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Abstract
Weakly supervised salient object detection (SOD) using image-level category labels has
been proposed to reduce the annotation cost of pixel-level labels. However, existing meth-
ods mostly train a classification network to generate a class activation map, which suffers
from coarse localization and difficult pseudo-label updating. To address these issues, we
propose a novel Category-aware Saliency Enhance Learning (CSEL) method based on con-
trastive vision-language pre-training (CLIP), which can perform image-text classification and
pseudo-label updating simultaneously. Our proposed method transforms image-text classi-
fication into pixel-text matching and generates a category-aware saliency map, which is
evaluated by the classification accuracy.Moreover, CSEL assesses the quality of the category-
aware saliency map and the pseudo saliency map, and uses the quality confidence scores as
weights to update the pseudo labels. The two maps mutually enhance each other to guide the
pseudo saliency map in the correct direction. Our SOD network can be trained jointly under
the supervision of the updated pseudo saliency maps. We test our model on various well-
known RGB-D and RGB SOD datasets. Our model achieves an S-measure of 87.6% on the
RGB-D NLPR dataset and 84.3% on the RGB ECSSD dataset. Additionally, we obtain sat-
isfactory performance on the weakly supervised E-measure, F-measure, and mean absolute
error metrics for other datasets. These results demonstrate the effectiveness of our model.
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1 Introduction

Salient object detection (SOD) [1, 2] mimics the human attention mechanism to isolate
visually prominent objects in a scene. It has been utilized in semantic segmentation [3],
image compression [4], object tracking [5], video coding [6], etc.

Most SOD methods follow the fully supervised paradigm, which heavily relies on large
datasets of pixel-wise annotations. To reduce the cost of manual labeling, weakly supervised
methods that use sparse labels (e.g., image-level category labels [7, 8], captions [9, 10],
scribbles [11], bounding boxes [12], points [13], subitizing [14], etc) have been applied to
realize a trade-off between timeconsumption andperformance.Among theweakly supervised
signals, the image-level category labels can provide the activation regions related to category
labels and help deduce the position of the objects. Therefore, weakly supervised SODmethod
based on image-level category labels are investigated and named WSOD in the paper.

Existing WSOD methods [9, 15] (Fig. 1a) train a classification network on the ImageNet
[16] or Microsoft COCO [17] dataset and then transform the features of the classification
network to generate class activation maps (CAMs) [18, 19]. Next, conditional random fields
(CRF) [20] is applied to optimize CAMs, and last, a saliency network is trained using the opti-
mized CAMs. However, CAMs are inaccurate as pseudo labels because they might highlight
only the most discriminative region instead of the whole object [9].

In contrast to these methods, the recently proposed JSM [21] updates pseudo labels using
category predictions. Specifically, RGB images are used to predict the saliency maps and
further enhanced by estimated depth information. Next, initial handcrafted pseudo labels
and the enhanced saliency maps are weighted combined by category predictions to form the
updated pseudo labels. Finally, a saliency network is trained by the updated pseudo labels.

Inspired by JSM but different from JSM, we employ contrastive vision-language pre-
training (CLIP) [22] to update the pseudo labels. CLIP establishes a correlation between
image and text by contrastive learning from 400 million image-text pairs. When category
label is used as text prompt, CLIP that models the relation of image and language can be
utilized. The image-text alignment ability of CLIP is used to generate a category-aware
saliency map. Meanwhile, the zero-shot classification ability of CLIP is used to evaluate
the quality of the pseudo saliency map and category-aware saliency map to further update
the pseudo label. Here, pseudo saliency maps are used as pseudo labels. In terms of the
process, as shown in Fig. 1b, we first design a CSEL that has both a classification head and
a segmentation head. It can segment a category-aware saliency map guided by a weakly
supervised signal (the salient category); second, the category-aware saliency map and the
pseudo saliency map are combined based on two confidence scores that are evaluated by
CSEL classification head to update the pseudo labels; last, a SOD network is trained using
the gradually updated pseudo labels. During the inference phase, given an image, we only
need to use the SOD network to predict the result.

