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Abstract
In the text-video retrieval task, the objective is to calculate the similarity between a text
and a video, and rank the relevant candidates higher. Most existing methods only consider
the text-video semantic alignment in the global view. But using mean-pooling to obtain
global semantics and simply aligning text and video in the global view may lead to semantic
bias. In addition, some methods utilize offline object detectors or sentence parsers to obtain
entity-level information in text and video and achieve local alignment. However, inaccu-
rate detection introduces possible errors and such approaches prevent models from being
trained end-to-end for retrieval. To overcome these limitations, we propose multi-grained
and semantic-guided alignment for text-video retrieval in this paper, which can achieve fine-
grained alignment based on video frames and text words, local alignment based on semantic
centers, and global alignment. Specially, we explore summary semantics of text and video
to guide the local alignment based on semantic centers for we believe that the importance
of each semantic center is determined by summary semantics. We evaluate our approach on
four benchmark datasets ofMSRVTT,MSVD,ActivityNetCaptions, andDiDeMo, achieving
better performance than most existing methods.
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1 Introduction

With the rapid development of the information era, everyone can act as the publisher and
disseminator of media content on the Internet, which makes the scale of information on
the Internet grow explosively. Video and text are two essential forms of information with
different modalities. Text-video retrieval is an important way for us to use the Internet. Users
usually input keywords or descriptions to search for related videos, as shown in Fig. 1. For
the text-video retrieval task, there is a natural semantic gap between the twomodalities due to
their heterogeneity. Although the human brain can process the two modalities with the help
of the acquired cognitive and knowledge system to realize high-level semantic association
and understanding, the machine still needs to rely on artificial intelligence to achieve this
process. At present, the mainstream method is based on common semantic space, that is, the
text embedding and video embedding are obtained by using encoders respectively, and then
projected into a common semantic space, as shown in Fig. 2. For text-to-video retrieval, the
similarities between a text query and candidate videos are calculated here. Then the candidate
videos are ranked from high similarity to low. For video-to-text retrieval, the candidate texts
are ranked according to the similarities with the query video from high to low.

Some earlier studies [1–6] consider themulti-stream information of video, regarding video
as a synthesis of multi-modal, such as appearance, audio, and face. They take task-specific
architecture (ResNet101 [7], Vggish [8], S3D [9],...) as offline encoders to get appearance
embeddings, audio embeddings, motion embeddings, and so on. Then, the global video
representation is obtained by early fusion at the embedding level. Text-video alignment is
realized by calculating the similarity between global text and video representations. Another

Fig. 1 Illustration of text-to-video retrieval. The user enters text, and the search engine returns several related
videos from the video database

Fig. 2 Text-video retrieval method based on common semantic space. The embeddings of text and video are
projected into the common semantic space to calculate the similarity

123



MGSGA: Multi-grained and Semantic-Guided Alignment… Page 3 of 24    54 

Fig. 3 Comparison between the local-level alignment of (a) T2VLAD [6] and (b) ours. a is the local alignment
with one-to-one correspondence between semantic centers. And every semantic center is treated equally. In
our view (b), there may be cross-modal semantic associations between centers of text and video. For example,
the video semantic center “girl” should be semantically related to the text semantic center “medal”. Because
in the video frames, the girl always holds the medal. Besides, the semantic center “girl” should be the most
important semantic center. Because “girl” is the subject of the sentence and the executor of the action. It is
also the most frequent entity in all video frames. It should be given a higher importance score, as shown by
the number next to the semantic center

way is to weight the similarities between text and various video modalities. The perfor-
mance of these approaches is limited by the task-specific feature encoders and cannot be
fine-tuned end-to-end to suit cross-modal retrieval task. Recently, with the success of Con-
trastive Language-Image Pretraining (CLIP) [10], some text-video retrieval methods [11–14]
exploit CLIP as visual and text encoders, benefiting from large-scale pre-training with natu-
ral language supervision. Their common point is that the global video semantic is obtained
by average-pooling the video frame representations, and aligns with the global text seman-
tic. Actually, the text description could be relevant to a local video clip, which means that
we should not simply assume that the average-pooled frame representations and the global
text semantics are completely matched. We should construct more fine-grained text-video
alignment.

Somemethods [15–17] adopt an object detection network on video frames to obtain entity
embeddings and match the nouns extracted from the text. The inaccurate detection and word
selection may cause possible errors in the retrieval task. Moreover, these approaches do
not unify multi-grain semantic alignment, which leads to weak cross-modal associations.
T2VLAD [6] assigns the video and text features to a set of shared centers, generating the
center features for both video and text to calculate a local text-video similarity. It holds that
the locally aligned semantic centers of video and text are in one-to-one correspondence, and
all semantic centers are treated equally when calculating similarity, as shown in Fig. 3a. We
believe that this alignment has semantic bias. As shown in Fig. 3b, on the one hand, there may
be cross-correspondences and semantic associations between centers of text and video.On the
other hand, different semantic centers make inconsistent contributions to global semantics,
which can be quantified by the important scores generated by summary semantics.

In this paper, we present Multi-Grained and Semantic-Guided Alignment (MGSGA) for
text-video retrieval. To get robust frame and word representations, MGSGA takes pretrained
CLIP as visual and text encoders. In themulti-grained text-video alignment, firstly, we adopt a
weighted token interaction module to align frame-word and calculate fine-grained similarity.
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Secondly, we employ an aggregation network to get the embeddings of text semantic centers
and video semantic centers with frame representations and word representations as input,
respectively. We believe that summary semantics can determine the importance of each
semantic center. To this end, we utilize the weights generated by video summary embedding
and text summary embedding to guide the cross-modal alignment of local-level semantic
centers. Finally, we use the aggregation network again to obtain the aggregated global text
and video representation, achieving global-level text-video alignment. To sum up, MGSGA
considers fine-grained, local, and global semantic alignment for text and video and applies
summary semantics to guide the alignment of local semantic centers. Consequently,MGSGA
achieves excellent performance on several standard benchmarks.

