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Abstract
In this paper, a novel back-propagation error technique is presented. This neural network
structure allows for two fundamental basic modes: (1) To decompose the neurones by trans-
forming their variables, weights, and scalar functions into vectors. This conveys for the
decomposition of the transfer function of every neurone (where the output variables are the
components of the decomposition) and, consequently, to be written as the invariant sum
of orthogonal functions, with the safeguard of preserving information This orthogonality is
proven using Fourier theory. (2) In a second mode, a tuned neural network that occupies
one of the channels of the neural network can see the weights of its supplementary channels
adjusted to retain additional information. Only the decomposition algorithm of the network is
presented here—Multi-back-propagation algorithm. The adopted methodology is validated
step-by-step with some representative examples. Namely, to assess the performance of the
splitting method, two different examples have been constructed from scratch: (1) a 2D classi-
fication problem and (2) a 3D surface. In both problems, the signal and transfer functions of
the neural network are successfully decomposedwithout information losses. Therefore, since
the main contribution of this work is to allow for the organisation of the information stored
in neural network structure, through a split process, this promising method shows potential
use in various areas—e.g. classification and/or pattern recognition problems, data analysis,
modelling and so on. In the future, we expect to work further in the method computational
aspects to render it more efficient, versatile and robust.
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1 Introduction

During the last decades, neural networks (NN) have been receiving much attention from
the research community, especially in the area of artificial intelligence. The reward comes
from the emulation of the human brain in the computing environment through mathematical
models. A NN is a strongly connected structure of artificial neurones.
As is well known, an artificial neurone is a mathematical abstraction of the nerve cell,—an
excitable cell that communicates with other cells via specialised connections. An artificial
network It resembles a set of biological neurones only in a few aspects, with its main dif-
ferences being the topology and the number of neurones used. Also, layers are calculated in
a certain order while biological neurones can act asynchronously. The speed of information
transfer and the learning process are other distinguishing features.
To mirror the brain, the perceived inputs are propagated through the network, changing
on the way as a result of the connections’ different weights, as well as the mixing and
signal-triggering of different functions which characterise every neurone. As the informa-
tion withheld by the NN is dependent on its structure and every neurone idiosyncrasy, the
dimension of the structure, its topology and the type of its neurones define the NN capacity to
retain specific information. Thence, an adequate learning algorithm should be used to adjust
the weights within the NN either to retain required information or adjust the interconnection
structure. In this way, this complex structure can resemble an artificial brain that is able to
memorise, map information, and give answers according to the received inputs. Learning
methods are classified into supervised, unsupervised, and reinforced [1–3].
Assuming the success of the chosen learning algorithm and that the NN is well-dimensioned,
the network will produce the required information. Most of the learning methods give neither
attention to the form of the information spreadwithin the network nor to the physical meaning
of the network weights. The information disseminates through the structure without any
legibility nor inter-functionality of its local values.
The neurone is the NN basic unit that retains information about the structure in question
through its weights, i.e., information about its integration and activation functions. Once its
structure is chosen, a NN retains information in the weights of all its neurones. Whenever the
information memorised in the network can be reorganised, particularly through the decom-
position into parcels of information, a relevant question is whether this decomposition can
be carried out locally in the neurones.
To answer this question, we need to prove whether it is possible to “split” a neurone, keeping
the core of its structure but assuming all its variables to be multidimensional as well as the
activation function decomposed into orthogonal components. Such a decomposition should
be reversible in the sense that the sum of the sub-models is always equal to the transfer
function of the initial neurone (before being split). Another issue is to present a method able
to transfer information between neurones for this new model structure (i.e., vectorial signals
and integration and activation functions) and that, at the same time, warrants immutability
of the neurone and consequently of the whole NN.
Therefore, the present work aims to capacitate an already existing NN to re-arrange its
information by transforming its scalar inputs, outputs and functions intomultivariable entities
to guarantee the decomposition of the signals that circulate within the NN. Crucial to this
paradigm is to warrant that the transfer functions of the NN are not changed, to make sure that
the information is preserved. This is possible since the decomposition of themultidimensional
functions transmits the representation of the transfer function of every neurone as an invariant
sum of parcel functions that equals its original value.
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The back-propagation algorithm is traditionally used in supervised learning of NN [4]. It
propagates the NN output error to every neurone and then, locally, makes the readjustment
of the weights. Its objective is the NN to learn from the training data and then to be able
to reproduce the data (this or other data) with the smallest error as possible. The algorithm
that we propose in this work—Multi-back-propagation algorithm—has two phases. But its
contribution is Phase-2, since Phase-1 is the NN that we always assume to exist. Phase-1, or
learning phase, obtains the NN structure with some other method; e.g. the back-propagation
algorithm. Phase-2, or the splitting phase, transforms the NN obtained at Phase-1 into a
multidimensional version assuring that no information is lost and the NN output components
are taken as answers of the decomposed NN. At any instant, the sum of the NN components
should remain the same as the original NN (from Phase-1). Thus, the objective of this method
is to back-propagate the separability factor of the output components, making sure that at
every vectorial neurone of the NN arrives an adjustment factor of separability. Once holding
this value, it is possible to locally transfer information between the sub-models of the vectorial
neurone.
From the best of our knowledge, transfer function transformation and optimisation has
received little research attention so far. The idea presented in this paper, i.e., to split the
transfer function into orthogonal components is innovative and can be applied to all prob-
lems that benefit from NN readability. Moreover, it also makes possible to interrogate the
NN about portions of the modelled knowledge. We envision its use, with clear benefits, for
structural NN reorganisation and in the formulation of new machine learning strategies.
The idea of splitting theNN is interesting and there are just a fewpapers on this topic. In [5] the
NNautomatically learns to split the networkweights into either a set or a hierarchy ofmultiple
groups that use disjoint sets of features, by learning both the class-to-group and feature-to-
group assignment matrices along with the network weights. In [6], experiments show that
in the case where the network performs two different tasks, the neurones naturally split into
clusters, where each cluster is responsible for processing a different task. This behaviour not
only corresponds to biological systems, but also allows for further insight into interpretability
or continual learning. In [7], a new technique is proposed to split a convolutional network
structure into small parts that consume lower memory than the original one. The split parts
can be processed almost separately, which provides an essential role for better memory
management. In [8] is proposed a novel, complete algorithm for the verification and analysis
of feedforward NN ReLU-based. The algorithm, based on symbolic interval propagation,
introduces a new method for determining split-nodes which evaluates the indirect effect that
splitting has on the relaxations of successor nodes. A constructive algorithm is proposed in [9]
for feedforward NN which uses node-splitting in the hidden layers to build large networks
from smaller ones. Modification of the transfer function and the error back-propagation
technique applied to NN can be seen in [4] and the transfer function pooling in [10].
In Sect. 2, the activation function is written as a Fourier sum of m terms to facilitate decom-
position of the input and output signals. The optimality of this approximation is proven.
In Sect. 3, the multidimensional neurone is formulated and the orthogonality of the partial
activation functions is demonstrated. In Sect. 4, the new learning method is outlined—the
Multi-back-propagation algorithm. This conveys the transfer of information between differ-
ent parts of the decomposed neurones of a feedforward NN with the use of a reinforcement
back-propagation technique. The demonstration of the decomposition procedure, as well
as the effectiveness of the proposed splitting algorithm can be found in Sect. 5. Namely,
(1) we illustrate the extension of the activation function to a periodic one; (2) we give an
example where the activation function—the hyperbolic tangent—to demonstrate the virtue
of the approximation of the output by an orthogonal sum; (3) The splitting of the NN transfer
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Fig. 1 Structure of an artificial neuron. � is the activation function and
�
the integration function