Note that our method needs to use the category labels of SOD images like JSM. It is
different from traditional CAM-based methods, which use classification training samples
(ImageNet or COCO) to acquire category information and then use CAM as pseudo labels.
Fortunately, the CapS dataset [21] provides the category ground truth of RGB-D SOD train-
ing samples. Therefore, RGB-D SOD is taken as an example to demonstrate our method.
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Fig. 1 Comparison between traditional weakly supervised salient object detection methods based on image-
level category label (WSOD) and our CLIP guided ones

Meanwhile, to make a fair comparison, color and depth are fused in the input level. More
complicated fusion manners are not involved.

The contributions of this paper can be summarized as follows:

• Following the proposal of JSM and the CapS dataset, a weakly supervised SOD method
based on category labels is proposed. It outperforms JSM and provides a baseline for
further study on WSOD.

• ACSEL is proposed that maintains the zero-shot classification ability of CLIP and builds
a bridge from image-level classification to pixel-level saliency prediction.

• CSEL is used to guide the update of the pseudo label. A category-aware saliency map is
generated by the CSEL segmentation head under the guidance of salient category text. In
addition, the pseudo saliency map is updated by the category-aware saliency map based
on their quality evaluations by using the CSEL classification head.
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• Experimental results demonstrate that the proposed model achieves satisfactory perfor-
mance. The win/tie/loss is 13/2/5 and 12/1/7 on RGB-D and RGB SOD dataset compared
with existing WSOD methods, respectively.

2 RelatedWork

2.1 Weakly Supervised Salient Object Detection

Salient object detection has aroused increasing interest. Most methods follow a full-
supervised strategy that relies on pixel-level manual annotations. It is a tedious and
time-consuming procedure. Outside the constraints, image-level category labels [7, 8], cap-
tions [9, 10], scribbles [23, 24], bounding boxes [12], points [13] and subitizing [14] are
employed to supervise the training of the model.

The category label basedmethods [7] use large-scale image datasets to train a classification
task, and then generate the CAM as a pseudo label to train the saliency task. ASMO [8]
and SCWSOD [25] perform self-training by using the predicted saliency map as the part of
pseudo labels.MSW[9] usesmutual-guidedmulti-task (multi-label classification and caption
generation) to help generate pseudo labels. MFNet [26] utilizes a directive filter strategy with
pixel-wise and superpixel-wise pseudo labels. NSALWSS [15] is a noise-aware generative
adversarial network that emphasizes salient objects and suppresses the noise on the pseudo
labels.

The caption basedmethod [10] uses a caption dataset to train a caption generation task and
then transfers language-aligned vision features to generate a language-aware saliency map.
The scribble based method [23] uses sparse labels indicating foreground and background to
achieve whole object detection for RGB images [27], RGB-D images [1], and remote sensing
image [11]. The bounding boxes based method [12] leverages the supervision of bounding
boxes to update pseudo labels. The point based method [13] integrates point annotations and
edges to update pseudo labels. The subitizing based methods [28, 29] introduce counting
information into SOD.

Our research focuses on the category label based method. Due to the strong performance
of CLIP, we use it to transfer image-text similarity to pixel-text matching for accurate seg-
mentation, while evaluating the quality of the saliency map by its zero-shot classification
ability for pseudo label update.

2.2 Weakly Supervised RGB-D Salient Object Detection

RGB-D salient object detection is an active research area in the computer vision community.
To lower the cost of manual annotations, some weakly supervised methods for RGB-D SOD
have been proposed. DENet [24] trains an RGB-D saliency model with multi-round scribble
annotations by self-supervision. JSM [21]mines semantics from captionmask predictions for
weakly supervised RGB-D SOD tasks. Concretely, it uses RGB images to predict a saliency
map and then uses the estimated depth to refine the saliency map. Next, the refined saliency
map combines the pseudo labels using textual semantic weights to update the pseudo labels.
Finally, it trains a saliency network using the updated pseudo label.

Inspired by JSM [21], we adopt the same training strategy, but with a different strategy
for updating pseudo labels. Guided by the better classification and segmentation abilities of
CSEL, our model achieves better performance.
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2.3 CLIP-BasedMethods

Contrastive vision-language pre-training (CLIP) [30] uses 400 million image-text pairs col-
lected from the internet to train amodelwith a contrastive loss, where ground-truth image-text
pairs are positive samples and mismatched image-text samples are negative samples. The
model includes a visual encoder and a language encoder, and maps the input image and text
into a unified representation space. CLIP has the ability to align images with any semantic
concepts in an open vocabulary for zero-shot classification. It has been applied in point cloud
classification [31], open-vocabulary object detection [32, 33], referring image segmentation
[34], cross-modal retrieval [35], 3D object language grounding [36], etc.