In this work, we make the following three contributions:

(i) We propose a multi-grained text-video alignment framework for text-video retrieval,
which can achieve fine-grained alignment based on video frames and text words, local
alignment based on semantic centers, and global alignment based on aggregation.

(ii) To make the local alignment better correlate with the summary semantic information,
we present a semantic guidance mechanism. The summary semantic assigns weight to
each semantic center. The semantic centers with higher weights are more dominant in
the similarity calculation of the local alignment.

(iii) Experimental results show that our method outperforms most of the existing methods on
the standard text-video retrieval benchmarks, including MSRVTT, MSVD, ActivityNet
Captions and DiDeMo. We also conduct some ablation experiments to verify the effect
of each component.

2 RelatedWorks

2.1 CLIP-based Approaches for Text-Video Retrieval

Apioneeringwork in visual-language pretraining is Contrastive Language-Image Pretraining
(CLIP) [10], which pretrained with 400 million text-image pairs to learn natural language
supervision knowledge. CLIP has achieved remarkable performance in multiple downstream
tasks. Based on CLIP, many researchers transfer the cross-modal information of text-image
to the text-video retrieval task. Luo et al. [11] take the initiative to apply CLIP to text-
video retrieval and explore three similarity calculators to realize time aggregation among
video frames. CLIP2Video [12] adds a temporal difference block and a temporal alignment
block on the basis of CLIP to model the temporal relationship and the alignment of text-
video pairs, respectively. MKTVR [18] uses CLIP as feature extractors, utilizes machine
translation models to construct multilingual text-video pairs, then transfers the knowledge
from multilingual models to improve video retrieval performance. CLIP2TV [13] introduces
momentum distillation and adoptsmulti-modal fusion to enhance cross-modal interaction. X-
pool [19] uses cross-modal attention tomake the text representations focusmore on the frames
that are more relevant. However, cross-modal attention brings additional computational costs
in the test stage. Besides, some recent works [20–23] improve token encoding in Transformer
[24] to reduce redundancy ormodel subtle motions. In summary, text-video retrieval methods
based on CLIP constantly refresh the leaderboard of this task, which verify the capability of
cross-modal knowledge learned from large-scale dataset composed of text-image pairs.

Our approach also benefits from the pretrained CLIP in feature extraction. However, our
method proposes multi-grained text-video semantic alignment and innovatively designs a
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Table 1 Classification of
text-video retrieval methods
based on multi-grained
alignment.

Methods Multi-experts Global Local E2E
PP LE

MEE [1]
√ √

CE [2]
√ √

MMT [3]
√ √

MDMMT [4]
√ √

MDMMT-2 [5]
√ √

T2VLAD [6]
√ √ √

Dual-encoding [30]
√ √

HANet [15]
√ √

HGR [17]
√ √

ViSERN [31]
√ √

BridgeFormer [32]
√ √

CAMoE [14]
√ √ √

HiSE [33]
√ √

Ours
√ √ √

Multi-experts denotes using multiple architectures to extract video fea-
tures. PP (pre-processing) denotes semantic parsing of text or extracting
regions from videos. LE (learnable embeddings) refers to learning local
information through training. E2E refers to using the raw text and video
as model inputs, and the entire network can be fine-tuned end-to-end

semantic guidance mechanism to correct deviations in alignment. Experimental results show
that our approach surpasses the performance of some CLIP-based methods.

2.2 Multi-grained Approaches for Text-Video Retrieval

In the text-image retrieval task, UNITER [25] and Oscar [26] extract region features of the
image, and construct fine-grained alignment betweenword and region during the pre-training
stage. TERAN [27] uses Faster-RCNN [28] to extract region features, and calculates the
region-wordfine-grained similaritymatrix, obtaining the global-level similarity score through
max-over-regions sum-over-words operation. HGAN [29] uses Resnet152 [7] and Faster-
RCNN [28] to extract global and local features, respectively, and establish a feature graph
to achieve global and local alignment. However, unlike images, videos represent dynamic
events through continuous frames. Extracting region features frame by frame from videos
is redundant and may not be effective. These methods cannot be extended to text-video
retrieval task. Moreover, these methods either do not establish multi-grained alignment or do
not establish semantic guidance between granularity.

For the text-video retrieval methods based on multi-grained alignment, we make classi-
fication among them based on whether to use multi-experts information of video, whether
pre-processing is performed, and whether end-to-end fine-tuning is avaliable, as shown in
Table 1.

Video is usually a synthesis of motion, appearance, audio, and other modalities. These
modalities can be regarded as multi-grained information of video. Traditional text-video
retrieval methods use mature architectures in action recognition, video classification, audio
classification, and other tasks to extract video features, and define them as ‘experts’. They
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put emphasis on how to integrate the information of these experts to get a strong global video
representation, or calculate similarities with text representation separately and then aggregate
in some way to achieve the retrieval model. MEE [1] uses the appearance, motion, face, and
audio features extracted from video to calculate similarities with text features respectively,
and weights the similarities to get a global similarity. CE [2] adds a collaborative gating
mechanism based on MEE to enhance the interaction between various experts. MMT [3]
applies Transformer to the video experts and usesmulti-layer attention to strengthen temporal
interaction within an expert and cross-modal interaction between experts, so as to obtain a
powerful and compact video representation. Based onMMT,MDMMT [4] combines several
video description datasets in an attempt to obtain a text-video retrieval model with multi-
domain generalization ability. MDMMT-2 [5] adds a double positional encoding on the
foundation of MDMMT to better integrate the various video experts. Besides, T2VLAD [6]
applies two aggregation methods at different granularity for experts to align text-video pairs
globally and locally. However, the performance of such methods is limited by the feature
extractors, which are trained for specific downstream tasks. The feature extraction part cannot
be finetuned in the retrieval task to learn the cross-modal information between text and video.

