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Abstract
This paper investigates the leader and leaderless bipartite synchronization with the signed
network utilizing the model of multiple memristor and coupled delayed neural network in
an event-triggered pinning control. The usage of the descriptor method in fractional-order
neural networks in case of a non-differentiable delay can be seen in this paper. Further,
Lyapunov functional criteria, including Lur’e Postnikov Lyapunov functional, is established,
and bipartite leader and leaderless synchronization are proved. The obtained numerical results
can be seen as accurate to the theoretical results.
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Structurally balanced · Descriptor method · Lur’e Postnikov · Event triggered pinning
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1 Introduction

Fractional differential calculus (FDC) has more properties than ordinary differential calculus
(ODC). The main attractive application of FDC is its weak singularity, degrees of freedom,
non-locality, and infinite memory [1]. Taking arbitrary order in integrals and derivatives is an
attractive usage of FDC and can be applied to various medical applications. There are many
models of FDCs which are widely used in the fields of engineering and sciences. FDC plays
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an important role in biological sciences as well. It is used in analysis of breast cancer [2],
tumor-immune system [3], diabetes [4], Nipah virus [5], and coronavirus [6], HIV model
[7] and many more. Apart from this, applications of FDC can be seen in real-life science
and engineering problems [8], fractional fractal system [9], the fractional ecological system
[10], heat transfer, mechanics, wide range fields, electric circuits [11] and fractional partial
differential equations [12, 13].

In the 17th century, Christiaan Huygens described the phenomenon of synchronization.
Finding an oscillating object’s rhythm from weak interaction is known as synchronization.
It has been applied in pattern recognition, image processing, and object detection [14],
references therein. There are many kinds of synchronization like mutual and high-order syn-
chronization, Kuramoto self-synchronization, complete synchronization, weak and robust
synchronization, global synchronization, quasi synchronization, sampled data synchroniza-
tion, global non-fragile synchronization, bipartite synchronization and references therein
[15–19]. Bipartite consensus means all the processing elements converge to a value and have
the same modulus except for its sign [20, 21]. A network of structurally balanced signed
graphs is known as a bipartite consensus [20]. If it is not structurally balanced, the network
reaches an interval bipartite consensus [22]. This consensus of synchronization is said to be
bipartite synchronization. Over the years, several results have been established in bipartite
synchronization, bipartite synchronization of Lur’e network [23], fractional order bipartite
fixed time synchronization [24], coupled delayed neural network (CDNN) of bipartite syn-
chronization [19] and bipartite synchronization of memristor-based fractional-order CDNN
[25].

Leon O. Chua postulated a new circuit element. The two-terminal device, obtained by
applying the initial conditions of the pinched hysteresis loop in the voltage-current (v-i)
plane powered by the bipolar periodic voltage, is called a memristor. It was an experimental
observation inHP (Hewlett−Packard) laps. Themain advantage of amemristor is non-volatile
memory. It containsmany applications, such as high density, lower power, ease of integration,
nano-dimension and good scalability [26, 27]. The neural network is parallel distributed
information to a processing structure. There are several types of neural networks, such as
the stochastic neural network [28], Chebyshev neural network [10], BAM neural network
[29], discontinuous neural network [18] and multiple memristor neural network [30]. Delay
is unavoidable in neural networks, synchronization of memristor delayed neural network,
synchronization of coupled delayed neural network (CDNN), synchronization of recurrent
neural networks with time varying delay [31], memristor based inertial neural network with
mixed time varying delay by using new non-reduced order method [27], switching law with
time-varying delay [32], further refer [15, 19, 33].

Now,FDC-basedneural networks getmore attention frommanyauthors; for example, frac-
tional neural network (FNN) [24, 34–36], fractional memristor neural network (FMNN) [37],
fractional memristor delayed neural network (FMDNN) [15], memristor-based fractional-
order coupled delayed neural network (FCDNN) [25] are widely studied. Different kinds
of controllers are used in ODC and FDC. Some of the widely used ones are pinning con-
trol [19, 23, 25], event triggered, periodic and self triggered controllers [35, 36, 38], event
triggered pinning control [21], adaptive event triggered control [39], impulsive control [40–
42], sampled data control [17, 23], terminal and quantized slide mode control [10, 31, 43],
delay-dependent feedback controller [27] and distributed control [44]. The main reason for
using pinning control is to reduce large network costs. It should be observed that continuous
communication at every time may exist redundant and high energy consumption in control
systems. It may be stopped when the event-triggered mechanism maintains the designed
controller between two trigger instants. Mainly using event-triggered control reduced super-
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fluous utilization [21]. periodic event-triggered of singular system with cyber-attacks refer
[38], event triggered fractional-order multi-agent system [39], event triggered of multiple
fractional order neural networks with time varying delays [35], event triggered bipartite syn-
chronization of multi-order fractional neural networks [36]. The Laplace transform [2, 3, 6],
the Lyapunov function [10, 16, 18, 37], and linear matrix inequality (LMI) [25, 34] are used
in the study of FDC. Lyapunov function is classified as Lyapunov Razumikhin [40, 41] and
Lyapunov krasovskii function (LKF) [21, 25, 28, 29, 45]. Moreover, a neuron’s activation
function applied in the Lyapunov function is the Lur’e-Postnikov Lyapunov function (LPLF)
[18, 34]. It helps to reduce conservatism.

The essential novelties of this paper are the fractional order multiple memristor coupled
delayed neural network (FMMCDNN) and the distributed event-triggered pinning control and
descriptor method proposed by developing fractional order Jensen’s inequality to achieve the
bipartite leader and leaderless synchronization. Secondly, the bipartite leader and leaderless
synchronization are proven for an FMMCDNN using LPLF with LKF.

Based on the above discussions, this paper’s major contributions are as follows:

(i) The rarely sought descriptor method in FMMCDNN with LKF of delay-dependent
stability criteria is discussed here.

(ii) This paper focuses on the bipartite synchronization of signed networks andFMMCDNN
using an event-triggered pinning control with delay conditions,

(iii) we prove that the Zeno behavior is avoided in an event triggered pinning control,
(iv) we also prove the above three results in the case of an FMMCDNN with LPLF added

to LKF.