Since CLIP only models the relation between the whole image and text description, fine-
grained alignments (e.g., region and text, pixel and text) are needed for object detection and
semantic segmentation. As a result, CLIPSeg [37] equips CLIP with a transformer-based
segmentation decoder for segmentation tasks. zsseg [38] combines CLIP with MaskFormer
[39] to classify each class-agnostic mask proposal into a category. RegionCLIP [40] and
GLIP [41] capture the fine-grained alignment between regular rectangular image regions and
textual concepts by region-text pre-training. FILIP [42] achieves fine-grained cross-modal
late interaction between image patches and textual tokens. LSeg [43] and DenseCLIP [44]
convert the original image-level semantic correlation in CLIP into pixel-level matching for
dense prediction. GroupViT [45] divides images into arbitrarily-shaped and semantically-
similar segments by progressive merging in a transformer structure, and then establishes the
similarity between segment and class prompt by contrastive pre-training. It extends image-
level similarity to pixel-level similarity.

Most existing WSOD methods use CAMs as the pseudo labels. Inspired by DenseCLIP
[44], our proposed CSEL uses classification text to obtain pseudo label. Meanwhile, our
CSEL classification head is also used to evaluate the quality of the pseudo saliency map pm
and the category-aware saliency map cm. Besides performing segmentation like DenseCLIP,
our CSEL can also perform classification.

3 ProposedMethod

3.1 Motivation and Overview

To reduce the cost of pixel-level annotation, a weakly supervised SOD method based on
category label is studied in the paper. Existing methods use class activation map (CAM)
generated from category information as the pseudo label to train a SOD model. Since CAM
might highlight only the most discriminative region instead of the whole object, CAM is not
the best choice and need to be improved. In the paper, we introduce CLIP to generate a better
pseudo label.

Specifically, our proposed model includes two weakly coupled networks, as shown in
Fig. 2a–c. One is the pseudo label update network, and the other is the weakly supervised
SOD network. The result of the former is used to supervise the latter. The two networks are
trained simultaneously.

Theoretically, the weakly supervised SOD network can use any SOD model. It is trained
under the supervision of the pseudo label. Next, we discuss the pseudo label update network.

To obtain a better pseudo label, inspired byDenseCLIP, we design a similar CSEL that per-
forms both classification and segmentation tasks. CSELmodels both the image-text similarity
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Fig. 2 CLIP guided weakly supervised SOD model

and pixel-text matching relation. In the training stage, the saliency map generated by the tra-
ditional handcrafted method is used as the initial pseudo label pm. Then, the salient category
is used as a weakly supervised signal to train CSEL. It generates a category-aware saliency
map cm that is further supervised by pm. The category-aware saliency map is instinctively
better than the initial pseudo saliencymap since it alignswell with the language features of the
salient category. However, the handcrafted saliency map is also good at perceiving low-level
clues. As a result, the pseudo saliency map is updated by combining the pseudo saliency map
and category-aware saliency map and using the category-aware confidence scores, which can
be inferred from the CSEL classification results. Concretely, the input image is masked by the
pseudo saliency map and category-aware saliency map. The higher the quality of the saliency
map is, the more accurately the masked input image is classified. Each quality value serves as
a confidence score for weighting the pseudo saliency map and category-aware saliency map.
By combining the two, the quality of the pseudo saliency map is gradually improved every
τ epochs (a training round) during the training process. The category-aware saliency map
makes the pseudo saliency map increasingly better, and then the supervision of the better
pseudo saliency map generates a better category-aware saliency map. The two maps together
become increasingly better to form an optimal supervision signal for the SOD network.

Our method needs category labels of training samples, while SOD training dataset doesn’t
provide these information. Fortunately, the recently proposed CapS dataset gives the category
information of RGB-D SOD training images. Therefore, RGB-D SOD is taken as an example
to verify our method. In the paper, simple four-channel fusion is adopted for easy comparison
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with existing weakly supervised SOD methods. No complicated fusion of two modalities is
involved.

3.2 CSEL

Previous works use the class activation map (CAM) to build a bridge from image-level
categories to pixel-level saliency. However, CAMs are not suitable for the pseudo labels of
saliency maps, since they might highlight only the most discriminative regions related to
categories instead of the whole objects.