Someworks focus on exploring the fine-grained semantics of both video and text to achieve
retrieval models that consider coarse and fine granularity. Dong et al. [30] uses CNN and
biGRU as encoder to obtain global encoding, temporal-aware encoding, and local-enhanced
encoding, and projects the multi-level encoding of text and video into a common space
for similarity calculation. Texts often contain elements such as nouns and verbs, which are
supposed to be semantically matched with entities and actions in video. Based on this view,
some works [15–17, 33] parse text into events, actions, and entities, construct semantic role
graph and conduct attention-based graph reasoning, so as to perform hierarchical matching
with video. ViSERN [31] adopts offline ResNet101 [7] to extract regional features from video
frames, constructs semantic relationships, and uses GCN for graph reasoning. BridgeFormer
[32] introducesMultiple Choice Questions (MCQ) task in the training stage, which enhances
the video representation and enables it to answer the noun and verb questions in MCQ task.
CAMoE [14] splits nouns and verbs from texts first. Fusion expert, entity expert, and action
expert are extracted fromvideo through attention networks,which arematchedwith the global
text embedding, noun embedding, and verb embedding, respectively. The loss functions of
the three matches are averaged to realize the retrieval model.

However, these multi-grained text-video retrieval methods base on semantic relationships
need to adopt sentence parser technology to extract semantic roles. The possible errors of the
parser may lead to inaccurate semantic relationships and then affect the semantic matching.
The methods of using region features as local information require pre-extraction. Both of
them hinder the ability of the model to be fine-tuned end-to-end. As shown in Table 1,
our approach avoids introducing additional steps, but instead learns more accurate semantic
relationships through fine-tuning the entire network end-to-end and constructs multi-grained
and semantic-guided alignment through hierarchical design and interaction.

3 Methods

3.1 Overview

As shown in Fig. 4, we propose multi-grained and semantic-guided alignment for text-video
retrieval, which aligns text and video features in fine-grained, local and global granularity. In
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Fig. 4 Overview of MGSGA. The proposed method for cross-modal retrieval can align text and video embed-
dings at fine granularity, local level, and global level. Specially, in the semantic-guided local-level alignment,
we exploit summary semantics to assign important scores to each semantic center. For clarity, we show the
case when the number of semantic centers for each modality K = 4

the text-video retrieval, given a video set V and a text set T , the goal of semantic alignment is
to measure the similarity s(vi , t j ) between video vi ∈ V and text t j ∈ T . To begin with, the
CLIP model pretrained with 400 million text-image pairs is applied to extract text and video
features (Sect. 3.2). Consequently, multi-grained and semantic-guided text-video alignment
is adopted to align the two modalities from different granularities(Sect. 3.3). We consider
that summary semantics can assist local-level alignment. So we obtain summary semantic
embeddings from existing representations without extra computation to guide the alignment
of local semantics. Finally, we use contrastive learning to construct three loss functions
corresponding to the three stages of the multi-grained text-video alignment to form the total
loss function for our method (Sect. 3.4).

3.2 Feature Representation

We sample the video vi uniformly to get N frames, denoted as vi = {v1i , v2i , ..., vni , ..., vN
i },

where n ∈ [1, N ]. The visual encoder F of CLIP (ViT-B/16) takes frames as input. The
output from the last layer at [CLS] token is regarded as frame representations. The frame
representations of the video vi is denoted as zi = F(vi ) = {z1i , z2i , ..., zni , ..., zNi }, with
zi ∈ R

N×d .
For the text t j , we denote it as t j = {t1j , t2j , ..., t lj , ..., t Lj }, where j ∈ [1, L] and L is

the number of words. The text encoder G of CLIP (ViT-B/16) is applied to get the word
representations, denoted as w j = G(t j ) = {w1

j , w
2
j , ..., w

l
j , ..., w

L
j }, with w j ∈ R

L×d . In

addition, the output w0
j from G at [EOS] token is treated as the summary embedding of

text t j .
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3.3 Multi-grained and Semantic-Guided Text-Video Alignment

Firstly, zi andw j are frame representations and word representations respectively, which can
be regarded as fine-grained semantics. Text-video alignment at fine granularity makes full
use of the frame and word information. Secondly, we obtain multiple local semantic cen-
ters through an aggregation network to realize a higher level of alignment. In the local-level
text-video alignment, we use the weights generated from mean-pooling of frame representa-
tions to guide the similarity calculation of video-to-text. We use the weights generated from
[EOS] token of text to guide the similarity calculation of text-to-video. Finally, the semantic
aggregation network is applied again to obtain the global representations of text and video
to achieve global-level alignment.

3.3.1 Fine-Grained Text-Video Alignment

Given the sequences of frame representations zi = {z1i , z2i , ..., zni , ..., zNi } and word repre-
sentationsw j = {w1

j , w
2
j , ..., w

l
j , ..., w

L
j }, we adopt a weighted token interaction module for

fine-grained alignment.
Specifically, the frame-word similarity matrix S f −w ∈ R

N×L is calculated via inner
product. The nth row in the matrix represents the similarities between frame representation
zni and allword representations {wl

j }Ll=1.We take themaximumvalue as the similarity between
the current frame vni and the text t j as a single frame-text similarity. A weight estimation
module composed of MLP and Softmax is applied to get the importance scores of frames,
which takes the frame representations zi as input and outputs N scores. The importance
scores are utilized to weight the frame-text similarities to get the fine-grained video-to-text
similarity score:

sv2t
f grained(vi , t j ) =

N∑

n=1

f nvw,θ (zi )maxLl=1

{
(

zni
‖zni ‖2

)T (
wl

j

‖wl
j‖2

)

}
, (1)

where fvw,θ (·) is the weight estimation module with frame representations zi as input and T
denotes transposition.