We have formulated an FMMCDNN in Sect. 2, along with some necessary definitions. In
Sect. 3, the formulation and leader bipartite synchronization of an event-triggered pinning
control is discussed, and the leaderless bipartite synchronization can be seen in Sect. 4. Sec-
tion5 deals with the Lur’e Postnikov Lyapunov function criteria. And we can see numerical
examples and the conclusion in Sects. 6 and 7, respectively.

Notations
sign(·) represent the signum or sign function,⊗means the Kronecker product,wp denotes

the gauge transformation, l pj represents aLaplacianmatrix, Ls and Lu areLaplacian of signed

and unsigned matrices respectively, and c̄o means convexity closure. � =
(
P Q
∗ S

)
, where

∗ represent transpose of Q and GSGN denotes signed network.

2 Preliminaries

In this section, we introduce a few prerequisites for the results that follow.

Lemma 1 [46] Let A be the M-matrix then all its eigenvalues will be positive and all the
diagonal entries will be non-positive.

Definition 1 [20] The GSGN satisfies the following conditions

(i) Let V be the set of vertices of signed network GSGN , and V1 ∪ V2 = V , V1 ∩ V2 = ∅
for some V1, V2 ∈ V .

(ii) If the adjacency matrix ars is positive for all Vr , Vs ∈ Vt , t ∈ {1, 2}, and ars is negative
for all Vr ∈ Vt , Vs ∈ Vq , t �= q , where t, q ∈ {1, 2}, then the network is said to be
structurally balanced. Otherwise, the GSGN is called structurally unbalanced.
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Lemma 2 [19, 23] Let the Laplacian Ls be defined as Ls = D-As of the GSGN such that
lui j = Wlsi jW = −|asi j | for i �= j and luii = ∑N

k=1,k �=i |asi j |, holds the above conditions then
the H-matrix is defined as,

H = (hi j ) = Lu + D, (1)

here W = diag(w1, w2 . . . wN ), D is the pinning feedback matrix, where Au and As are
unsigned and signed adjacency matrices.

Lemma 3 [47] If the following LMI,

(
Q T
T T Q1

)
> 0 holds, then either one of the following

conditions exist,

(i) Q > 0, Q1 − T T Q−1T > 0,
(ii) Q1 > 0, Q − T Q−1

1 T T > 0.

Definition 2 [1] The integration of fractional-order function �(t) is defined as follows,

t0 I
q
t �(t) = 1

�(q)

∫ t

t0

�(τ )dτ

(t − τ)1−q
, q ∈ (0, 1]. (2)

Definition 3 [1] Caputo derivative of �(t) is defined as

C
t0D

q
t �(t) = 1

�(n − q)

∫ t

t0

�
n(s)

(t − s)q−n+1 ds,

where q > 0, n ∈ Z+, satisfying (n − 1) < q < n. Particularly, if q ∈ (0, 1) then,

C
t0D

q
t �(t) = 1

�(1 − q)

∫ t

t0

�
′
(s)

(t − s)q
ds. (3)

The Caputo derivative of a constant is zero.

Lemma 4 [45] Let η(t) ∈ R
n be an integrable function, and U be positive definite matrix,

then the fractional order Jensen’s inequality is defined as follows,

t0 I
q
t
(
ηT (t)Uη(t)

) ≥ �(q + 1)(
t − t0

)q (t0 I qt η(t)
)T
U
(
t0 I

q
t η(t)

)
, q ∈ (0, 1). (4)

3 Problem Formulation

Consider FMMCDNN of signed network GSGN expressed by:

C
t0D

q
t
(
xi (t)

) = −Axi (t) + B
(
xi (t)

)
f
(
xi (t)

)+ C
(
xi (t)

)
g
(
xi
(
t − τ(t)

))

−σ

N∑
j=1

∣∣asi j ∣∣(xi (tk)− sign
(
asi j
)
x j
(
tk)
)+ ui , (5)

where the state variable xi (t), (t ≥ 0), xi (t) = (xi1(t), . . . xin(t))T (capacitor’s volt-
age) is the i th neuron, i = {1, 2, . . . N }, diagonal matrices of neurons denoted by A =
diag(a1, a2, . . . an). The connective weighted memristor matrices of B & C are defined
as follows, B(xi (t)) = [bgj (xi j (t))]N×N and C(xi (t)) = [cgj (xi j (t))]N×N respectively.
Let f & g are bounded feedback functions with and without delay, and f (xi (t)) =
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( f1(xi1(t)), . . . fn(xin(t)))T and g(xi (t−τ(t))) = (g1(xi1(t−τ(t))), . . . gn(xin(t−τ(t))))T .
The coupling strength of the network is represented by σ , and τ(t) stands for bounded and
non-differentiable node delay 0 ≤ τ(t) < τ̄ . Using a memristor instead of a resister in a net-
work forms a memristor neural network. The memristor neural network with a coupled term
forms amultiplememristor neural network [26, 30]. If a coupling is symmetric, the adjacency
matrix satisfies ai j = a ji . But it is not necessarily symmetric. If signed network GSGN (5) is
strongly connected and ai j is positive then the coupling term asi j (xi (t) − x j (t)), otherwise
-asi j (xi (t)+ x j (t)). Let the initial condition of xi (t) be defined as xi (t) = φi (t), t ∈ [−r , 0],
where r = sup

t≥0
{τ(t)}. The initial condition φi (t), which belongs to the bounded feedback

functions on [−r , 0]. The leader node of network (5) is defined as

C
t0D

q
t (si (t)) = −Asi (t) + B(si (t)) f (si (t)) + C(si (t))g(si (t − τ(t))), (6)

bgj (si j (t)) and cgj (si j (t)) represent the memristor connective weights of matrices, where
si (t) = (si1(t), . . . sin(t))T .

Remark 1 Let FMMCDNN (5) of connective weights of memristor matrices bgj (si j (t)),
cgj (si j (t)) are discontinuous then the following definitions cannot be applied directly to
these theories. Here, we use the method of differential inclusions in the Filippov solution of
an ODC with a discontinuous right-hand side.