function, as well as the invariance of the sum of its parts, is substantiated in two different
examples. The work concludes with Sect. 6 where the main conclusions are outlined. Also,
some directions for future research in view to ripen the Multi-back-propagation method are
stated.

2 Activation Function Orthogonal Decomposition

A classical NN is formed by elementary units—the neurones.
A single artificial neurone is represented mathematically as:

y = ϕ

(
n+1∑
i=1

wi xi

)
. (1)

Considering that we have a = wT x, where w = (w1, w2, . . . , wn, wn+1)
T , wi ∈ R, i =

1, . . . , n, is the vector of the weights and x = (x1, x2, . . . , xn, xn+1)
T the input vector

which means that it takes n inputs xi ∈ R, i = 1, . . . , n, with each one having its own
weight, wi , i = 1, . . . , n. A bias input exists at every node and is represented by a constant
xn+1 = 1 and the adjusted weight wn+1. Thence y = ϕ(a).

Two mathematical functions are the basis of its structure. The neurone calculates the sum
of the weighted inputs—the integrative function (�)—and passes the result through ϕ, that
represents the neurone’s activation potential. Typically, ϕ is non-linear and has the shape of a
sigmoid—the activation function (

�
).Usual choices are the hyperbolic tangent, theHeaviside

function or the LeRu [11, 12]. ϕ is often monotonic increasing, continuous, differentiable
and bounded. This function is used to pass the information further to the network, with the
activation lower and upper bounds represented by−δ and+δ, respectively. A threshold level
is used to shift the action potential value of the neurone to the network, represented here by
the bias of every neurone, xn+1.

2.1 Orthogonal Decomposition of'

The activation functiondefines how theoutput signal of the integration function is transformed
into an output of the neurone. Without loss of generality, ϕ is a monotonously increasing
saturated function. Define the saturation level as δ and the interval where ϕ is defined as
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[
a, a

]
, such that ε = ϕ(a) + δ = δ − ϕ(a). For what is meant the extremes of the interval

to be sufficiently close to the saturation point. Furthermore, ϕ is odd, and then we have that
a = −a and a = −ϕ−1(δ − ε), a = ϕ−1(δ − ε), where ε is the required precision. Next, a
periodic extension of function ϕ in the interval

[
2a, 2a

]
is defined:

�(a) =
⎧⎨
⎩

ϕ(−a + 2a) : 2a ≤ a ≤ a
ϕ(a) : a ≤ x ≤ a
ϕ(−a + 2a) : a ≤ a ≤ 2a.

(2)

Function �(a) is periodic of fundamental period T = 2
(
a − a

)
, i.e., �(a + kT ) =

�(a), k ∈ Z. The extension of ϕ by a periodic function is illustrated in Fig. 3 of Sect. 5.1.

Remark 1 The decomposition of the activation function into Fourier series requires the acti-
vation function to be bounded (saturates), and therefore its transformation into a periodic
function. For no saturating activation functions the same method may be used using other
type of orthogonal decomposition as for instance Legendre, Chebyshev or Hermite polyno-
mials [13, 14].

Theorem 2.1 states that if function� complies with certain assumptions then it can be written
as an infinite sum—using the Fourier Series.

Theorem 2.1 (Approximation of the activation function by a Fourier Series) Assuming that
the periodic extension�hasbeendefined inaway that is continuousandabsolutely integrable
over its period, so that the Dirichlet conditions are fulfilled, hence:

�(a) = Sm(a) + Rm(a) (3)

where

Sm(a) :=
m∑

n=1

�̂n sin(ωna), (4)

Rm(a) :=
∞∑

n=m+1

�̂n sin(ωna), (5)

�̂n = 2

T

T /2∫
−T /2

sin(ωna)�(a)da, (6)

with wn := (2n − 1)ω0 and ω0 = 2π

T
.

Proof See Appendix A. ��
The following corollary asserts that if some assumptions on� are fulfilled, its approximation
by a Fourier sum can be as accurate as required by controlling the number of terms.

Corollary 2.1.1 In the conditions of Theorem 2.1, and for an input signal that is real,
limm→∞

∣∣�(a) − Sm(a)
∣∣ → 0 and the truncated Fourier series of degree m, Sm(a), is

the best approximation of this order in L2 ([−T /2, T /2]) to function �(a).

Proof From the Riesz-Fischer Theorem [15] we know that if Sm(a) is the Fourier Series of
m terms for the square-integrable function �(a) then

lim
m→∞

∣∣�(a) − Sm(a)
∣∣ → 0. (7)
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Moreover, the truncated Fourier Series of degree m, Sm(a), is the best approximation of this
order in L2 ([−T /2, T /2]) to function �(a) [16]. That is, if �(a) ∈ L2 ([−T /2, T /2]) and
ζ1, ζ2, . . . , ζm are real numbers, then:

∣∣�(a) − Sm(a)
∣∣ ≤ ∣∣�(a) −

m∑
n=1

ζn sin(ωna)
∣∣ (8)

and equality holds only when ζn = �̂n, n = 1, . . . ,m. ��
Lemma 2.1 states that the amount of energy contained in function� in a certain finite interval
equals the energy of the Fourier series in the same interval.

Lemma 2.1 For � defined in L2
([2a, 2a]) , we have

T /2∫
−T /2

|�(a)|2da =
T /2∫

−T /2

|Sm(a)|2dx +
T /2∫

−T /2

|Rm(a)|2da.

Proof See Appendix A. ��
Corollary 2.1.1 In the conditions of Lemma 2.1, we have:

1

T

T /2∫
−T /2

|Sm(a)|2da =
m∑

n=1

�̂2
n . (9)

Also, the mean quadratic error is the sum of the energies of the neglected harmonics:

1

T

T /2∫
−T /2

|Rm(a)|2da =
∞∑

n=m+1

�̂2
n . (10)

Lemma 2.2 states that for an odd function �, the coefficients of the Fourier series are calcu-
lated back in the interval

[
a, a

]
where ϕ is defined before (2), i.e. �̂n is twice the respective

ϕ̂n .

