-the-art methods.

Despite the excellent deblurring performance, our approach is still sub-optimal in terms
of running time as the feedback-mechanism-based decoder requires reconstructing the
deblurred image twice. In the future, we will try to design more efficient network structures
for the feedback-mechanism-based decoder. In addition, we will also apply the feedback-
mechanism-based decoder to other vision tasks, such as image dehazing and deraining, to
explore its generalization capability to other image processing problems.
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