Definition 4 [48] Let the set-valued map F : R × R
n → R

n be defined as

F(t, �) = ∩δ>0 ∩μ(M)=0 c̄o[ f (t, B(�, δ))/M],
let �(t) be a vector value function defined on I ⊂ R and, if absolutely continuous on I , then
the vector value function satisfies the solution of Filippov system and differential inclusion
d�
dt ∈ F(t, �) holds, where an open ball B(�, δ) with center � and radius δ, c̄o represents
convex closure, μ(M) is known as Lebesgue measure, which overall intersection measure
is zero.
Memristor connectionweights of B(xi (t)) andC(xi (t)) inGSGN are defined as bgj (xi j (t)) ={
b̂g j , |xi j (t)| > T j ,

b̌g j , |xi j (t)| < T j ,
cgj (xi j (t)) =

{
ĉg j , |xi j (t)| > T j ,

čg j , |xi j (t)| < T j .
Memristor connection weights

of B(si (t)) and C(si (t)) in network of leader node are defined as bgj (si j (t)) =
{
b̂g j , |si j (t)| > T j ,

b̌g j , |si j (t)| < T j ,
cgj (si j (t)) =

{
ĉg j , |si j (t)| > T j ,

čg j , |si j (t)| < T j ,

B(±T j ) = b̂g j (or) b̌g j ,C(±T j ) = ĉg j (or) čg j , where weights b̂g j , b̌g j , ĉg j , čg j are constant,
switching jumps denotes T j > 0, g, j ∈ N .

Assumption 1 (A1) The activation of odd functions fk , gk are bounded, fk(±Tk) = 0 and
satisfies the following Lipschitz condition

| fk(y) − fk(z)| ≤ Fk |y − z|,
|gk(y) − gk(z)| ≤ Gk |y − z|, (7)

where Fk > 0,Gk > 0, k = {1, 2, . . . n}, y, z ∈ R.

Lemma 5 [15] If f (±Ti ) = g(±Ti ) = 0, by the assumption, then

123



   50 Page 6 of 20 P. Babu et al.

|co[bgj xi j (t)] f (xi (t)) − co[bgj si j (t)] f (si (t))| ≤ BFi |xi (t) − si (t)|,
|co[cgj xi j (t)]g(xi (t)) − co[cgj si j (t)]g(si (t))| ≤ CGi |xi (t) − si (t)|,

where B = max{|b̂g j |, |b̌g j |}, C = max{|ĉg j |, |čg j |}, and Fi > 0,Gi > 0, i ∈ {1, 2, . . . N }.

Remark 2 The set valued map defined in the leader node of network (6) is described by,

co[(bgj (si j (t)))] =

⎧⎪⎨
⎪⎩
b̂g j , |si j (t)| > T j ,

c̄o{b̂g j , b̌i j }, |si j (t)| = T j ,

b̌g j |si j (t)| < T j .

Applying Filippov sense into the leader node si (t), which is absolutely continuous on [0, T ),
the Filippov solution of (6) will be defined as,

C
t0D

q
t (si (t)) ∈ −Asi (t) + co[bgj (si j (t))] f (si (t)) + co[cgj (si j (t))]g(si (t − τ(t))),

for t ≥ 0, where 0 < q < 1, or there exist B ∈ co[bgj (si j (t))], C ∈ co[cgj (si j (t))] such that
C
t0D

q
t (si (t)) = −Asi (t) + B f (si (t)) + Cg(si (t − τ(t))). (8)

Differential inclusion of fractional order with Filippov sense based FMMCDNN (5) is written
as,

C
t0D

q
t (xi (t)) = −Axi (t) + B f (xi (t)) + Cg(xi (t − τ(t))) − σ

N∑
j=1

lui j x j (tk) + ui , (9)

where B ∈ co[bgj (xi j (t))], C ∈ co[cgj (xi j (t))].

Lemma 6 [39]Let �̂ , ψ, η > 0, exp(t)and Eq(t)are boundedon [tk, tk+1), and also satisfies
Eq(−η(t − t0)q) ≤ �̂ exp(−ψ(t − t0)) then

∏k
i=1 Eq [−η(ti − ti−1)

q ] ≤ �̂ k exp(−ψ(tk −
t0)), where Eq(t) = ∑∞

h=0
th

�(hq+1) is called Mittag-Leffler function, q ∈ (0, 1).

3.1 Scheme of Event Triggered Pinning Control Formulation

The impulsive instant tk is defined by

tk+1 = inf {t > tk | gi (t) ≥ 0} , k ∈ N.

If � = {�1, �2, �3} be positive definite matrix and 0 ≤ ζ1, ζ2 < 1, define τ(t) = t − tk ∈
[tk, tk+1), then triggering function is defined as follows,

gi (t) = � T
i (t)�1�i (t) − ζ1

[
� T

i (t) + eTi (t − τ(t))
]
�2
[
�i (t) + ei (t − τ(t))

]
−ζ2e

T
i (t − τ(t))�3ei (t − τ(t)) ≥ 0 (10)

where triggering error �i (t) = ei (tk) − ei (t).

Definition 5 [19, 23] If the FMMCDNN is said to be bipartite synchronization with leader
node of network then the following condition exist, limt→∞(xi (t) − wi si (t)) = 0. If
FMMCDNN is said to be bipartite synchronization with leaderless node of network then
limt→∞(xi (t) − wi x j (t)) = 0.
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Now, we define the event triggered pinning controller ui (t) = −σdi (xi (tk) − wi si (tk)),
t ∈ [tk, tk+1), where di is the pinning feedback gain. If di is positive then the vertices are
pinned, otherwise the value is zero. If wi = 1 then i ∈ V1, and if wi = −1 then i ∈ V2.
Suppose, if wi = IN , bipartite synchronization changes into the traditional leader-follower
synchronization.

Remark 3 The augmented network contains the leader node (8) and the signed network (9),
which is the spanning tree when the leader node is the network’s root, i.e., the network of the
leader node is a direct path to every node of a GSGN [19, 20, 22, 23]. We apply this theory
to directed networks [19, 21, 23–25, 44] and undirected networks [23, 30], based on their
properties.

4 Leader Bipartite Synchronization of FMMCDNN

Applying gauge transformation, the error system ei (t) = x̄i (t) − si (t), which contains
FMMCDNN of signed network (9) and leader node of network (8), where x̄i (t) = wi xi (t),
w2
i = 1. The error system is described as

C
t0D

q
t (ei (t)) = −Aei (t) + BFi ei (t) + CGi ei (t − τ(t)) − σ

N∑
j=1

hi j e j (tk). (11)

In this case, let asik < 0 and
∑N

k=1,k �= j l
s
ik �= 0, then row sum matrix of Ls is not zero. Its

different from unsigned Laplacian matrix.