The recently proposed CLIP [22] uses 400 million image-text pairs to align the visual
and language embedding spaces by contrastive learning. When a set of text prompts about
category labels are constructed, CLIP can be regarded as a classifier on an image. Concretely,
the similarities between the image and the text prompts are computed, and the class name
with the highest score is regarded as the image category. To transfer knowledge from CLIP to
downstream dense prediction tasks, DenseCLIP [44] retains the language-compatible feature
map besides the global feature, and constructs pixel-text matching relations.

Inspired by this, we use the pipeline of DenseCLIP to construct a CSEL. It includes a
classification head and a segmentation head. The classification head classifies a given image.
The segmentation head segments the category-aware saliency map.

Specifically, input RGB-D image pair {r , d} ∈ R
H×W×4 are concatenated and convoluted

to obtain a three-channel input x ∈ R
H×W×3.

x = Conv(Concat(r , d)) (1)

whereConcat(·) represents channel concatenation operation andConv(·)means convolution
operation.

CLIP vision encoder encodes x as four-layer features { fi }4i=1 ∈ R
Hi×Wi×Ci , where Hi

and Wi are the height and width of the i-th layer feature, and Ci is the number of channels.

{ fi }4i=1 = EI (x) (2)

where EI (·) is CLIP image encoder.
The feature of the last layer f4 ∈ R

H4×W4×C4 is performed a global average pooling to
obtain a global feature f̄4 ∈ R

1×C4 .

f̄4 = GAP( f4) (3)

where GAP(·) denotes global average pooling operation.
Then two are concatenated and performed amulti-head self-attention (MHSA) to generate

a category-aware and spatial-sensitive high-layer feature z ∈ R
H4×W4×C and a global signal

z̄ ∈ R
1×C .

[z̄, z] = MHSA([ f̄4, f4]) (4)

where [·] is concatenation operation along patches, and MHSA(·) represents multi-head
self-attention layer.

Meanwhile, CLIP text encoder encodes a set of learnable K -class text prompts as text
features t ∈ R

K×C .

t = ET ([p, e1, e2, · · · , eK ]) (5)
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where ET (·) is CLIP text encoder, p ∈ R
N×C is learnable textual contexts, N is a hyperpa-

rameter specifying the number of context tokens [44], ek ∈ R
C (1 ≤ k ≤ K ) is the embedding

for each category name, K represents the number of salient categories.
To make the text features t more accurate, Transformer decoder [46] is employed to

aggregate visual contexts. The text feature t is used as query (Q), and the image feature [z̄, z]
is used as key (K) and value (V). The Transformer decoder decodes Q by Q itself, and then
by K and V to generate more accurate text features that aligns well with visual clues. Then
the text feature is updated through a residual connection.

t ← t + αTransDecoder(t, [z̄, z]) (6)

where the learnable parameter α controls the scaling of the residual.
Next, we compute the image-text class similarity vector csv ∈ R

1×K by using the global
signal z̄ and the text feature t by:

csv = Norm(z̄) · Norm(t)T (7)

where Norm(·) means l2 normalization operation along the channel, “ · " denotes matrix
multiplication.

Meanwhile, we compute the pixel-textmatching scorematrix score ∈ R
H4×W4×K using

the category-aware and spatial-sensitive high-layer feature map z and the text features t by:

score = Norm(z) · Norm(t)T (8)

The matching score matrix score is further fed into a convolution layer and a sigmoid
activation layer to generate the matching score map sm by:

sm = Sigmoid(Conv(score)) (9)

where Sigmoid(·) is sigmoid activation function.
Last, the matching score matrix score that explicitly incorporates language priors is con-

catenated with the feature of the last layer f4, and then fed into an image decoder to generate
category-aware saliency map cm.

cm = Decoder(Concat( f4, score)) (10)

where Decoder(·)means the decoding process with progressive deconvolution and concate-
nation.