Similarly, fine-grained text-to-video similarity score can be calculated:

st2vf grained(vi , t j ) =
L∑

l=1

f ltw,θ (w j )maxNn=1

{
(

zni
‖zni ‖2

)T (
wl

j

‖wl
j‖2

)

}
. (2)

3.3.2 Semantic-Guided Local-level Text-Video Alignment

In fine-grained text-video alignment, we establish the semantic matching relationship
between frames and words. However, sentences usually contain some modal words, prepo-
sitions, etc., which serve no practical purpose in the semantic matching of events. Although
some works [14, 17, 32] employ a sentence parser to label the parts of speech, it increases the
computational cost from additional steps and introduces possible errors. In addition, although
the video is uniformly sampled with a certain sampling interval, it may still contain some
of the same frames due to the temporal redundancy of video. Therefore, in the local-level
text-video alignment, we introduce the idea of clustering and use a semantic aggregation
network to adaptively generate local representations of text and video.
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Specifically, assuming that there are K semantic centers in a video and a text, denoted as
{cvi

p }Kp=1 and {ct jq }Kq=1, respectively. Given the frame representation zni , its contribution to the

pth video semantic center cvi
p is represented as ain,p:

ain,p = exp(zni (c
vi
p )

T + bvi
p )

∑K
k=1 exp(z

n
i (c

vi
k )

T + bvi
k )

, (3)

where bvi
p is a learnable bias term. After that, we use the following formula to calculate the

embeddings of video semantic centers:

cvi
p = normali ze

(
N∑

n=1

ain,p(z
n
i − c′vi

p )

)
, (4)

where c′vi
p is learnable and has the same size as cvi

p . They belong to the same semantic center,
which was proposed in [34] to enhance the adaptive ability of aggregation.

Correspondingly, the embeddings of text semantic centers are obtained by the following
formula:

c
t j
q = normali ze(

L∑

l=1

exp(wl
j (c

t j
q )

T + b
t j
q )

∑K
k=1 exp(w

l
j (c

t j
k )

T + b
t j
k )

(wl
j − c′t j

q )), (5)

where b
t j
q is a learnable bias term and c′t j

q is learnable and has the same size as c
t j
q .

Given the text and video semantic center representations {cvi
p }Kp=1 and {ct jq }Kq=1, respec-

tively, different from the one-to-one correspondence between video semantic centers and text
semantic centers in [6], we believe that there may be cross-correspondences between seman-
tic centers of two modalities. Besides, there should be summary semantics that direct the
retrieval model to focus more on the more important semantic centers. Motivated by these,
we propose a semantic-guided text-video alignment module at the local level, as shown in
Fig. 5.

For frame representations {zni }Nn=1, mean-pooling is applied to get the video summary
embedding z0i . Then we employ MLP and Softmax to z0i to calculate the weight of each
video semantic center, which is used to guide the calculation of video-to-text similarity.
Specifically, we obtain a cross-modal center-level similarity matrix Sc ∈ R

K×K via inner
product firstly. The pth row in the matrix denotes the similarities between the video semantic
center cvi

p and all text semantic centers {ct jq }Kq=1. Then the maximum value is selected since it

measures the similarity between the current video semantic center cvi
p and the most relevant

text semantic center to cvi
p . Lastly, the weights generated from video summary embedding

are used to weight the similarities we selected in each row to get the local-level video-to-text
similarity score as follows:

z0i = mean − pooling(z1i , z
2
i , ..., z

N
i ), (6)

sv2t
local(vi , t j ) =

K∑

p=1

f p
vw′,θ ′(z0i )maxKq=1{(

cvi
p

‖cvi
p ‖2

)

T

(
c
t j
q

‖ct jq ‖2
)}, (7)

where fvw′,θ ′(·) is the weight estimation module with video summary embedding z0i as input.
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Fig. 5 Illustration of semantic-guided local-level text-video alignment based on semantic centers

The representationw0
j of text [EOS] token is used to generate the weights of text semantic

centers. Similarly, we calculate the local-level text-to-video similarity score:

st2vlocal(vi , t j ) =
K∑

q=1

f qtw′,θ ′(w0
j )maxKp=1{(

cvi
p

‖cvi
p ‖2

)

T

(
c
t j
q

‖ct jq ‖2
)}, (8)

where ftw′,θ ′(·) is the weight estimation module with text summary embedding w0
j as input.

3.3.3 Global-Level Text-Video Alignment

Given the sequence of video semantic center representations {cvi
p }Kp=1, we employ the seman-

tic aggregation network used in Sect. 3.3.2 to get the aggregated video embedding, just
modifying the K to 1 in the formula 5. The obtained aggregated video embedding gvi ∈ R

1×d

comprehensively considers multiple semantic centers.
Similarly, a text semantic aggregation network is utilized to get the aggregated text embed-

ding gt j ∈ R
1×d . Thus, the global-level text-video alignment similarity score is calculated

by inner product:

sglobal(vi , t j ) = (gvi )T · gt j
‖gvi ‖‖gt j ‖ . (9)
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3.4 Text-Video Contrastive Learning

During training, for a given batch consisting of B text-video pairs, we adopt the InfoNCE
loss [35] to optimize the retrieval model. InfoNCE loss maximizes the similarity between the
matched text-video pairs and minimizes the similarity between other pairs. For text-video
fine-grained alignment based on frames and words, the loss function is calculated as follows:

L f grained = Lv2t
f grained + Lt2v

f grained , (10)

Lv2t
f grained = − 1

B

B∑

i

log
exp(sv2t

f grained(vi , ti ))∑B
j=1 exp(s

v2t
f grained(vi , t j ))