Lemma 7 [34] Let f and f̂ be continuous functions, if f (0) = 0, t f (t) ≥ 0, f̂ (t) ≥ 0, and
s ∈ R, then

sign

(∫ s

0
f (t) f̂ (t)dt

)
= sign

(∫ s

0
f (t)dt

)
. (12)

Lemma 8 [18] If q ∈ (0, 1) and γi (t) ∈ co
[
bgj xi j (t)

]
f (xi (t)) − co

[
bgj si j (t)

]
f (si (t)),

then

C
t0D

q
t

[∫ ei (t)

0
fi (s)ds

]
≤ γi (t)

C
t0D

q
t ei (t). (13)

4.1 Descriptor Method (DM)

The advantage of DM is having less conservative properties for uncertain systems. Let us
consider the LMI’s for the continuous time systems, discrete time systems and singularly
perturbed systems from [49]. And if we take delay as non-differentiable then the LMIs are
found to be more efficient when compared to the differentiable delay. Then the descriptor
method of ODC can be seen in [19, 49]. The above conditions are applied to the FDC,

C
t0D

q
t (ei (t)) = yi (t), (14)

where C
t0D

q
t (ei (t)) = A0ei (t) + A1ei (t − τ(t)) + A2�i (t), A0 = −IN ⊗ A + IN ⊗ B −

σ(H ⊗ IN ), A1 = I ⊗ C, A2 = −σ(H ⊗ IN ).
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Theorem 1 Assume the hypothesis (A1), let P, P1, P2, �1, �2, �3 ∈ R
n×n be positive defi-

nite matrices, ζ1, ζ2 ∈ [0, 1), there exist a matrix Q and the following LMI condition holds,

 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 13 0 0 0 17

∗ −2QT 23 0 0 0 27

∗ ∗ 33 0 0 0 37

∗ ∗ ∗ −P1 0 0 0
∗ ∗ ∗ ∗ 55 0 0
∗ ∗ ∗ ∗ ∗ 66 0
∗ ∗ ∗ ∗ ∗ ∗ 77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0; (15)

where 11 = P1 + 2QT A0, 12 = P − QT + QT A0, 13 = QT A1G, 17 = QT A2,
23 = QT A1, 27 = QT A2, 33 = ζ1�2 + ζ2�3, 37 = ζ1�2, 55 = τ̄q

�(q+1) P2,

66 = −�(q+1)
τ̄q

P2,77 = ζ1�2−�1, A0 = −IN ⊗ A+ IN ⊗B−σ(H ⊗ In), A1 = IN ⊗C,
A2 = −σ(H ⊗ IN ), then the FMMCDNN of the error system (11) is bipartite synchronized
with leader node of the network.

Proof Take the candidate of Lyapunov-Krasovskii functional:

V (t) =
3∑

k=1

Vk(t),

V1(t) = eTi (t)Pei (t),

V2(t) =
∫ t

t−τ̄

eTi (s)P1ei (s)ds,

V3(t) =
∫ 0

−τ̄

(−θ)q−1
∫ t

t+θ

(Ct−τ̄ D
q
t ei (s))

T P2(
C
t−τ̄ D

q
t ei (s))dsdθ.

Now, using Caputo fractional order derivative and the descriptor method (14), we get

C
t0D

q
t V1(t) ≤ 2eTi (t)Pyi (t),

C
t0D

q
t V2(t) = eTi (t)P1ei (t) − eTi

(
t − τ̄

)
P1ei

(
t − τ̄

)
,

C
t0D

q
t V3(t) ≤ τ̄ q

�(q + 1)

(C
t−τ̄ D

q
t ei (t)

)T
P2
(C
t−τ̄ D

q
t ei (t)

)

− 1

�(q)

∫ 0

τ̄

(−θ)q−1(C
t+θ−τ̄ D

q
t+θei (t + θ)

)T
P2
(C
t+θ−τ̄ D

q
t+θei (t + θ)

)

=
{ τ̄ q

�(q + 1)

(C
t−τ̄ D

q
t ei (t)

)T
P2
(C
t−τ̄ D

q
t ei (t)

)}

−
∫ t

t−τ̄

1

(t − θ)1−q�(q)

(C
θ−τ̄ D

q
θ ei (θ)

)T
P2
(C
θ−τ̄ D

q
θ ei (θ)

)
dθ.

Now, consider∫ t

t−τ̄

1

(t − θ)1−q�(q)

(C
θ−τ̄ D

q
θ ei (θ)

)T
P2
(C
θ−τ̄ D

q
θ ei (θ)

)
dθ

≥ �(q + 1)

τ̄ q

(
1

�(q)

∫ t

t−τ̄

(t − θ)q−1(C
θ−τ̄ D

q
θ ei (θ)dθ)

)T

P2
(

1

�(q)

∫ t

t−τ̄

(t − θ)q−1
(
C
θ−τ̄ D

q
θ ei (θ)dθ

))
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= �(q + 1)

τ̄ q

(
1

�(q)

∫ t

t−τ̄

(t − θ)q−1
(
C
θ−τ̄ D

q
θ ei (θ) − ŷi (θ)dθ

)T
P2

(
1

�(q)

∫ t

t−τ̄

(t − θ)q−1
(
C
θ−τ̄ D

q
θ ei (θ) − ŷi (θ)

)
dθ

)

= �(q + 1)

τ̄ q

(
ei (t) − ei (t − τ̄ ) − t−τ̄ I

q
t ŷi (t)

)T
P2(

ei (t) − ei (t − τ̄ ) − t−τ̄ I
q
t ŷi (t)

)

where ŷi (θ) = 1
�(1−q)

∫ θ−τ̄

t−τ̄
(u − θ)−q ėi (u)du, e(t) = (e1(t), e2(t), . . . eN (t))T , e(t −

τ(t)) = (e1(t − τ(t)), e2(t − τ(t)), . . . eN (t − τ(t)))T , e(t − τ̄ ) = (e1(t − τ̄ ), e2(t −
τ̄ ), . . . eN (t − τ̄ ))T , y(t) = (y1(t), y2(t) . . . yN (t))T , �(t) = (�1(t),�2(t), . . . �N (t))T

and satisfying, 0 = −2(eTi (t) + C
t0(D

q
t ei (t))

T )QT (Ct0D
q
t ei (t) − A0ei (t) − A1ei (t − τ(t)) −

A2�i (t)),

C
t0D

q
t V (t) ≤ 2eTi (t)P{yi (t)} + eTi (t)P1ei (t) − eTi (t − τ̄ )P1ei (t − τ̄ )

+ τ̄ q

�(q + 1)
(Ct−τ̄ D

q
t ei (t))

T P2(
C
t−τ̄ D

q
t ei (t))

−�(q + 1)

τ̄ q
(ei (t) − ei (t − τ̄ ) − t−τ̄ I

q
t ŷi (t))

T P2(ei (t) − ei (t − τ̄ ) − t−τ̄ I
q
t ŷi (t)).