Lemma 2.2 For an odd function�, the coefficients of theFourier series in (6) can be redefined
as:

�̂n = 4

T

∫ T /4

−T /4
sin(ωna)�(a)da.

Proof See Appendix A. ��

And then is easily concluded that the energy of � in

[
−T

2
,
T

2

]
is twice the energy of ϕ in[

−T

4
,
T

4

]
.

Remark 2 For an odd function ϕ(a)

1

2

T /2∫
−T /2

|�(a)|2da =
T /4∫

−T /4

|ϕ(a)|2da.
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This remark follows directly from the Parseval-Rayleigh’s identity, since ϕ(a) coincides with

�(a) in the interval

[
−T

4
,
T

4

]
.

Remark 3 For an odd function

Rm(a) =
∞∑

n=m+1

�̂n sin(ωna) = 2
∞∑

n=m+1

ϕ̂n sin(ωna)

with

ϕ̂n = 1

2
�̂n = 2

T

T /4∫
−T /4

sin(ωna) ϕ(a)da

From what is clear that the error of the approximation of function �(a) by the Fourier Series
is double of the same error for function ϕ(a).

This remark follows from Lemma 2.2.

Remark 4 Knowing (5), then

2

T

T /4∫
−T /4

|Rm(a)|2da =
∞∑

n=m+1

�̂2
n .

This remark follows from Lemma 2.2.

3 Multidimensional Neurones

In this section, we consider the multivariable counterpart of the neurone formalised in Sect. 2.
The neurone input and output are multidimensional variables with every component being a
fraction of the original signal. Hence

ϕ : R −→ R



a � y = ϕ(a),

where a = ∑n+1
i=1 wi �xi , wi , �xi ∈ R

p. The multidimensional case is represented for p = 2
and 
 = 2 in Fig. 2, i.e., every input has got two different channels leading to the duplication
of the integration/ activation functions, that are orthogonal between themselves, as it is
demonstrated in Theorem 3.1.

In the multidimensional formulation, the counterpart of x in (1) is X =

⎛
⎜⎜⎜⎝

�x1
�x2
...

�xn+1

⎞
⎟⎟⎟⎠ , where

�xi = (xi (1), xi (2), . . . , xi (p)) , for i = 1, . . . , n. To decompose xi into p components:
xi (k) = xiβi (k), with �βT

i = (βi (1), . . . , βi (p)) ,
∑p

k=1 βi (k) = 1 and xi in (1) becomes

xi =
∑p

k=1
xi (k). Therefore, B = ( �β1 �β2 · · · �βn+1

)T
is the matrix of splitting factors of
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Fig. 2 Structure of the multidimensional neurone with 
 = 2

input x. Thence X =

⎛
⎜⎜⎜⎝

�x1
�x2
...

�xn+1

⎞
⎟⎟⎟⎠ = (

X1 X2 · · · X p
)
, Xk ∈ R

n+1 is a column vector that

contains the component-k of every input �xi . Hence Xk = Bk 	 x = diag(Bk) · x, k =
1, . . . , p, where 	 is the Hadamard product, · is the inner product and diag(Bk) is the
diagonal matrix whose main diagonal is vector Bk—corresponding to the fraction-k of every
input xi . An alternative way to write matrix X is using the Khatri-Rao product:

X = B ∗ x =

⎛
⎜⎜⎜⎝

�βT
1�βT
2
...

�βT
n+1

⎞
⎟⎟⎟⎠ ∗

⎛
⎜⎜⎜⎝

x1
x2
...

xn+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�βT
1 ⊗ x1

�βT
2 ⊗ x2

...
�βT
n+1 ⊗ xn+1

⎞
⎟⎟⎟⎠ . (11)

In a similar manner, the output y = (
y(1) y(2) · · · y(
)) , with y = ∑


k=1 y(k), y(k) =
ζ(k)y and

∑

k=1 ζ(k) = 1, ζ = (

ζ(1) · · · ζ(
)
)
. That is, Y = ζ ⊗ y with ζ being the

splitting factor the output. Note that here we have assumed that 
 = p. The information
contained in a neurone is strongly dependent on the weight values, wi , and its transfer
within the decomposed neurone can be done by assigning different weights to the different
channels of the same input. Thence, consider �τ T

i = (
τi (1) · · · τi (p)

)
the splitting factor of

the weights wi , i.e., wi (k) = wiτi (k), wi = ∑p
k=1 wi (k). Define T = (

τ1 τ2 · · · τn+1
)T

and then W = T ∗ w, likewise as in (11). For simplicity sake, in what follows, we consider
p = 
 = 2. Hence wi = (

τi 1 − τi
)
and

T = (
τ 1 − τ

)
, τ ∈ R

n+1 and τ (i) = τi . Also B = (
β 1 − β

)
,β ∈ R

n+1 and β(i) =
βi , i = 1, . . . , n, 1 is a vector of ones.
A standard neurone has several input signals, which are weighted and conducted to the
cell nucleus and, from there—through the activation function—to the output. All variables
and the image of the function are scalar. With the herein proposed method, the structure of
the neurone is replicated to accept vector inputs. The activation function of the neurone is
decomposed into orthogonal functions, taking advantage of its representation as a Fourier
series, and assuming it to be a periodic function. Each component of the activation function
uses as input the weighted sum value of the associated coordinate of the input vector. In
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this decomposition process, the weights of the original NN are distributed across various
channels, always ensuring that the sum of the output components of the neurone is equal to
the value of the standard neurone output. The weight distribution that occurs in each neurone
is adjusted by a supervised sharing learning technique. Let ζ(k) be the separability vector
of sample-k from the training set. With this new algorithm, the splitting factors ζ(k) are
back-propagated by the structure of the NN to the input of each neurone, where the weights
W are then decomposed into various channels.
The values ζ(k), k = 1, ..., 
, are the result of applying a certain criterion of separability to
the output signal, based on dissimilarity measure or decomposition techniques of the transfer
function. This process is not considered in this study. The result of this splitting is that the
flow of information in the NN happens through multi-dimensional channels. The coordinates
of the output vector of the NN are the components of the decomposition of the NN response.
In this section, we explain how to decompose every input, as well as the respective weights,
into different channels. The next theorem gives a representation for each of its component.

Theorem 3.1 (Decomposition of the integration function) Considering all the previous def-
initions, the splitting of the integration function, for p = 2, i.e., a = wT x = a1 + a2
becomes

a1 = wT diag(τ 	 β)x, (12)

a2 = wT diag(I − τ 	 β)x. (13)

Proof See Appendix B. ��
Define

α := τ 	 β ∈ R
n+1 (14)

which is a new parameter vector associated with the network input that specifies how the
information is broken down. E.g. in the bidimensional case, if α1 = 0.5 it means that the first
and second components of x1 have the same amount of information. Au contraire if α1 = 1,
there will be no information stored in the second component of the same input (this is what
happens without splitting). Next, Theorem 3.2 gives a Fourier decomposition for the output
components.