In the training process, we use salient category cls to supervise class similarity vector
csv, and simultaneously use pseudo saliency map pm to supervise sm and cm.

lossT = lossce(csv, cls) (11)

losshighI = lossppa(sm, pm) (12)

losslowI = lossppa(cm, pm) (13)

where lossce(·, ·) is cross entropy loss, and lossppa(·, ·) is pixel position aware loss [47].
The total loss is the average of above losses.

loss = (lossT + losshighI + losslowI )/3 (14)

The proposed CSEL uses image-text alignment ability of CLIP to transfer category clue
for the category-aware saliency map. The category-aware and spatial-sensitive feature map z
is used to achieve dense prediction, and meanwhile global signal z̄ is also utilized to compute
the class similarity. It is different from DenseCLIP [44] that uses only z to establish the
relation of pixel and category for the fully supervision semantic segmentation.
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3.3 Pseudo Label Update

The traditional handcrafted method [48] is employed to generate the initial pseudo label,
i.e., pseudo saliency map. It is provided by the CapS dataset. Then, we also obtain the
category-aware saliencymap from the previous section. The category-aware saliencymap has
aggregated category knowledge and is intuitively better than the unsupervised handcrafted
saliency map. However, the handcrafted saliency map is superior in perceiving low-level
clues. Therefore, the category-aware saliencymap is employed to gradually update the pseudo
saliency map. Since there is no pixel-level ground truth in weakly supervised methods, we
cannot evaluate the qualities of the category-aware saliency map and the pseudo saliency
map. However, if we consider the two binary saliency maps as masks, the input image with
the better mask should be classified into the correct class. Therefore, we use the zero-shot
classification ability of CLIP to indirectly evaluate the qualities of the two saliency maps that
are regarded as the confidence scores. Based on the confidence scores, the two saliency maps
are fused to update the pseudo label.

Specifically, the pseudo label pm and the category-aware saliency map cm are smoothed
to serve as masks to make salient part visible and non-salient part unseen in input images.
The operation generates pseudo saliencymapmasked input xpm and category-aware saliency
map masked input xcm .

x j = Conv(x × Smooth( j)) (15)

where j ∈ {pm, cm} represents any one of the two masked inputs, Smooth(·) is a Gaussian
smooth operation [21], and “ × " is element-wise multiplication.

Then two masked images are fed into CSEL classification part to generate two confidence
scores. Note that text encoder of CSEL is frozen.

Concretely, twomasked images are fed into image encoder to generate the category-aware
global signals z̄ pm, z̄cm by:

{ fi, j }4i=1 = EI (x j ) (16)

f̄4, j = GAP( f4, j ) (17)
[
z̄ j , z j

] = MHSA
([

f̄4, j , f4, j
])

(18)

Note that herewe only retain the global signal z̄ although category-aware and spatial-sensitive
feature z is also generated. That is to say, we only use the classification ability of CSEL.

Next, CSEL serves as a classifier for masked images by computing the similarity between
the global signal of masked image and the text embedding of salient categories.

c j = Norm(z̄ j ) · Norm(t)T (19)

Then, we take out similarity values for a given category label, and compute softmax to
generate the confidence scores.

[
scorepm, scorecm

] = so f tmax(
[
cpm[cls], ccm[cls]]) (20)

where so f tmax(·) means softmax function.
Last, two saliency maps are weighted and summed using each confidence score followed

by a post-processing by:

pm ← CRF(scorepm × pm + scorecm × cm) (21)

where CRF(·) is a fully-connected conditional random field operation [20].
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Algorithm 1 Pseudo codes for the update network of pseudo labels.

Input: training images D = {rn , dn}Nn=1; initial pseudo label pm; salient category label cls; the granularity
of updating τ ;

Output: updated pseudo label pm;
/* training stage */;

1: for every epoch do
2: for {r , d} ∈ D do
3: x = Conv(Concat(r , d));
4: { fi }4i=1 = EI (x); //image CLIP

5: f̄4 = GAP( f4);
6: [z̄, z] = MHSA(

[
f̄4, f4

]
);

7: t = ET ([p, e1, e2, · · · , eK ]);//text CLIP
8: t ← t+α TransDecoder(t ,[z̄,z]);
9: csv = Norm(z̄)·Norm(t)T ;
10: score = Norm(z)·Norm(t)T ;
11: sm = Sigmoid(Conv(score));
12: cm = Decoder(Concat( f4, score));
13: lossT = lossce(csv, cls);

14: losshighI = lossppa(sm, pm);

15: losslowI = lossppa(cm, pm);

16: loss = (lossT + losshighI + losslowI )/3;
/* update stage */;

17: if epoch%τ == 0 then
18: for j ∈ {pm, cm} do
19: x j = Conv(x × Smooth( j));

20: { fi, j }4i=1 = EI (x j );
21: f̄4, j = GAP( f4, j );
22:

[
z̄ j , z j

] = MHSA(
[
f̄4, j , f4, j

]
);

23: c j = Norm(z̄ j )·Norm(t)T ;
24: end for
25:

[
scorepm , scorecm

]

26: = so f tmax(
[
cpm [cls], ccm [cls]]);

27: pm ← CRF(scorepm × pm + scorecm × cm);
28: end if
29: end for
30: end for
31: return pm.