By the triggering condition (10),

≤ 2eT (t)Py(t) + eT (t)P1e(t) − eT (t − τ̄ )P1e(t − τ̄ )

+ τ̄ q

�(q + 1)
�T

1 (t)P2�1(t) − �(q + 1)

τ̄ q
�T

2 (t)P2�2(t)

+� T (t){ζ1�2 − �1}�(t) + eT (t − τ(t)){ζ1�2 + ζ2�3}e(t − τ(t))

+� T (t){ζ1�2}e(t − τ(t)) + eT (t − τ(t)){ζ1�2}�(t)

+eT (t){−2QT }�1 + eT (t){2QT A0}e(t)
+eT (t){2QT A1G}e(t − τ(t)) + eT (t){2QT A2}�(t) + yT (t){−2QT }y(t)
+yT (t){2QT A0}e(t) + yT (t){2QT A1}e(t − τ(t))

+yT (t){2QT A2}�(t)

≤ zTi (t)zi (t),

here zi (t)=col (ei (t), yi (t), ei (t − τ(t)), ei (t − τ̄ ), �1(t),�2(t),�i (t)), ŷ(θ) = (ŷ1(θ),

ŷ2(θ), . . . ŷN (θ))T , �1(t) = C
t−τ̄ D

q
t ei (t), �2(t) = ei (t) − ei (t − τ̄ ) − t−τ̄ I

q
t ŷi (t). Hence,

by using the LMI (15) and lemma 3, the error system (11) is globally asymptotically stable.
Therefore, we attained the desired result. ��

Theorem 2 In Theorem 1, the concerned FMMCDNN of GSGN and leader node of network
avoid Zeno behaviour.

Proof Assume the hypothesis (A1), by the definition of wi (t)

‖ �i (t) ‖ = ‖ ei (tk) − ei (t) ‖
=
∥∥∥Ct0D−q

t

(
C
t0D

q
t (ei (tk))

)
− C

t0D
−q
t

(
C
t0D

q
t (ei (t))

)∥∥∥
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=
∥∥∥∥∥

1

�(q)

(∫ tk

t0

C
t0D

q
t (ei (s))

(tk − s)1−q

)
ds −

(∫ t

t0

C
t0D

q
t (ei (s))

(t − s)1−q

)
ds

∥∥∥∥∥
≤ 1

�(q)

∥∥∥∥∥
∫ tk

t0

(C
t0D

q
t (ei (s))

(tk − s)1−q
−

C
t0D

q
t (ei (s))

(t − s)1−q

)
ds

∥∥∥∥∥+ 1

�(q)

∥∥∥∥∥
∫ t

tk

C
t0D

q
t (ei (s))

(t − s)1−q
ds

∥∥∥∥∥
C
t0D

q
t (ei (t)) is bounded, since ei (t) is bounded. There exist Z > 0, we get (Ct0D

q
t (ei (t))) ≤ Z ,

which yields that

‖ �i (t) ‖ ≤ Z

�(q)
|
∫ tk

t0

(
1

(tk − s)1−q
− 1

(t − s)1−q

)
ds| + Z

�(q)

∣∣∣∣
∫ t

tk

1

(t − s)1−q
ds

∣∣∣∣
= Z

�(q + 1)
(|(t − tk)

q − (t − t0)
q + (tk − t0)

q | + (t − tk)
q)

≤ 2Z(t − tk)q

�(q + 1)
.

We obtain

‖ �i (tk+1) ‖2 = 4Z2T 2q
k

�2(q + 1)
, (15)

where Tk = tk+1 − tk . It is clear that Tk > 0 then zeno behaviour does not hold. Suppose
Tk = 0, by the triggering condition (10), we get

� T
i (t)�1�i (t) − � T

i (t)ζ1�2�i (t) − � T
i (t)ζ1�2ei (t − τ(t))

−eT (t − τ(t))ζ1�2ei (t − τ(t))

eT (t − τ(t))ζ1�2�i (t) − eT (t − τ(t))ζ2�3ei (t − τ(t)) ≥ 0

W ‖ �i (t) ‖2≥‖ ei (t − τ(t)) ‖2 W (16)

by 15, we get ‖ ei (tk+1 − τ(tk+1)) ‖2≤ 0, where W = �1 − ζ1�2 − εζ1�2 − 1
ε̂
ζ1�2 and

W = ζ1�2 + ζ2�3 + 1
ε

+ ε̂ζ1�2, ε, ε̂ ∈ R − {0}, which is contradiction, then we concluded
Zeno behaviour does not exist. ��

5 Leaderless Bipartite Synchronization of FMMCDNN

A synchronization without an external force is called self-synchronization or leaderless syn-
chronization of FMMCDNN. In case of such self synchronized signed networks (9), the
pinned value is zero. Let x̄i (t) = wi xi (t), which also gives xi = wi x̄i (t). Then from (9),

C
t0D

q
t (x̄i (t)) = −Ax̄i (t) + Bwi f (wi x̄ j (t)) + Cwi g(wi x̄i (t − τ(t))) − σ

N∑
j=1

lui j x̄ j (tk),

C
t0D

q
t (x̄i (t)) = −Ax̄i (t) + B f (x̄i (t)) + Cg(x̄i (t − τ(t))) − σ

N∑
j=1

lui j x̄ j (tk).