Theorem 3.2 (Splitting of the Output) Assuming the input decomposed as in Theorem 3.1,
y ≈ ϕ(a) can be split in the following manner: ϕ = ϕ1(a1, a2) + ϕ2(a1, a2), where

ϕ1(a1, a2) =
m∑

n=1

�̂n sin(ωna1) cos(ωna2), (15)

ϕ2(a1, a2) =
m∑

n=1

�̂n cos(ωna1) sin(ωna2) (16)

and yi = ϕi (a1, a2, ), i = 1, 2.

Proof See Appendix B. ��
Remark 5 From Theorem 3.2, one may infer:

a1 = 0 
⇒ ϕ (a1 + a2) = ϕ2 (a1, a2) =
m∑

n=1

�̂n sin(ωna2)
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and �̂n = 2

T

T /2∫
−T /2

sin (ωna2) ϕ(a2)dx

a2 = 0 
⇒ ϕ (a1 + a2) = ϕ1 (a1, a2) =
m∑

n=1

�̂n sinωna1

and �̂n = 2

T

T /2∫
−T /2

sin (ωna1) ϕ(a1)dx .

Remark 6 Theorem 3.2 may be generalised to the decomposition of ϕ into three or
more orthogonal components. E.g. ϕ(a1 + a2 + a3) = ϕ1(a1, a2, a3) + ϕ2(a1, a2, a3) +
ϕ3(a1, a2, a3) + ϕ4(a1, a2, a3), where {ϕ1, ϕ2, ϕ3, ϕ4} are orthogonal functions between
themselves.

Axiom 3.1 The activation function ϕ(a) obeys the following properties:

Subspace projection ϕ(a) = ϕ1(a + 0) = ϕ2(0 + a)

Decomposition ϕ (a1 + a2) = ϕ1 (a1 + a2) + ϕ2 (a1 + a2)
Additivity ϕ (a1 + a2) = ϕ1 (a1 + a2) + ϕ2 (a1 + a2)

Theorem 3.3 proves the interesting property of the orthogonality of the components of the
output between themselves.

Theorem 3.3 (complementarity of ϕi , i = 1, 2) The activation function components,
ϕ1 (a1 + a2) and ϕ2 (a1 + a2) , are orthogonal between themselves.

Proof See Appendix B. ��
For computational purposes, there is also a representation for the splitting factor of the output,
given in Theorem 3.4. That is, ϕ1 (a1, a2) = ζϕ(a).

Theorem 3.4 (Output split factor) The split factor for the output is

ζ = 1

2

(
1 +

∑m
n=1 �̂n sin (ωn (a2 − a1))

ϕ(a)

)
, (17)

with a = a1 + a2.

Proof

ζ = ϕ1 (a1, a2)

ϕ(a)

=
∑m

n=1 �̂n sin(ωna1) cos(ωna2)∑m
n=1 �̂n sin (ωn (a1 + a2))

= 1

2

∑m
n=1 �̂n sin (ωn (a1 + a2)) − ∑m

n=1 �̂n sin (ωn (a1 − a2))∑m
n=1 �̂n sin (ωn (a1 + a2))

= 1

2

(
1 +

∑m
n=1 �̂n sin (ωn (a2 − a1))

ϕ(a)

)

��
Remark 7 If a2 = 0, then a = a1, ζ = 0. If a1 = 0, then a = a2, ζ = 1. If a1 = a2, then

ζ = 1

2
.
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4 Multi-back-propagation Algorithm

The back-propagation method [17] is used to train a feedforward NN to fit a data set,{
x j , d j

}
j=1,...,N , where x j is the input and d j the desired output. That is, the weights

W ∈ R
N are fine-tuned based on the current error rate, where every d j = y j + e j and

y j = NN
(
x j ,W

)
. Prior to the running of the algorithm, the user needs to choose the num-

ber of layers, the number of neurones in each layer, the integration and activation functions,
the number of iterations and the learning rate. The NN weights, together with the bias of
every neurone, are initially randomised and then iteratively readjusted, by sending messages
forward and backward alternatively in the NN, until the error becomes acceptable [18]. In
the end of this process, the adjustment function has been found. This identification process
corresponds to a supervised learning method, widely used in parametric learning of NN,
conventionally called NN back-propagation algorithm. Whenever this process proves to be
suitable, the NN weights encode the information of the training data set. This is here referred
to as the learning phase or Phase-1.
Assuming the decomposition of the information into several parcels to be possible, the herein
proposed method will perform the adjustment task at the multidimensional neuron level,
transferring the information between the respective sub-models. This is a multidimensional
version of the error back-propagation technique, whose main objective is to maximise the
separability criterion of the output components of the NN—Phase-2 or splitting phase.
Thus, once the adjustment function to the data has been found—Phase-1—the splitting
phase—Phase-2—takes place: the neurones are forced to divide the data representing the
adjustment function into two connected parts, which can be considered as the first and the
second components. To do this, conceive the data set to be such that d j = (

d j (1), d j (2)
)
with

d j = d j (1) + d j (2) and d j (
) ≈ y j (
), 
 = 1, 2, where y j = y j (1) + y j (2) is calculated as
in Theorem 3.2. The weights, W , and the splitting coefficients, ζ in (17), are randomised to
initialise theMulti-back-propagation calculations. To calculate the splited output to a desired
precision, the fraction square mean error (FSME) is minimised:

min
W

N∑
j=1

∥∥e j∥∥2 = min
W

1

N

N∑
j=1

2
(
e j (1) − e j

)
e j (1) + e2j . (18)

Since

d j = y j + e j ⇔ e j = y j − d j

with d j = d j (1) + d j (2) 
⇒ d j (2) = d j − d j (1)

y j = y j (1) + y j (2) 
⇒ y j (2) = y j − y j (1)


⇒ ∥∥e j∥∥22 = e j (1)
2 + e j (2)

2

= (
d j (1) − y j (1)

)2 + (
d j (2) − y j (2)

)2
= (

d j (1) − y j (1)
)2 + ((

d j − y j
) − (

d j (1) − y j (1)
))2

= e j (1)
2 + (

e j − e j (1)
)2

.