, (11)

Lt2v
f grained = − 1

B

B∑

i

log
exp(st2vf grained(vi , ti ))∑B
j=1 exp(s

t2v
f grained(v j , ti ))

. (12)

For text-video local alignment based on semantic centers, the loss function is as follows:

Llocal = Lv2t
local + Lt2v

local , (13)

Lv2t
local = − 1

B

B∑

i

log
exp(sv2t

local(vi , ti ))∑B
j=1 exp(s

v2t
local(vi , t j ))

, (14)

Lt2v
local = − 1

B

B∑

i

log
exp(st2vlocal(vi , ti ))∑B
j=1 exp(s

t2v
local(v j , ti ))

. (15)

For text-video global alignment, the loss function is as follows:

Lglobal = Lv2t
global + Lt2v

global , (16)

Lv2t
global = − 1

B

B∑

i

log
exp(sglobal(vi , ti ))∑B
j=1 exp(sglobal(vi , t j ))

, (17)

Lt2v
global = − 1

B

B∑

i

log
exp(sglobal(vi , ti ))∑B
j=1 exp(sglobal(v j , ti ))

. (18)

Finally, the loss function for the proposed multi-grained and semantic-guided text-video
alignment is as follows:

L = L f grained + αLlocal + βLglobal , (19)

Where α and β are the weighting parameters to balance losses at different granularity. It can
be set manually. As shown in Sect. 4.4,We testedmultiple groups of values in the experiment,
and determined the values shown in Sect. 4.2 according to the experimental effect.
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4 Experiments

4.1 Datasets and EvaluationMetrics

4.1.1 Datasets

MSRVTT [36] is a text-video cross-modal dataset established by Microsoft. It consists of
10,000 videos and 20 sentences for each video. In the officially provided split (MSRVTT full),
the dataset is divided into three parts: training, validation, and testing. We use MSRVTT-9k
and MSRVTT-7k splits, which are more commonly used in text-video retrieval. The training
set contains 9000 and 7000 videos respectively. They have the same test set, which contains
1000 videos.

MSVD [37] dataset contains 1970 videos, ranging in length from 1 to 62s. We use the
split that was officially provided. The number of videos in training, validation, and test set is
1200, 100, and 670, respectively.

ActivityNetCaption [38] contains 20,000 videoswith a total duration of 849h. The average
length of each text is 13.48 words. The ActivityNet Captions dataset focuses more on the
actions in the video. The complexity and variability of video actions pose new challenges
to the temporal correlation and action semantic understanding ability of text-video retrieval
models.

DiDeMo [39] dataset contains 10,000 videos, each containing 40 sentences. Following
the practice of [40, 41], the sentences for a video are concatenated to form a query.

The above four datasets represent medium, small, and larger datasets in the text-video
cross-modal retrieval task, which can effectively test the performance of the model under
different data scales.

4.1.2 Evaluation Metric

Weuse the standardmetrics. R@K, recall rate in rankK, is the proportion ofmatched samples
in the top-K retrieved results. We report R@1, R@5, and R@10 following [6, 11, 19]. We
also report the median rank (MdR) and mean rank (MnR) of the matched samples. Higher
R@K and lower MdR or MnR indicate better performance.

4.2 Implementation Details

We use CLIP (ViT-B/16) to initialize the parameters of text encoder and video encoder. We
uniformly sample 12 frames for each video. The max length of text is 32. A two-layer MLP
is adopted to get the weights of frames and words in the fine-grained text-video alignment.
The number of semantic centers in the local-level text-video alignment K is set to be 3. In
the total loss function, α and β are set to 0.2 and 0.1, respectively. The optimizer is Adam
[42]. The initial learning rate is 1e−7 for CLIP and 1e−4 for other modules. The batch size
is 16 and we run 5 epochs as the same as CLIP4Clip [11].

4.3 Comparisons with Other Methods

In the text-video retrieval paradigm, the similarity scores of video-to-text can be obtained
by transposing the text-to-video similarity scores matrix, thus completing the video-to-text
retrieval task. In the following experimental results, we have listed the experimental results
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of text-to-video retrieval. Please refer to Appendix A for the experimental results of the
video-to-text retrieval task.

Table 2 shows the results of MSRVTT-9k. The performance of the multi-grained
and semantic-guided alignment retrieval model proposed in this paper is superior to the
approaches based on multi-experts, such as CE, MMT, and T2VLAD, indicating the effect
of pretrained CLIP in transferring the cross-modal semantic knowledge of text-image to
text-video retrieval. CLIP4Clip-seqTranf adopts a temporal transformer to model temporal
relationship. CLIP2Video utilizes a temporal alignment block to realize sequential align-
ment. Our approach captures the multi-grained semantic relationship, which performs 3.2%
and 2.1% higher on R@1 than CLIP4Clip-seqTranf and CLIP2Video, respectively. Com-
pared with X-Pool which utilizes cross-modal attention for feature interaction, our approach
exceeds it by 0.8% and 1.7% on R@1 and R@5 respectively, which improves the perfor-
mance while avoiding the extra computational cost brought by the single-streammodel in the
test stage. Compared to the multi-grained based methods CAMoE and HiSE, our approach
achieves significant advantages. As shown in Table 3, on MSRVTT-7k, our method has an
increase of 3.3% over CLIP4Clip-meanP on R@1, reducing MnR to 12.4, achieving better
performance than most existing methods.

The comparison with existing methods on MSVD is shown in Table 4. MSVD is a small
dataset containing only 1970 videos. Compared with CAMoE, which uses three attention
networks, our approach significantly outperforms on R@5 and R@10. Our method achieves
0.4%, 1.7%, 2.2% higher than CLIP4Clip-meanP on R@1, R@5, and R@10, respectively.
Our method also reduces theMdRmetric ofMSVD to 9.1, which is smaller than the previous
models.