The error system ei (t) = x̄i (t) − x̄r (t) is written as,

C
t0D

q
t (ei (t)) = −Aei (t) + BFiei (t) + CGiei (t − τ(t)) − σ

N∑
j=1

Lu
i j e j (tk), (17)

123



Bipartite Synchronization of Fractional Order Multiple… Page 11 of 20    50 

where, Lu
i j = lui j − lur j , and

∑N
j=1 l

u
i j = 0.

Theorem 3 Assume the hypothesis (A1), ζ1, ζ2 ∈ [0, 1), let P, P1, P2, �1, �2, �3 ∈ R
n×n

be positive definite matrices, there exist a matrix Q and the following LMI condition holds,

̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

̄11 ̄12 ̄13 0 0 0 ̄17

∗ −2QT ̄23 0 0 0 ̄27

∗ ∗ ̄33 0 0 0 ̄37

∗ ∗ ∗ −P1 0 0 0
∗ ∗ ∗ ∗ ̄55 0 0
∗ ∗ ∗ ∗ ∗ ̄66 0
∗ ∗ ∗ ∗ ∗ ∗ ̄77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0; (19)

̄11 = P1 + 2QT A0, ̄12 = P − QT + QT A0, ̄13 = QT A1G, ̄17 = QT A2, ̄23 =
QT A1, ̄27 = QT A2, ̄33 = ζ1�2 + ζ2�3, ̄37 = ζ1�2, ̄55 = τ̄q

�(q+1) P2, ̄66 =
−�(q+1)

τ̄q
P2, ̄77 = ζ1�2 − �1, A0 = −IN ⊗ A + IN ⊗ B − σ(L ⊗ In), A1 = IN ⊗ C,

A2 = −σ(L ⊗ IN ) then error system (17) is leaderless bipartite synchronized.

Proof Proof is similar to Theorem 1. ��

6 Lur’e Postnikov Lyapunov Function

In neural networks, we use LPLF, which is Lyapunov function along with activation function.
Quadratic Lyapunov function with LPLF is discussed in [18, 34]. LPLF with LKF will be
discussed in this theorem.

Theorem 4 Consider the hypothesis (A1), ζ1, ζ2 ∈ [0, 1), β ∈ R, positive definite matrices
P, P1, P2, �1, �2, �3, R ∈ R

n×n, there exist a matrix Q and the following LMI condition
holds,

̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

̂11 ̂12 ̂13 0 0 0 ̂17 0
∗ −2QT ̂23 0 0 0 ̂27 ̂28

∗ ∗ ̂33 0 0 0 ̂37 0
∗ ∗ ∗ −P1 0 0 0 0
∗ ∗ ∗ ∗ ̂55 0 0 0
∗ ∗ ∗ ∗ ∗ ̂66 0 0
∗ ∗ ∗ ∗ ∗ ∗ ̂77 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0; (20)

̂11 = P1 + 2QT A0, ̂12 = P − QT + QT A0, ̂13 = QT A1G, ̂17 = QT A2, ̂23 =
QT A1, ̂27 = QT A2, ̂28 = βR

2 , ̂33 = ζ1�2 + ζ2�3, ̂37 = ζ1�2, ̂55 = τ̄q

�(q+1) P2,

̂66 = −�(q+1)
τ̄q

P2, ̂77 = ζ1�2−�1, A0 = −IN ⊗ A+ IN ⊗B−σ(H ⊗ In), A1 = IN ⊗C,
then the FMMCDNN of the error system (11) is bipartite leader synchronized.

Proof Consider the LKF and LPLF:

V (t) =
4∑

k=1

Vk(t),

V1(t) = eTi (t)Pei (t),
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V2(t) =
∫ t

t−τ̄

eTi (s)P1ei (s)ds,

V3(t) =
∫ 0

−τ̄

(−θ)q−1
∫ t

t+θ

(
C
t−τ̄ D

q
t ei (s)

)T
P2
(
C
t−τ̄ D

q
t ei (s)

)
dsdθ,

V4(t) = β

n∑
i=1

ri

∫ ei (t)

0
fi (s)ds.

Now, using Caputo fractional order derivative and the descriptor method (14),

C
t0D

q
t V1(t) ≤ 2eTi (t)Pyi (t),

C
t0D

q
t V2(t) =

{
eTi (t)P1ei (t) − eTi (t − τ̄ )P1ei (t − τ̄ ),

C
t0D

q
t V3(t) ≤ τ̄ q

�(q + 1)

(C
t−τ̄ D

q
t ei (t)

)T
P2
(C
t−τ̄ D

q
t ei (t)

)

− 1

�(q)

∫ 0

τ̄

(−θ)q−1(C
t+θ−τ̄ D

q
t+θei (t + θ)

)T
P2
(C
t+θ−τ̄ D

q
t+θei (t + θ)

)

=
{

τ̄ q

�(q + 1)

(C
t−τ̄ D

q
t ei (t)

)T
P2
(C
t−τ̄ D

q
t ei (t)

)}

−
∫ t

t−τ̄

1

(t − θ)1−q�(q)

(C
θ−τ̄ D

q
θ ei (θ)

)T
P2
(C
θ−τ̄ D

q
θ ei (θ)

)
dθ.

C
t0D

q
t V4(t) ≤ β

n∑
i=1

ri
C
t0D

q
t

[∫ ei (t)

0
fi (s)ds

]

Now, consider

∫ t

t−τ̄

1

(t − θ)1−q�(q)

(C
θ−τ̄ D

q
θ ei (θ)

)T
P2
(C
θ−τ̄ D

q
θ ei (θ)

)
dθ

≥ �(q + 1)

τ̄ q
(

1

�(q)

∫ t

t−τ̄

(t − θ)q−1(C
θ−τ̄ D

q
θ ei (θ)dθ)

)T
P2

(
1

�(q)

∫ t

t−τ̄

(t − θ)q−1(C
θ−τ̄ D

q
θ ei (θ)dθ

))

= �(q + 1)

τ̄ q

( 1

�(q)

∫ t

t−τ̄

(t − θ)q−1(C
θ−τ̄ D

q
θ ei (θ) − ŷi (θ)dθ

)T
P2

(
1

�(q)

∫ t

t−τ̄

(t − θ)q−1(C
θ−τ̄ D

q
θ ei (θ) − ŷi (θ)

)
dθ

)

= �(q + 1)

τ̄ q

(
ei (t) − ei (t − τ̄

)− t−τ̄ I
q
t ŷi (t))