So min
W ,α

∥∥e j∥∥22 
⇒ min
W ,α

e j (1)
2 + (

e j − e j (1)
)2

. ��
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4.1 AlgorithmOutline

Based on the results found in Sect. 3 an algorithm is outlined next for the multi-dimensional
version of the NN—a multidimensional back-propagation algorithm. To make the proposed
algorithm easier to understand, it will be presented for dimension two.
The aim of the algorithm is to find a multilayer NN able to approximate the data set to a pre-

scribed precision, that is, given
{
x j , d j

}
j=1,...,N , obtain y j such that

1

N

∑N
j=1

(
d j − y j

)2
<

ε, where ε is the required precision. Moreover, y j is split into two components such that
d j (
) ≈ y j (
), 
 = 1, 2, and d j = d j (1) + d j (2).
This algorithm takes place at Phase-2 and has got two main stages. The first stage is
optional since the multidimensional NN may already exist. Otherwise, Stage-1 takes place
(as described below) by transforming the NN into a multidimensional NN. To do so, all
variables are transformed from scalars to vectors and the activation function is decomposed
in an orthogonal way. The new parameters are initialised.
After Phase-1, the NN have a multidimensional structure, where one of the neurone’s sub-
models will be a copy of the original neurone, and the others being devoid of information
(zero-valued weights). Phase-2 of the algorithm will then transfer information between the
sub-models (dimensions) of the neurone using a process identical to the back-propagation
algorithm. However, in this case, back-propagation is not performed on the approximation
error of the NN output, but rather on the separability value of the output components of the
multidimensional neural network, taking (18).

Stage–1 Transforms a NN into its multidimensional version.

• Write ϕ(a) as a Fourier Series of m terms: Sm(a)

• Decompose the activation functions using Theorem 3.2.
• Initialise randomly the NN bias and splitting parameters α.

Stage–2 Propagating the separability error criteriumbackwards.Minimise FMSEusing (18)
by tuning α.

1. Calculate y j (1) and y j (2) using the splitting factor calculated in (17). I.e.

(a) Decompose the integration function using Theorem 3.1.
(b) Calculate the splitting factor ζ using (17).
(c) Calculate y j (1) and y j (2) using y j (1) = ζ y j and y j (2) = (1− ζ )y j , j = 1, . . . , N .

2. Calculate e j (1) = y j (1) − d j (1) and e j = y j − d j , j = 1, . . . , N .

3. Evaluate
dE

de j (1)
= 2

N

∑N
j=1

(
2e j (1) − e j

)
to guide the search for maximum splitting

into components y j (1) and y j (2).
4. Propagating the error backwards. Readjust α to minimise (18).

In summary, the final objective of the algorithm is to decompose the network into two com-
plementary parts. To do this, it minimises (18) taking into account maximum separability,
which is achievedby taking advantage of component orthogonality.Obviously, every obtained
component can be further split.

5 Discussion, Tests and Results

This section contains the assessment of different stages of the Multi-back-propagation algo-
rithm and, in particular, of the neurone decomposition. Namely:

123



Multi-back-propagation Algorithm for Signal Neural Network… Page 13 of 27   100 

A. The validation of the approximation of an activation function—the hyperbolic tangent—
by a Fourier Series of m terms. See Sect. 5.1.

B. The illustration of the decomposition of the activation function. See Sect. 5.2.
C. To illustrate the performance of the Multi-back-propagation algorithm, two different

examples are implemented, a 2D classifier and the decomposition of a 3D network. Both
examples demand the estimation of a NN with high precision for a non-linear target
function. Hence:

1. The decomposition of a 2Dclassification example into two sub-classifiers is presented
in Sect. 5.3.

2. The decomposition of a 3D NN whose transfer function, y = NN (x1, x2), has the
shape of a volcano is presented in Sect. 5.4. The network is split into two sub-models,
y = NN 1 (x1, x2) + NN 2 (x1, x2), where one identifies a mountain, NN 1 (x1, x2),
and the other, NN 2 (x1, x2), the volcano crater, that once added up returns the vol-
cano.

For both problems, the transfer function, that is the sum of the estimated sub-models, is
not changed and is equal to the initial one, which has been identified using the standard
back-propagation algorithm.
To assess the transfer of information in every NN layer, namely at the n inputs, the following
metrics is used:

T I =
∑n

i=1|αi ||wi |
‖w̃‖ , (19)

where n are the inputs of the neuron. α andw are as defined in Sect. 3. This metrics is used to
assess the information transfer in each neurone of every layer. It is calculated as the product
of the α parameters by the weights of the normalised neurone. E.g for n = 2 and p = 2 it

translates into T I = |α1w1| + |α2w2|√
w2
1 + w2

2

.

The code [19] has been written in Matlab/ Octave without using a specific toolbox but
implementing everything from scratch. Instead,Matlab served as the coding platform, chosen
for its graphical capabilities.
In the implementation of both back-propagation algorithms, the classic (scalar version) and
the multidimensional version, the gradient-descent method has been used; this is a method
simple to implement but of slow convergence. Although the computational results were
quite good, its convergence might be improved by choosing some non-linear methods as for
instance the Levenberg-Marquardt. However, since the results obtained in this work were
quite satisfactory, we do not consider this to be an essential issue in the work.

5.1 Approximation of' by a Fourier Series

To assess the decomposition of the activation function into orthogonal components, we con-
sider ϕ(a) = tanh(a), an activation function commonly chosen [12]. � is defined as an

extension of the hyperbolic tangent ϕ(a) =
(
ea − e−a

)
(
ea + e−a

) , with a = −4 and a = 4. As δ = 1,

then ε = −1 − ϕ(−4) = 1 − ϕ(4) ≈ 6.7 × 10−4.

To obtain the following result, we apply Lemma 2.1 to ϕ(x) = tanh(a).

123



  100 Page 14 of 27 P. Salgado, T.-P. A. Perdicoúlis

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3 Representation of �(a), a ∈
[
− T

2
,
T

2

]
and period T = 16

Corollary 1 Considering ϕ(x) = tanh(a) approximated by the Fourier Series of m terms,

Sm(a), in interval

[
−T

4
,
T

4

]
, thence the value of the mean quadratic error is

T /4∫
−T /4

R2
m(a)da = T

2

(
1 − 4

T
tanh

(
T

4

)
− 1

2

∞∑
i=m+1

�̂2
n

)
. (20)

Proof

T /4∫
−T /4

|ϕ(a)|2da =
T /4∫

−T /4

|Sm(a)|2da +
T /4∫

−T /4

|Rm(a)|2da ⇔

⇔ 2

T

T /4∫
−T /4

|Rm(a)|2da = 2

T

T /4∫
−T /4

|ϕ(a)|2da − 2

T

T /4∫
−T /4

|Sm(a)|2da ⇔

= 2

T

T /4∫
−T /4

|tanh(a)|2da − 2

T

T /4∫
−T /4

|Sm(a)|2da ⇔

= 2

T
|a − tanh(a)|T /4

−T /4 − T

2

∞∑
i=m+1

�̂2
n ⇔

= 1 − 4

T
tanh

(
T

4

)
− 1

2

∞∑
i=m+1

�̂2
n .