In Table 5, we show the results of our method on the ActivityNet Captions dataset. Com-
pared with TS2-Net and HBI, our method achieved better R@1, achieving 42.5.

As shown in Table 6, on DiDeMo dataset, our method achieves more than 5.3% and 2.6%
improvement over other methods on R@5 and R@10 of text-to-video retrieval.

From the performance comparison on the above four datasets, our approach significantly
outperforms the other methods, which demonstrates the importance of multi-grained text-
video semantic alignment. Multi-grained semantics is a natural attribute of text and video.
It is how the human brain processes information from the two modalities. Therefore, it’s
essential to establish multi-grained text-video alignment in cross-modal retrieval.

4.4 Ablations and Analysis

To further verify the effect of each module of the multi-grained and semantic-guided text-
video alignment, we conduct ablation experiments on MSRVTT-9k.

4.4.1 Effect of Each Granularity

To fully examine the impact of different alignment modules, we conduct an ablation study as
shown in Table 7. We start with the fine-grained text-video alignment based on frames and
words and add other modules successively. ‘local’ refers to the pure local-level alignment
based on semantic centers, without the guidance mechanism of summary semantics. We
can see that adding the local-level alignment directly to the fine-grained alignment does
not improve retrieval performance significantly. After applying the guidance mechanism
of summary semantics to adjust the local-level alignment based on semantic centers, the
R@1 of text-to-video retrieval is increased to 47.3%. After adding the global-level text-
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Table 2 Text-to-video retrieval performance comparisons to SOTAs on the MSRVTT-9k dataset

*Method text-to-video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 20.9 48.8 62.4 6.0 28.2

MMT [3] 26.6 57.1 69.6 4.0 24.0

T2VLAD [6] 29.5 59.0 70.1 4.0 –

LaT [44] 35.3 61.3 72.9 3.0 –

BridgeFormer [32] 37.6 64.8 75.1 3.0 –

MILES [45] 37.7 63.6 73.8 3.0 –

MDMMT [4] 38.9 69.0 79.7 2.0 16.5

RaP [46] 40.9 67.2 76.9 2.0 –

CLIP for feature representations

CLIP [10] 31.2 53.7 64.2 4.0 –

COTS [47] 36.8 63.8 73.2 2.0 –

CLIP4Clip-tightTransf [11] 40.2 71.5 80.5 2.0 13.4

CLIP4Clip-seqLSTM [11] 42.5 70.8 80.7 2.0 16.7

CLIP4Clip-meanP [11] 43.1 70.4 80.8 2.0 16.2

CLIP4Clip-seqTransf [11] 44.5 71.4 81.6 2.0 15.3

CAMoE [14] 44.6 72.6 81.8 2.0 13.3

HiSE [33] 45.0 72.7 81.3 2.0 –

CLIP2Video [12] 45.6 72.6 81.7 2.0 14.6

LAFF [48] 45.8 71.5 82.0 – –

TokenFlow [49] 46.1 72.7 82.0 2.0 13.6

EMCL-Net [50] 46.8 73.1 83.1 2.0 –

X-Pool [19] 46.9 72.8 82.2 2.0 14.3

TABLE [51] 47.1 74.3 82.9 2.0 13.4

Ours 47.7 74.5 83.7 2.0 11.9

Here we report results without any post-processing operations (e.g., [14] or [43]) during inference (as in
subsequent tables)

video alignment as our entire model, the R@1 of text-to-video retrieval increase to 47.7%.
It demonstrates the effect of each granularity of our proposed multi-grained alignment for
text-video retrieval. Also, the semantic guidance mechanism plays an important role in the
local-level alignment.

4.4.2 Effect of the Number of Centers

For the local alignment based on semantic centers, we also designed a group of experiments
by setting different semantic center numbers (K = 2, 3, 4, 5, 6), as shown in Fig. 6a. Com-
prehensively considering the R@1 of text-to-video and video-to-text retrieval, we believe
that the effect of K = 3 and 4 is similar, which is better than the effect of K = 5 or 6.
Considering the calculation efficiency, we choose to set the value of K to 3. In fact, the
results obtained from the experiment are consistent with the basic composition of the event
and human perception. Events are reflected in text as subjects, predicates, and their relation-
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Table 3 Text-to-video retrieval performance comparisons to SOTAs on the MSRVTT-7k dataset

Method text-to-video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

HGR [17] 9.2 26.2 36.5 24.0 164.0

ViSERN [31] 18.1 48.4 61.3 6.0 28.6

COTS [47] 32.1 60.8 70.2 3.0 –

RaP [46] 38.5 64.0 74.4 3.0 –

CLIP for feature representations

CLIP4Clip-tightTransf [11] 37.8 68.4 78.4 2.0 17.2

CLIP4Clip-seqLSTM [11] 41.7 68.8 78.7 2.0 16.6

CLIP4Clip-seqTransf [11] 42.0 68.6 78.7 2.0 16.2

CLIP4Clip-meanP [11] 42.1 71.9 81.4 2.0 15.7

X-Pool [19] 43.9 72.5 82.3 2.0 14.6

Ours 45.4 73.9 81.7 2.0 12.4

Table 4 Text-to-video retrieval performance comparisons to SOTAs on the MSVD dataset