T P2(
ei (t) − ei (t − τ̄ ) − t−τ̄ I

q
t ŷi (t)

)

where ŷi (θ) = 1
�(1−q)

∫ θ−τ̄

t−τ̄
(u − θ)−q ėi (u)du, e(t) = (e1(t), e2(t), . . . eN (t))T , e(t −

τ(t)) = (e1(t−τ(t)), e2(t −τ(t)), . . . eN (t−τ(t)))T ,�(t) = (�1(t),�2(t), . . . �N (t))T ,
γ (t) = (γ1(t), γ2(t), . . . γN (t))T ,
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C
t0D

q
t V (t) ≤ 2

N∑
i=1

ξi e
T
i (t)P{yi (t)}

+
{
eTi (t)P1ei (t) − eTi (t − τ̄ )P1ei (t − τ̄ )

}

+ τ̄ q

�(q + 1)

(
C
t−τ̄ D

q
t ei (t)

)T
P2
(C
t−τ̄ D

q
t ei (t)

)

−�(q + 1)

τ̄ q

(
ei (t) − ei (t − τ̄ ) − t−τ̄ I

q
t ŷi (t)

)T
P2 (ei (t)

−ei (t − τ̄ ) − t−τ̄ I
q
t ŷi (t)

)+ β

n∑
i=1

qi
C
t0D

q
t

[∫ ei (t)

0
hi (s)ds

]

≤ 2eT (t)Py(t)

+eT (t)P1e(t) − eT (t − τ̄ )P1e(t − τ̄ )

+ τ̄ q

�(q + 1)
�T

1 (t)P2�1(t) − �(q + 1)

τ̄ q
�T

2 (t)P2�2(t)

+� T (t) {ζ1�2 − �1}�(t) + eT (t − τ(t)) {ζ1�2 + ζ2�3} e(t − τ(t))

+� T (t) {ζ1�2} e(t − τ(t)) + eT (t − τ(t)) {ζ1�2}�(t)

+eT (t){−2QT }�1 + eT (t)
{
2QT A0

}
e(t)

+eT (t)
{
2QT A1G

}
e(t − τ(t)) + eT (t)

{
2QT A2

}
�(t)

+yT (t){−2QT }y(t) + yT (t)
{
2QT A0

}
e(t) + yT (t)

{
2QT A1

}
e(t − τ(t))

+yT (t)
{
2QT A2

}
�(t) + γ T (t)βRy(t)

≤ zTi (t)̂zi (t) (18)

where zi (t)=col (ei (t), yi (t), ei (t − τ(t)), ei (t − τ̂ ), �1(t),�2(t),�i (t), γi (t)) and
ŷ(θ) = (ŷ1(θ), ŷ2(θ), . . . ŷN (θ))T , �1(t) = C

t−τ̄ D
q
t ei (t), �2(t) = ei (t) − ei (t − τ̄ ) −

t−τ̄ I
q
t ŷi (t). Hence, by using the LMI (20) and Lemma 8, the error system (11) is bipartite

leader synchronized. ��
Theorem 5 In Theorem 4, the concerned FMMCDNN is precluded the Zeno behaviour.

Proof Proof is similar to Theorem 2. ��
Theorem 6 Consider the hypothesis (A1), ζ1, ζ2 ∈ [0, 1), β ∈ R, positive definite matrices
P, P1, P2, �1, �2, �3, R ∈ R

n×n, there exist a matrix Q and the following LMI condition
holds,

̊ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

̊11 ̊12 ̊13 0 0 0 ̊17 0
∗ −2QT ̊23 0 0 0 ̊27 ̊28

∗ ∗ ̊33 0 0 0 ̊37 0
∗ ∗ ∗ −P1 0 0 0 0
∗ ∗ ∗ ∗ ̊55 0 0 0
∗ ∗ ∗ ∗ ∗ ̊66 0 0
∗ ∗ ∗ ∗ ∗ ∗ ̊77 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0; (22)
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Fig. 1 Leader node of network trajectory

̊11 = P1 + 2QT A0, ̊12 = P − QT + QT A0, ̊13 = QT A1G, ̊17 = QT A2, ̊23 =
QT A1, ̊27 = QT A2, ̊28 = βR

2 , ̊33 = ζ1�2 + ζ2�3, ̊37 = ζ1�2, ̊55 = τ̄q

�(q+1) P2,

̊66 = −�(q+1)
τ̄q

P2, ̊77 = ζ1�2 −�1, A0 = −IN ⊗ A+ IN ⊗B−σ(L⊗ In), A1 = IN ⊗C,
A2 = −σ(L⊗ IN ), then thememristor based FMMCDNNof the error system (17) is bipartite
leaderless synchronized.

Proof Proof is similar to Theorem 4. ��

Remark 4 Assume by the descriptor method, the LMIs (15), (19), (20) and (22) are higher
dimension when compared to the LMI (11) and (15) in [25], since τ(t) is bounded but not
differentiable. If β = 0 in Theorems 4 and 5, the Lyapunov Postnikov candidates change
into the Lyapunov Krasovskii functional, as we have proved in Theorems 1 and 3.

Remark 5 Bipartite synchronization of neural networks without memristor discussed in [19,
36], bipartite synchronization with memristor studied [25, 30], event-triggered without delay
[36, 39], event- triggeredwith delay [35, 38]. Event-triggered bipartite leader synchronization
as shown in figure 3, leaderless bipartite synchronization revels in figure 5. We implemented
LPLF with bipartite synchronization memristor based event-triggered pinning control.