��
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Table 1 ϕ(x) = tanh(x), ω0 = π/8, m = 8, T = 16

F. coeff/value F. coeff/value F. coeff/value

�̂1 = 1.19611056; �̂4 = 0.02088747; �̂7 = 0.00048394;
�̂2 = 0.25297128; �̂5 = 0.00611703; �̂8 = 0.00020280.

�̂3 = 0.07212369; �̂6 = 0.00178229;

Fig. 4 Fourier harmonics representation: ϕ(x) = tanh(x), ω0 = π/8, m = 8 and T = 16

Corollary 2 Assuming the saturation level δ = 1 for the activation function ϕ(a) = tanh(a),

the value of the mean quadratic error in intervals

[
−∞,−T

4

]
∪
[
T

4
,∞

]
is

−T /4∫
−∞

R2
m(x)dx +

∞∫
T /4

R2
m(x)dx = 2

−T /4∫
−∞

(1 + tanh(x))2dx

= 4

(
log

(
2 cosh

T

4

)
− T

4

)
+ 2 tanh

T

2
− 2. (21)

Proof The result is obtained after a few standard calculations. ��
Take m = 8 and T = 16 and then the hyperbolic tangent activation function: ϕ(x) =
tanh(x) ≈

∑m=8

n=1
�̂n sinωma. Table 1 have the Fourier Series coefficients values, �̂n ,

n = 1, · · · ,m. Fourier’s harmonics terms are show in Fig. 4 as well as the Fourier series
approximation.
From Formulas (20) and (21) the errors are calculated:

[−T /4, T /4]: R2
m(x) = 1.0 × 10−7

[−∞,−T /4] ∪ [T /4,∞]: R2
m(x) = 6.7 × 10−4
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Fig. 5 Decomposition of tanh(a) into orthogonal components ϕ1 (a1, a2) and ϕ2 (a1, a2) using different
splitting values

Fig. 6 Training data for the classification problem: blue—class+1, d = +1; magenta—class-1, d = −1

5.2 Orthogonal Decomposition of'

Considering ϕ(a) = tanh(a), Fig. 5 shows its decomposition into orthogonal compo-
nents ϕ1 (a1, a2) and ϕ2 (a1, a2) using different splitting values λ, i.e., a1 = λa and
a2 = (1 − λ)a. Colour black represents component ϕ1 (a1, a2) , blue ϕ2 (a1, a2) and
magenta the sum ϕ1 (a1, a2) + ϕ2 (a1, a2) . The results reveal that the two components
complement each other, with the sum ϕ1 (a1, a2) + ϕ2 (a1, a2) matching ϕ (a) for all and

every λ ∈
{
0,

1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

}
. According to the input decomposition obtained,

a = a1 + a2, the output splitting factor ζ is calculated from (17).

5.3 2D Classification Problem

In this 2D example, a NN classifier is decomposed into two sub-classifiers such that the
first one has the left half-plane as domain and the second the right half-plane. The chosen
function/data represents four semi-circles, two in each half plane as shown in Fig. 6a. The
semi-circles are not compact to attain a higher difficulty to approximate the function. The
classification has the following requirements: (1) whenever a small semi-circle belongs to
a class, the exterior semi-circle in the same half-plane should belong to the other class; (2)
whenever a small semi-circle belongs to a class, the other small semi-circle should belong
to the other class. The classification was done in two consecutive stages: Stage-1) using a
standard feedforward NN and the standard back-propagation algorithm. Stage-2) conceiving
a multivariable network and using the Multi-back-propagation algorithm.
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Fig. 7 Classification using the Multi-back-propagation algorithm

The initial NN divides the space into regions, labelled Classes 1 and 2 (in magenta and blue,
respectively, and labelled−1 and 1). The results obtained at the first stage entirely reproduced
the initial data, i.e., Fig. 6. After 105 iterations, the NN shows a MSE of 1.403805× 10−4 in
the classification, when using the standard back-propagation algorithm. For a null threshold
of the neuronal network output, the MSE is zero.
The proposed method decomposes the original NN into components. The first component
classifies only the left half-plane and the second the right half-plane. In regions not covered
by each of the sub-models, the NN output components yield a null result (labelled 0) which
means the absence of classification. This example aims to illustrate a classification problem
into subproblems restricted to sub-regions of the classification space.
Fig. 7 shows the results obtained with the second stage. The first component of the NN
classifies for x1 < 0, left half-plane and it is neutral in the right half-plane—Null classification
value (See Fig. 7a). The second component of the NN classifies the region x1 >= 0 and it is
null for the left half-plane (See Fig. 7b). Figure8 shows the surfaces of the transfer functions
for both NN components.
After 105 iterations and considering a learning factor of 0.2 and a MSE of 0.0038 in the
last iteration, the sum of two partial classifications was obtained with a MSE = 6.5939 ×
10−7 when compared to the original classification at the first stage. However, both show
a classification error null for thesholders ±0.5. One can observe that the sum of the two
classifiers gives the same result as the standard approach.
Fig. 9a shows the transfer of information TI, as defined in (19), and the α broken input
vector, as defined in (17), for all neurons of the two layers of the NN. In Fig. 9b the split
classifier shows a FMSE equal to 4.922010×10−1 and a partialMSE for the first subproblem,
according to formula (18), of 0.0037.

5.4 Surface Decomposition: Volcano

Wediscuss the decomposition of the identification of a surface that has the shape of a volcano.
In this example a volcano surface is obtained as the result of the sum of a mountain with a
crater. This is illustrated in the first row of Fig. 10 where the mountain is the first figure, the
crater is the second and the volcano is the third. At Stage-1, the standard back-propagation
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Fig. 8 Classification curves of the sub-models

Fig. 9 Assessment of the results obtained with the splitting method applied to the classifier

technique used a NN of 4 layers, with 20 and 10 neurones in the hidden layers, respectively,
and the tanh(a) as the activation function, to initialise the whole procedure.
Next, at Stage-2, we want to decompose the initial NN (x1, x2), whose transfer function rep-
resents the surface of a volcano. The two components NN1 (x1, x2) and NN2 (x1, x2) model
the mountain and the crater, respectively, using a separability criterium that is dominantly
mountain-shaped for the 1st component, while the 2nd component of the NN network is
decomposed with the remaining part of the NN (i.e., the crater-shaped form).
The decomposition was done using the Multi-back-propagation algorithm. The results
obtained can be seen in the second row of Fig. 10, where the third figure of the row shows the
reconstitution of the volcano. Figure 11 shows the transfer of information for every neurone
of the two layers of the NN, using the metric defined in (17) and in (19). This example shows
to be possible to decompose the transfer function of a NN as a sum of components where
every component models a different aspect.
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Fig. 10 Row1: envisage the surface decomposition. Row2: surface decomposition using the splitting approach