At the end of each training round (τ epochs), our update strategy is performed to generate
an up-to-date pseudo saliency map.

The algorithm of pseudo label update network is described in Algorithm 1.

3.4 Weakly Supervised SOD

Theoretically, any salient object detection network can be adopted. It is supervised by grad-
ually updating pseudo label described in the previous section. Next, we elaborate our salient
object detection network.

Segformer [49] is used as the encoder to obtain four-layer feature {Gi }4i=1.

{Gi }4i=1 = Seg f ormer(x) (22)
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Next, global contextual modules (GCMs) [50] are applied in the last three layers to enlarge
the receptive field.

G ′
i =

{
Gi , i = 1

GCM(Gi ), i = 2, 3, 4
(23)

Further, to improve the representational ability of features, a pyramid multiplication strat-
egy [50] is imposed to enhance low-layer feature by all the other high-layer features.

G ′′
i = G ′

i ×
4∏

k=i+1

Up(G ′
k) (24)

where Up(·) is upsampling operation.
Next, the decoding process adopts successive upsampling, concatenation and convolution

operation.

Pi =
{
BConv(Concat(Up(Pi+1),G ′′

i ), i = 1, 2, 3
G ′′

i , i = 4
(25)

where BConv(·) is convolution operationwith 3×3 kernel followed by a batch normalization
layer and a ReLU activation function.

At last, P1 is performed a convolution and a sigmoid operation to generate the predicted
saliency map m that is supervised by the pseudo label pm.

m = Sigmoid(Conv(P1)) (26)

The loss of the weakly supervised SOD network is defined as:

losssaliency = lossppa(m, pm) (27)

4 Experiments

4.1 Datasets and EvaluationMetrics

Training: Since RGB SOD dataset provides no category information, we use RGB-D SOD
dataset to conduct the experiments. In general, most RGB-D models are trained using 1485
images in NJU2K [51] training set and 700 images in NLPR [52] training set, typical works
including BBS-Net [50], D3Net [53], MAD [54] and HiDAnet [55]. Some papers will add
another 800 DUT [56] training data sets for training, such as works [57, 58]. The purpose of
training with two common training sets is to make a fair comparison with existing algorithms.
In weak supervision RGB-D SOD, original annotated pixel-level supervision signals can not
be used. CapS dataset provides the useful information of RGB-D SOD training samples,
such as salient categories, handcrafted unsupervised saliency map [48], caption and mask
caption, etc. We use the former two as supervision signal of training and initial pseudo label,
respectively.

Testing: In the RGB-D SOD comparison experiments, NJU2K testing dataset (500 sam-
ples), NLPR testing dataset (300 samples), STERE [59] dataset (1,000 samples) and DUT
[56] testing dataset (400 samples) are tested. In the RGB SOD comparison experiments,
ECSSD [60] dataset (1,000 samples), DUTS-Test [7] dataset (5,019 samples), HKU-IS [61]
dataset (4,447 samples), DUT-OMRON [62] dataset (5,168 samples), and PASCAL-S [63]
dataset (850 samples) are tested. The use of a unified data set for training and testing can
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Fig. 3 Visual comparisons with the other state-of-the-art models on RGB-D SOD dataset. The left: the results
trained and tested on RGB-D SOD dataset. The right: the results trained and tested on RGB image samples of
RGB-D SOD dataset

ensure the results of the experiment and mitigate the performance degradation caused by data
differences.

Evaluation: We adopt four widely used metrics to evaluate the performance of our model,
including S-measure(Sα) [64], E-measure (Eξ ) [65], F-measure(Fβ ) [66] and mean absolute
error (M) [67].