Method text-to-video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

ViSERN [31] 18.1 48.4 61.3 6.0 28.6

CE [2] 19.8 49.0 63.8 6.0 23.1

LaT [44] 40.0 74.6 84.2 2.0 –

RaP [46] 45.4 74.8 83.6 2.0 –

CLIP for feature representations

CLIP4Clip-tightTransf [11] 40.0 71.5 82.1 2.0 13.3

LAFF [48] 45.4 76.0 84.6 – –

CLIP4Clip-seqLSTM [11] 46.2 75.3 84.5 2.0 10.2

CLIP4Clip-meanP [11] 46.2 76.1 84.6 2.0 10.0

DiffusionRet [52] 46.6 75.9 84.1 2.0 15.7

CAMoE [14] 46.9 76.1 85.5 – 9.8

CLIP2Video [12] 47.0 76.8 85.9 2.0 9.6

X-Pool [19] 47.2 77.4 86.0 2.0 9.3

DiCoSA [53] 47.4 76.8 86.0 2.0 9.1

Ours 46.6 77.8 86.8 2.0 9.1

ships, and in videos as objects and their relationships. Thus, it can be clustered into three
semantic centers. Moreover, the semantic guidance mechanism adjusts the weight of these
parts throughout the entire event, so the model can focus more on the more important parts.
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Table 5 Text-to-video retrieval performance comparisons to SOTAs on the ActivityNet Captions dataset

Method text-to-video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 18.2 47.7 – 6.0 23.1

ClipBERT [41] 21.3 49.0 63.5 6.0 –

T2VLAD [6] 23.7 55.5 – 4.0 –

MMT [3] 28.7 61.4 – 3.3 16.0

CLIP for feature representations

CLIP4Clip-seqLSTM [11] 40.1 72.2 – 2.0 7.3

CLIP4Clip-seqTransf [11] 40.5 72.4 – 2.0 7.5

CLIP4Clip-meanP [11] 40.5 72.4 – 2.0 7.4

TS2-Net [21] 41.0 73.6 84.5 2.0 8.4

HBI [54] 42.2 73.0 84.6 2.0 6.6

Ours 42.5 73.1 85.0 2.0 6.5

Table 6 Text-to-video retrieval performance comparisons to SOTAs on the DiDeMo dataset

Method text-to-video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 16.1 41.1 – 8.3 43.7

LaT [44] 32.6 61.3 71.6 3.0 –

MILES [45] 36.6 63.9 74.0 3.0 –

BridgeFormer [32] 37.0 62.2 73.9 3.0 –

RaP [46] 42.9 71.2 80.2 2.0 –

CLIP for feature representations

CLIP4Clip-tightTransf [11] 25.8 52.8 66.3 5.0 27.3

CLIP4Clip-seqTransf [11] 42.8 68.5 79.2 2.0 18.9

CLIP4Clip-seqLSTM [11] 43.4 69.9 80.2 2.0 17.5

CLIP4Clip-meanP [11] 43.4 70.2 80.6 2.0 17.5

TS2-Net [21] 41.8 71.6 82.0 2.0 14.8

CAMoE [14] 43.8 71.4 79.9 2.0 16.3

HiSE [33] 44.1 69.9 80.3 2.0 –

Ours 44.4 75.2 82.9 2.0 12.4

4.4.3 Parameter Sensitivity of Weighting Parameters

The parameter α indicates the importance of Llocal . We evaluate the scale range setting
α ∈ [0.1, 0.5] as shown in Fig. 6b. When α = 0.2, R@1 in both directions achieves the
best performance. So we set α = 0.2 as the default in practice. We present the influence of
hyper-parameter β in Fig. 6c. We find that the model performs best when β is set to 0.1. So
we adopt β = 0.1 in practice.
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Table 7 Ablation study of each granularity on the MSRVTT-9k (text-to-video)

Method text-to-video
Multi-grained Semantic- guided R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Fgrained Local Global

√
47.0 75.8 82.8 2.0 12.8√ √
46.9 75.4 82.9 2.0 12.3√ √ √
47.3 75.1 83.2 2.0 12.0√ √ √
47.3 75.2 83.7 2.0 13.2√ √ √ √
47.7 74.5 83.7 2.0 11.9

Fig. 6 Parameter sensitivity study on MSRVTT-9k. Effect of (a) number of centers K ; (b) the weighting
parameter α; (c) the weighting parameter β

Table 8 Effect of MLP layers in global-guided mechanism on MSRVTT-9k

MLP layers text-to-video video-to-text
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

1FC 46.3 74.6 84.0 2.0 12.0 46.3 75.5 84.5 2.0 8.4

2FC 47.7 74.5 83.7 2.0 11.9 46.8 75.6 84.3 2.0 8.1

3FC 46.9 74.7 84.0 2.0 12.3 45.8 74.7 84.5 2.0 8.5

4.4.4 Effect of MLP Layers in the Semantic Guidance Mechanism

In the semantic-guided local-level text-video alignment, we adopt the simple and efficient
MLP to generate weights for semantic centers, which is composed of linear layers and ReLU.
We testMLPconsisting of 1, 2, and 3 linear layers, respectively.As shown inTable 8,we found
that each of them achieves good performance, while theMLPwith two linear layers performs
better, scoring 47.7% and 46.8% on R@1 of text-to-video and video-to-text respectively.

4.4.5 Visualization Results

Figure7 shows the quantitative results of our retrievalmethod. It can be seen from the retrieved
videos that our model can capture subtle information and gain more accurate retrieval results
than the model that only focuses on global semantics. Specifically, for #query1, compared
to the model without semantic guidance mechanism, MGSGA focuses more on more dis-
criminative semantics such as “classroom” and “children”, rather than just on “man” and
“speak”, thus excluding the top4 video in “w/o semantic guided alignment”. For #query2,
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Fig. 7 Quantitative results of text-video retrieval. The blue number is the similarity score. Each video is
represented by 3 randomly sampled frames. The ground-truth video is marked with a red box and a red star.
The left column is the retrieval results of themulti-grained and semantic-guided text-video alignment proposed
in this paper. The middle column is the retrieval results of the model without semantic guidance mechanism.
The right column is the retrieval results only using global semantics (CLIP4Clip). (Color figure online)

the five retrieved videos of our model all embody “people” and “beach”. Due to the presence
of “beach” semantics, top 5 video in “MGSGA” is ranked as top 4 in “w/o semantic-guided
alignment”, but the information that “singing” is more important in the overall semantics
of this text is ignored. The last three of the first five videos retrieved by “w/o multi-grained
alignment” are all related to text but not strongly related. Due to the multi-grained and
semantic-guided text-video alignment, MGSGA performs well in cross-modal association,
thus obtaining better retrieval results.