Fig. 11 Assessment of the results: splitting method applied to the volcano

6 Conclusions and FutureWork

This work presents a new algorithm for network training that aims to re-arrange the informa-
tion of an already existing NN. To do this, the neurone is seen as a multivariable entity whose
inputs, bias, and outputs are split into two or more components to optimise a separability
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criterium. Fundamental to the whole procedure is to demonstrate that the activation function
can be approximated by a Fourier series ofm terms and that this is the best approximation of
its order in the space L2 ([−T /2, T /2]) .Moreover, the components of the activation function
are orthogonal between themselves, assuring full decomposition as well as reconstitution of
the original whole. Thus, the transfer function is decomposed into orthogonal sub-models
whose sum reconstitutes the original shape, which means that information is preserved.
The result is a new algorithm, the Multi-back-propagation method. The outcome of the
Multi-back-propagation method is the splitting of the NN into disjoint components. At a
first phase, the algorithm uses the standard back-propagation technique to train the NN from
data. This first phase, is optional since the NN may already exist. At the second phase,
the trained network is split into components. The whole procedure was outlined in Sect. 4.
In Sect. 5, it was our objective to illustrate the different features of the algorithm, that we
view as an extension of the back-propagation technique applied when the decomposition of
certain problems becomes possible. Thence, in Sect. 5.1, the approximation of the activation
function by a truncated Fourier series is illustrated for a particular function - the hyperbolic
tangent. This approximation is decomposed into orthogonal components which enables the
splitting of the input and output signals and leads to a sum that recuperates the original trained
NN. The orthogonal decomposition, using different splitting values, is assessed in Sect. 5.2.
Moreover, the different aspects of the decomposition of the multivariable neurone have been
mathematically demonstrated. In Sect. 5.3 and 5.4, the method is applied to two different
problems: (1) a 2D classification problem and (2) the identification of a 3D surface. In both
cases, it was possible to recuperate the original transfer function of the NN from the splitting
disjoint components. The assessment examples are original and have also been constructed
from scratch to accommodate the idiosyncrasies of the presented method.
We would like to mention that although the issue of information separability criteria has not
been addressed in this work, we present two examples to assess the herein presented method.
In the first example (Sect. 5.3), the classifier is to unfold into two sub-classifiers which are
applicable to the two distinct half-planes of the classification domain. In the second example
(Sect. 5.4), the separability criterion used favours the sub-model with a mountain shape and
leaving the remaining information to the other sub-model.
From our research, we find this method very promising, specifically in separating different
aspects of a problem. We also understand that a few issues still need further research and
we would like to delve deeper into them. Namely, we would like to do some more work
to strengthen the algorithm. For instance, in the example of Sect. 5.1, the decomposition of
tanh(a) has been done using the same α for all the harmonics of the Fourier series. However,
different values of α can be used to calculate the different terms.
The issue of information separability criteria should be addressed. Also, some different
orthogonal functions can be used to approximate the activation function. An example that
splits the NN information into more than two parts has to be constructed. Moreover, different
metrics can be used to assess the transfer of information between neurones. Paramount is
also to apply the splitting multi-algorithm to some problems with real added value.
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A Mathematical Proofs of Subsection 2

A.1 Proof of Theorem 2.1

Write the Fourier Series of m terms for �(a), where �̂n are the Fourier coefficients:

Sm(a) = ∑∞
n=−∞ �̂ne2π ina/T with �̂n = 1

T

∫ T /2
−T /2 e

−2π ina/T�(a)da. As �(a) is assumed

to be known, �̂0 = 1

T

∫ T /2

−T /2
�(a)da is the average value of the function in the period and

coefficients �̂n are complex: �̂n = 1

2
(an − ibn) and �̂−n = 1

2
(an + ibn) , n = 1, . . . ,m.

Hence:

Sm(a) =
m∑

n=−m

�̂ne
2π ina/T

= �̂0

2
+

m∑
n=1

�̂ne
2π ina/T +

−m∑
n=−1

�̂ne
2π ina/T

= �̂0

2
+

m∑
n=1

(an cos 2πna/T + bn sin 2πna/T ) .

Also, if we assume the signal � to be real, then �̂−n = �̂n = �̂n . When n = 0, c0 = a0
2

appears twice.Wemake the change of variable:ω0 = 2π/T , defineωn = nω0, and nextwrite

the Fourier Series in this new variable: Sm(a) = �̂0

2
+∑m

n=1 (an cos nω0a + bn sin nω0a) .

Furthermore, if � is an odd function (and real), then the Fourier coefficients are also odd.
Hence:

Sm(a) =
m∑

n=1

bn sin(nω0a) =
m∑

n=1

bn sin(ωna)
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bn = 2

T

T /2∫
−T /2

sin(ωna)�(a)da.

Without loss of generality, we can redefine the Fourier coefficients for an odd function �(a)

as �̂n := bn . Equivalently:

�(a) =
m∑

n=1

�̂n sin(ωna) +
∞∑

n=m+1

�̂n sin(ωna) (22)

with �̂n = 2

T

∫ T /2

−T /2
sin(ωna)�(a)da.

Moreover, as � is symmetric in the positions 2k
T

4
, k �= 0, then only the odd harmonics of

series (22) will be considered. That is, ωn = (2n − 1)ω0.

A.2 Proof of Lemma 2.1

Recalling the Parseval-Rayleigh’s identitity, that says that we can compute the energy of the
signal by adding up the energies of the individual harmonics:

1

T

T /2∫
−T /2

|�(a)|2da =
∞∑
n=1

�̂2
n . (23)

For � defined in L2
([2a, 2a]) , we have

T /2∫
−T /2

|�(a)|2dx = ‖�(a)‖2 = 〈�(a),�(a)〉

= 〈Sm(a) + Rm(a), Sm(a) + Rm(a)〉
= 〈Sm(a), Sm(a)〉 + 2〈Sm(a), Rm(a)〉 + 〈Rm(a), Rm(a)〉

By orthogonality

= 〈Sm(a), Sm(a)〉 + 〈Rm(a), Rm(a)〉
Again by orthogonality

= ‖Sm(a)‖2 + ‖Rm(a)‖2

=
T /2∫

−T /2

|Sm(a)|2da +
T /2∫

−T /2

|Rm(a)|2da

Trivially, follows:

1

T

T /2∫
−T /2

|�(a)|2da =
∞∑
n=1

�̂2
n ⇔

⇔ 1

T

⎛
⎜⎝

T /2∫
−T /2

|Sm(a)|2da +
T /2∫

−T /2

|Rm(a)|2da
⎞
⎟⎠ =

m∑
n=1

�̂2
n +

∞∑
n=m+1

�̂2
n

123



Multi-back-propagation Algorithm for Signal Neural Network… Page 23 of 27   100 


⇒ 1

T

T /2∫
−T /2

|Rm(a)|2da =
∞∑

n=m+1

�̂2
n (24)

and
1

T

T /2∫
−T /2

|Sm(a)|2da =
m∑

n=1

�̂2
n (25)