4.2 Implementation Details

In the training stage, Fig. 2a CSEL and (c) weakly supervised SOD network are simulta-
neously trained every epoch. Figure2b pseudo label update is conducted every τ epochs (a
train round). In the CSEL, the image encoder adopts the CLIP-ResNet version [22], and the
text encoder uses a transformer [46] modified by [68]. In the test stage, Fig. 2 (c) weakly
supervised SOD network is only needed.

During the training and testing phases, the input RGB and depth images are resized to
352×352. Multiple enhancement strategies are used for all training images, i.e., random
flipping, rotation and border clipping. The parameters of CSEL are initialized with the pre-
trained parameters of CLIP, where the text encoder of CSEL is fixed to preserve the text
knowledge from CLIP. The parameters of the weakly supervised SOD encoder are initialized
with the pretrained parameters of Segformer [49]. The remaining parameters are initialized
to PyTorch default settings. A training round is set as τ=3 epochs. The Adam optimizer is
employed to train our network with a batch size of 10, and the initial learning rate is set to
5e-5. Our model converges within 100 epochs on a NVIDIA GTX 3090 GPU. The model
parameters and training time with RGB input and RGB-D input are roughly the same, the
parameter is about 190M, the training time is 22h and the inference speed is 34 FPS.

4.3 Model Performance

4.3.1 Comparison on RGB-D SOD Dataset

Since RGB-D WSOD was proposed recently, only one comparison method is available,
namely, JSM [21]. For a comprehensive comparison, we retrain MFNet [26] with RGB-D
four-channel input using their published code. The top part of Table 1 presents a comparison
among these two methods and ours trained on the RGB-D SOD training dataset and tested on
theRGB-DSOD testing dataset. According to the results, OursRGB−D performs impressively
on most datasets. The visual comparisons in the left part of Fig. 3 also suggest that our
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Fig. 4 Some failure cases in NJU2K dataset. The first two rows show two examples of RGB image, depth
image, initial pseudo saliency map, category-aware saliency map, updated pseudo saliency map and predicted
saliency map of training samples. The last two rows show the predicted results of four similar testing samples.
It demonstrates that the SOD network trained by the incomplete updated pseudo labels also generates the
wrong predicted results

segmentation accuracy is higher than those of the other methods. The excellent performance
is due to the ability of the proposed CSEL to transfer category text clues to segmentation tasks
and to accurately classify masked images to obtain confidence scores for updating the pseudo
labels. We also find that our method segments objects with different categories. Although
only one salient category is assigned to the images in the training set, our method can still find
multiple salient objects because the SOD network is weakly related to the salient category
prior. An image having only one salient category label has no impact on the performance of
our WSOD model.

To further make a fair comparison, we retrain our model using RGB images in RGB-D
training image pairs, and compare it with MFNet [26] and MSW [9]. Our contribution to
the WSOD task is presented in the bottom part of Table 1 and the right part of Fig. 3. When
tested on the RGB image samples of the RGB-D SOD dataset, the proposed language-guided
strategy leads to performance improvements.

However, we also find that local bias appears in the NJU2K dataset. By analyzing, we
identify the defect. When the initial pseudo saliency map contains an incomplete salient
object, the category-aware saliency map supervised by the pseudo saliency map cannot add
the missing parts. As a result, updated pseudo saliency map and predicted saliency map also
have the same errors. That is, the initial pseudo saliency map has a significant impact on the
result. The non-salient part of the initial pseudo saliency map can be gradually suppressed by
the category-aware saliency map, but the missing salient part in the initial pseudo saliency
map cannot be supplemented. Figure4 shows some examples. The first two rows present
two examples of RGB images, depth images, initial pseudo saliency maps, category-aware
saliency maps, updated pseudo saliency maps, and the final predicted saliency maps in the
training process. The last two rows show four similar images from the testing dataset. We
find that the SOD network trained by the incomplete updated pseudo labels also generates
the wrong predicted results.

In terms of the inference speed, as presented in Table 1, our method shows a comparable
advantage because our SOD network and pseudo saliency map update network are weakly
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coupled. The inference only depends on the SOD network, which is simple and relatively
lightweight.