5 Conclusion

In this paper, we explore the multi-grained semantic correspondence between text and video,
A multi-grained and semantic-guided text-video alignment framework is proposed for cross-
modal retrieval, which aligns the embeddings of text and video in the common semantic
space from fine-grained based on frames and words, local-level based on semantic centers,
and the global-level. Specially, we introduce the semantic guidance mechanism provided by
the summary semantics in the local-level alignment module. It makes the model focus on the
more important semantic center from the perspective of summary semantics. Performance on
MSRVTT, MSVD, ActivityNet Captions, and DiDeMo show that our method exceeds most
existing methods. We also conduct ablation experiments and qualitative analysis to validate
our method.
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The current research on text-video retrieval only exploits the annotation inside the dataset.
In the future,wewill consider introducing external knowledge into the text-video cross-modal
retrieval model, and integrating external knowledge and the information inside the dataset in
the architecture to improve the retrieval performance.
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Appendix A Video-to-Text Retrieval Results

Table 9, 10, 11, and 12 present the video-to-text retrieval results of MGSGA on MSR-
VTT-9k, MSVD, and DiDeMo. Table 13 shows the ablation study of each granularity on the
MSRVTT-9k(video-to-text).
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Table 9 Video-to-text retrieval performance comparisons to SOTAs on the MSRVTT-9k dataset

Method video-to-text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 20.6 50.3 64.0 5.3 25.1

MMT [3] 27.0 57.5 69.7 3.7 21.3

T2VLAD [6] 31.8 60.0 71.1 3.0 –

LaT [44] 35.4 61.3 72.4 3.0 –

CLIP for feature representations

CLIP [10] 27.2 51.7 62.6 5.0 –

CLIP4Clip-tightTransf [11] 40.6 69.5 79.5 2.0 13.6

CLIP4Clip-seqTransf [11] 42.7 70.9 80.6 2.0 11.6

CLIP4Clip-seqLSTM [11] 42.8 71.0 80.4 2.0 12.3

CLIP4Clip-meanP [11] 43.1 70.5 81.2 2.0 12.4

CLIP2Video [12] 43.5 72.3 82.1 2.0 10.2

X-Pool [19] 44.4 73.3 84.0 2.0 9.0

CAMoE [14] 45.1 72.4 83.1 2.0 10.0

TokenFlow [49] 45.4 73.5 83.7 2.0 10.0

EMCL-Net [50] 46.5 73.5 83.5 2.0 –

HiSE [33] 46.6 73.3 82.3 2.0 –

TABLE [51] 47.2 74.2 84.2 2.0 11.0

Ours 46.8 75.6 84.3 2.0 8.1

Table 10 Video-to-text retrieval performance comparisons to SOTAs on the MSVD dataset

Method video-to-text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

ViSERN [31] 24.3 46.2 59.5 7.0 34.6

LaT [44] 39.7 75.6 85.4 2.0 –

CLIP for feature representations

CLIP4Clip-seqLSTM [11] 52.5 74.0 78.1 1.0 14.7

CLIP4Clip-tightTransf [11] 54.3 85.3 91.0 1.0 6.0

CLIP4Clip-meanP [11] 56.6 79.7 84.3 1.0 7.6

CLIP2Video [12] 58.7 85.6 91.6 1.0 4.3

DiffusionRet [52] 60.3 86.4 92.0 1.0 4.5

Ours 60.2 87.2 92.7 1.0 4.8
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Table 11 Video-to-text retrieval performance comparisons to SOTAs on the ActivityNet Captions dataset

Method video-to-text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 17.7 46.6 – 6.0 24.4

T2VLAD [6] 24.1 56.6 – 4.0 –

MMT [3] 28.9 61.1 – 4.0 17.1

CLIP for feature representations

CLIP4Clip-meanP [11] 42.5 74.1 85.8 2.0 6.6

CLIP4Clip-seqLSTM [11] 42.6 73.4 85.6 2.0 6.7

CLIP4Clip-seqTransf [11] 41.4 73.7 85.3 2.0 6.5

HBI [54] 42.4 73.0 86.0 2.0 6.5

Ours 42.4 73.2 85.8 2.0 6.4

Table 12 Video-to-text retrieval performance comparisons to SOTAs on the DiDeMo dataset

Method video-to-text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Non-CLIP for feature representations

CE [2] 15.6 40.9 – 8.2 42.4

LaT [44] 32.7 61.1 72.7 3.0 –

CLIP for feature representations

CLIP4Clip-tightTransf [11] 21.5 51.1 64.8 5.0 22.4

CLIP4Clip-seqTransf [11] 41.4 68.2 79.1 2.0 12.4

CLIP4Clip-seqLSTM [11] 42.4 69.2 79.2 2.0 11.8

CLIP4Clip-meanP [11] 42.5 70.6 80.2 2.0 11.6

HiSE [33] 43.8 70.4 79.2 2.0 –

Ours 43.2 73.2 82.7 2.0 8.7

Table 13 Ablation study of each granularity on the MSRVTT-9k (video-to-text)

Method video-to-text

Multi-grained Semantic- guided R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
fgrained local global√

45,6 75.3 84.4 2.0 8.9√ √
45.6 75.4 84.5 2.0 8.9√ √ √
45.9 75.7 84.9 2.0 8.7√ √ √
46.0 75.5 84.4 2.0 8.8√ √ √ √
46.8 75.6 84.3 2.0 8.1
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