A.3 Proof of Lemma 2.2

Start in (6) andpartition the integral in three different intervals:
[− T

2 ,− T
4

]
,
[− T

4 , T
4

]
,
[ T
4 , T

2

] :

�̂n = 2

T

T /2∫
−T /2

sin(ωna)�(a)da

= 2

T

−T /4∫
−T /2

sin(ωna)�(a)da + 2

T

T /4∫
−T /4

sin(ωna)�(a)da + 2

T

T /2∫
T /4

sin(ωna)�(a)da

In (2) consider 2a = −T /2, a = −T /4, a = T /4 and 2a = T /2 and use the definition of
� according to the correct interval:

= 2

T

−T /4∫
−T /2

sin(ωna) ϕ

(
−a − T

2

)
da + 2

T

T /4∫
−T /4

sin(ωna) ϕ(a)da

+ 2

T

T /2∫
T /4

sin(ωna) ϕ

(
−a + T

2

)
da (26)

First we calculate:
−T /4∫

−T /2

sin(ωna) ϕ

(
−a − T

2

)
dx =

−T /4∫
−T /2

sin(ωna) ϕ

(
−(a + T

2
)

)
da

=
−T /4∫

−T /2

− sin(ωna) ϕ

(
a + T

2

)
da

= −
−T /2∫

−T /4

− sin(ωna) ϕ

(
a + T

2

)
da

=
−T /2∫

−T /4

sin(ωna) ϕ

(
a + T

2

)
da

To arrive at this result, we took into account that sine is an odd function and use the properties
of the Riemann integral.
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Now, changing the variable: y = −a 
⇒ dy = −da

=
T /2∫

T /4

sin (ωn(−y)) ϕ

(
−y + T

2

)
(−dy), knowing that sine is an odd function

=
T /2∫

T /4

− sin(ωn y) ϕ

(
−y + T

2

)
(−dy)

=
T /2∫

T /4

sin(ωn y) ϕ

(
−y + T

2

)
dy

Substituting this result back in (26), we get:

�̂n = 4

T

T /2∫
T /4

sin(ωna) ϕ

(
−a + T

2

)
da + 2

T

T /4∫
−T /4

sin(ωna) ϕ(a)da

= 4

T

T /2∫
T /4

sin(ωna) ϕ

(
−a + T

2

)
da + 4

T

T /4∫
0

sin(ωna) ϕ(a)da (27)

Next, we proof that:
∫ T /2

T /4
sin(ωna) ϕ

(
−a + T

2

)
da =

∫ 0

−T /4
sin(ωna) ϕ(a)da. Changing

the variable: z = a − T

2
, then:

T /2∫
T /4

sin(ωna) ϕ

(
−a + T

2

)
da =

0∫
−T /4

sin

(
ωn

(
z + T

2

))
ϕ(−z)dz ϕ is odd

=
0∫

−T /4

sin

(
ωnz + ωn

T

2

)
(−ϕ(z)) dz

=
0∫

−T /4

sin (ωnz + nπ) (−ϕ(z)) dz

=
0∫

−T /4

(− sin (ωnz)) (−ϕ(z)) dz

=
0∫

−T /4

sin (ωnz) ϕ(z)dz,
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since ωn = nω0, with ω0 = 2π

T
= 2π

2π
then ωn

T

2
= nω0

T

2
= n

2π

T

T

2
= nπ.

Back to (27):

�̂n = 4

T

⎛
⎜⎝

0∫
−T /4

sin(ωna) ϕ (a) da +
T /4∫
0

sin(ωna) ϕ(a)da

⎞
⎟⎠

= 2

⎛
⎜⎜⎜⎜⎝

2

T

∫ T /4

−T /4
sinωna ϕ(a)da︸ ︷︷ ︸
:=ϕ̂n

⎞
⎟⎟⎟⎟⎠ .

B Mathematical Proofs of Sect. 3

B.1 Proof of Theorem 3.1

Assume

a1 =
n+1∑
i=1

τiwi xi (1)

=
n+1∑
i=1

τiwiβi (1)xi = wT diag(τ )diag(β))x

= wT diag(τ 	 β)x

a2 = a − a1 =
n+1∑
i=1

wi xi −
n+1∑
i=1

τiwi xi (1)

=
n+1∑
i=1

wi (xi (1) + xi (2)) −
n+1∑
i=1

τiwi xi (1)

=
n+1∑
i=1

wi xi (2) +
n+1∑
i=1

(1 − τi )wi xi (1)

= wT ((I − diag(τ )) X1 + X2)

= wT (x − diag(τ )X1)

= wT (I − diag(τ 	 β)) x

And we have for every i, a1 + a2 = ∑n+1
i=1 (τiwiβi (1)xi + wi (1 − τiβi )xi ) = wi xi .

B.2 Proof of Theorem 3.2

Recalling the approximation of ϕ by the Fourier m-Series:

ϕ(a) ≈
m∑

n=1

�̂n sin(ωna) ⇔
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⇔ ϕ (a1 + a2) ≈
m∑

n=1

�̂n sin(ωn (a1 + a2)) ⇔

≈
m∑

n=1

�̂n (sin(ωna1) cos(ωna2) + cos(ωna1) sin(ωna2)) ⇔

≈
m∑

n=1

�̂n sin(ωna1) cos(ωna2) +
m∑

n=1

�̂n cos(ωna1) sin(ωna2)

≈ ϕ1 (a1, a2) + ϕ2 (a1, a2)

B.3 Proof of Theorem 3.3

We know that

T /2∫
−T /2

sin nω0t cosmω0tdt = 0,∀n,m. (28)

We want to proof that

T /2∫
−T /2

T /2∫
−T /2

ϕ1 (a1, a2) ϕ2 (a1, a2) da1da2

=
T /2∫

−T /2

m∑
n=1

�̂n sin(ωna1) cos(ωna2)
m∑
j=1

�̂ j cos(ω j a1) sin(ω j a2)da1da2

=
m∑

n=1

m∑
j=1

�̂n�̂ j

T /2∫
−T /2

∫ T /2

−T /2
sin(ωna1) cos(ωna2) cos(ω j a1) sin(ω j a2)da1da2

=
m∑

n=1

m∑
j=1

�̂n�̂ j

T /2∫
−T /2

(∫ T /2

−T /2
sin(ωna1) cos(ω j a1)da1

)
︸ ︷︷ ︸

=0

cos(ωna2) sin(ω j a2)da2

= 0.
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