4.3.2 Comparison on RGB SOD Dataset

Since there are no category labels in the RGB SOD dataset, our model cannot be trained on
the RGB SOD dataset. However, our RGB-D SOD network and pseudo label update network
are weakly coupled. We use RGB training samples in the RGB-D SOD dataset to train our
model, and then test it on the RGB SOD testing samples. In our model, Depth is added to the
RGB image as an auxiliary fourth dimension, which increases depth information. Comparing
the first and fourth rows of Table 1, we find that the input of RGB-D is better than that of
RGB on the whole, only the F-measure of NLPR is a little different. Table 2 compares WSS
[7], ASMO [8], MSW [9], MFNet [26], NSALWSS [15], and our method. The results show
that our method only uses 2,185 training samples to obtain results comparable to those of
MFNet and NSALWSS, which uses 10,533 training samples of RGB SOD tasks. We achieve
the highest results on all metrics in ECSSD and DUT-OMRON datasets. In all datasets,
the metric F-measure also gets the highest result. The win/tie/loss is 13/2/5 and 12/1/7,
respectively. We will strive to improve our work to achieve even better performance.

4.4 Ablation Studies About Different Supervision Signals

4.4.1 Quantitative Analysis

We conduct ablation studies on the NLPR, NJU2K, STERE and DUT datasets to investigate
the performances of the models under different supervision signals, as presented in Table 3.
Note that all the pseudo labels all useCRF post processing. CRF can improve the performance
by 0.02 inMAEevaluationmetric. In the 1st row,when the initial handcrafted pseudo saliency
map is used to supervise the training of the model, the model performance is worse. In the
2nd row, the supervision signal is updated by the predicted saliency map generated from the
weakly supervised SOD network at the end of each training round. The model performance
under the self-updating strategy is obviously improved due to the progressively improved
supervision signal. In the 3rd row, when category-aware saliencymap serves as a supervision
signal, the model performance using the pixel-text matching ability of CSEL is significantly
enhanced. In the 4th row, when the category-aware saliency map serves as the residual of the
pseudo saliency map, the model performance is comparable to that of the previous model.
In the 5th row, the weighted fusion of the category-aware saliency map and pseudo saliency
map under the guidance of the category classification results achieves the best performance.

The comparison between 1th, 2nd rows and the other rows demonstrates that if there
is no our designed CSEL and the corresponding update strategy, SOD model can’t achieve
a satisfying performance although it uses transformer-based backbone. Furthermore, the
comparison between the 4th row and the 5th row demonstrates that CSEL achieves more
accurate classification on masked input images and generates the correct update weights.

4.4.2 Visual Analysis

We also give update process visualization of different maps in Fig. 5. From the figure, we
can conclude some conclusions.
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Fig. 5 Update visualization of different maps. from top to bottom: Input & Output & GT, matching score map
(sm), category-aware saliency map (cm), pseudo saliency map (pm), predicted saliency map (m). From left to
right of the first line: RGB image, depth image, category label, final predicted map, ground truth. From left to
right of the other lines: the update process of different maps

• The matching score map sm is a low-resolution map, and locates the rough position of
salient object.

• In the 1st column, the cm is category-aware saliency map that is from CSEL. The pm
is low-quality initial pseudo saliency map. The cm is better than pm because category
prior has been injected.

• The pseudo map pm in the next column is the fusion of category-aware map cm and
pseudo map pm from previous column. For example, the pm in the 2nd column comes
from the cm and the pm in the 1st column.

• The pseudo map pm is gradually updated to the correct direction.
• The predicted saliency map m is nearly the same as pseudo saliency map pm because m

is the output of SOD network supervised by the pseudo saliency map pm.
• All of the maps become increasingly better towards the ground truth. The category-aware

map cm makes pseudo map pm the better in the start. Then, the better cm is generated
by the supervision of the better pm. The two together promote each other, making pm
increasingly better.
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5 Conclusions

In this paper, we proposed a weakly supervised SOD method based on image-level category
labels. By borrowing the image-text alignment and zero-shot classification abilities of CLIP,
we designed aCSEL that consists of a segmentation head and a classification head. It transfers
image-text classification to pixel-text matching and generates a category-aware saliencymap.
Furthermore, it evaluates the quality of the category-aware saliency map and pseudo saliency
map and uses quality confidence scores as weights to update the pseudo labels. Finally, the
updated pseudo label is used to supervise the SODnetwork. Experimental results demonstrate
the superiority and effectiveness of our method. In the future, we will consider the better
utilization of depth images instead of input fusion, and further exploit the language influence
of caption mask prediction on the WSOD task.
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