7 Numerical Examples

Example 1 Let A =
(
1 0
0 1

)
be the diagonal matrix and consider memristor in leader node of

the network (8), B =
(
0.02 0.04
0.01 0.03

)
, C =

(
0.05 0.01
0.02 0.06

)
, where the memristor values are taken

from [50]. Figure1 shows the leader node of the network trajectory (8). Let A =
⎛
⎝10 0 0

0 20 0
0 0 30

⎞
⎠
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be a diagonal matrix, consider FMMCDNN with the following parameters. The memristor
and multiple memristor weights are from [30, 43] as

b11(x1) =
{
1.2, |x1(t)| < 1,

1.1, |x1(t)| > 1,
b12(x1) =

{
−3, |x1(t)| < 1,

3, |x1(t)| > 1,

b13(x1) =
{

−3, |x1(t)| < 1,

3, |x1(t)| > 1,
b21(x2) =

{
−3, |x2(t)| < 1,

3, |x2(t)| > 1,

b22(x2) =
{
1, |x2(t)| < 1,

−1, |x2(t)| > 1,
b23(x2) =

{
−4, |x2(t)| < 1,

4, |x2(t)| > 1,

b31(x3) =
{

−3, |x3(t)| < 1,

3, |x3(t)| > 1,
b32(x3) =

{
−4, |x3(t)| < 1,

4, |x3(t)| > 1,

b33(x3) =
{
1.2, |x3(t)| < 1,

−1.2, |x3(t)| > 1,
c11(x1) =

{
1.25, |x1(t)| < 1,

−1.25, |x1(t)| > 1,

c12(x1) =
{

−3.2, |x1(t)| < 1,

3.2, |x1(t)| > 1,
c13(x1) =

{
−3.2, |x1(t)| < 1,

3.2, |x1(t)| > 1,

c21(x2) =
{

−3.2, |x2(t)| < 1,

3.2, |x2(t)| > 1,
c22(x2) =

{
1.1, |x2(t)| < 1,

−1.1, |x2(t)| > 1,

c23(x2) =
{

−4.4, |x2(t)| < 1,

4.4, |x2(t)| > 1,
c31(x3) =

{
−3.2, |x3(t)| < 1,

3.2, |x3(t)| > 1,

c32(x3) =
{

−4.4, |x3(t)| < 1,

4.4, |x3(t)| > 1,
c33(x3) =

{
1, |x3(t)| < 1,

1, |x3(t)| > 1.

Using the bipartite consensus V1 = {1, 2, 3, 5, 10}, V2 = {4, 6, 7, 8, 9},W = {1, 1, 1,−1, 1,
−1,−1,−1,−1, 1}, d4 = 30,
σ = 25 and q = 0.85, the activation function f (xi (t)) = g(xi (t − τ(t))) = tanh(xi j (t))
which satisfies F = G = 1. Hence from the lemma 2, we get λi = 0.4280. Using MATLAB
LMI toolbox on the hypothesis of Theorem 1, we can see that the inequality (15) is feasible
with positive definite matrices.

P =
⎛
⎝0.3669 0.3971 0.1965
0.3971 0.7657 0.3495
0.1965 0.3495 0.3012

⎞
⎠ ; P1 =

⎛
⎝0.5171 0.4022 0.3270
0.4022 0.6312 0.3801
0.3270 0.3801 0.4862

⎞
⎠ ;

P2 =
⎛
⎝0.3457 0.1945 0.1945
0.1945 0.3457 0.1945
0.1945 0.1945 0.3457

⎞
⎠ .

Figures2, 3 and 4 represents directed signed graph with ten vertices of cooperative and
competitive relationship and the bipartite leader synchronization and transmit interval of
leader bipartite synchronization respectively.
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Fig. 2 Signed network with ten
vertices. Blue dot line represents
cooperative and red line
represents competitive

Fig. 3 Leader bipartite synchronization

Example 2 Consider Eq. (17) with A =
⎛
⎝10 0 0

0 15 0
0 0 20

⎞
⎠, the memristor values same as in

example 1. By the bipartite consensus V1 = {1, 2, 3, 5, 10}, V2 = {4, 6, 7, 8, 9}, W =
{1, 1, 1,−1, 1,−1,−1,−1,−1, 1}, q = 0.9. Hence all the hypotheses of Theorem 3 are
satisfied and with LMI toolbox of MATLAB, inequality (19) is feasible with following
positive definite matrices,
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Fig. 4 Transmit interval of leader bipartite synchronization with event triggered control

Fig. 5 Leaderless bipartite synchronization

P =
⎛
⎝1.4939 1.1273 0.0979
1.1273 3.3104 0.7153
0.0979 0.7153 1.0138

⎞
⎠ ; P1 =

⎛
⎝2.4789 1.8289 1.1824
1.8289 3.3185 1.6717
1.1824 1.6717 2.1489

⎞
⎠ ;

P2 =
⎛
⎝2.1220 1.2110 1.2110
1.2110 2.1220 1.2110
1.2110 1.2110 2.1220

⎞
⎠ .

And the error system (17) is the bipartite leaderless synchronization as shown in Fig. 5.
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Example 3 With the help ofMATLABLMI toolbox, applied on the hypotheses of Theorem 4

and inequality (20)wecanfind thepositive definitematrices, P =
⎛
⎝7.7282 9.0471 4.0231
9.0471 18.5602 7.4776
4.0231 7.4776 6.0243

⎞
⎠;

P1=
⎛
⎝10.0111 7.6591 6.2106

7.6591 12.5054 7.3478
6.2106 7.3478 9.2677

⎞
⎠; P2 =

⎛
⎝6.4911 3.6451 3.6451
3.6451 6.4911 3.6451
3.6451 3.6451 6.4911

⎞
⎠;

R =
⎛
⎝7.5565 3.2998 3.2998
3.2998 7.5565 3.2998
3.2998 3.2998 7.5565

⎞
⎠.

Example 4 With the help ofMATLABLMI toolbox, applied on the hypotheses of Theorem 6

and inequality (22)wecanfind thepositive definitematrices, P =
⎛
⎝2.9124 2.9066 0.3161
2.9066 8.5683 2.1383
0.3161 2.1383 1.8351

⎞
⎠;

P1 =
⎛
⎝4.5388 3.6097 2.0413
3.6097 6.9409 3.2591
2.0413 3.2591 3.7073

⎞
⎠; P2 =

⎛
⎝3.7011 2.0787 2.0787
2.0787 3.7011 2.0787
2.0787 2.0787 3.7011

⎞
⎠;

R =
⎛
⎝2.5916 0.1197 0.1197
0.1197 2.5916 0.1197
0.1197 0.1197 2.5916

⎞
⎠.

8 Conclusion

This paper analyses FMMCDNN and has given proof for the bipartite leader and leader-
less synchronization of a structurally balanced signed network with event-triggered pinning
control. But it is difficult to do the same in a structurally unbalanced signed network. It
can be considered a future problem. And in this paper, we have used LPLF with LKF and
successfully proved the bipartite leader and leaderless synchronization.
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