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Abstract
Rain streaks could blur and distort images, significantly impacting further image processing.
Single-image deraining is a hotspot and has practical application value, while most existing
methods still have problems such as residual rain streaks and inadequate recovery of detail
textures. To address these issues, we propose a Residual Contextual Hourglass Network
(RCHNet) for single-image deraining, which could adapt to remove rain streaks in complex
environments. Firstly, a contextual distillation block is presented to obtain local and global
features across different scales. Further, residual downsampling block and residual upsam-
pling block are used to maintain the residual nature of our architecture and better restore the
details of the image. Finally, a dual attention mechanism is introduced to compensate for
the spatial information lost by the downsampling. Extensive experiments on five synthetic
datasets and a real-world dataset demonstrate that our proposed RCHNet outperforms exist-
ing state-of-the-art deraining approaches. On average across all synthetic datasets, the PSNR
score of RCHNet is as high as 33.31 dB.

Keywords Single-image deraining · Hourglass network · Residual block · Attention
mechanism

1 Introduction

Images collected in rainy weather are easily affected by rain refraction and occlusion, which
seriously affect subsequent processing such as object detection [1, 2], semantic segmentation
[3] and target tracking [4]. Image deraining is an important prerocessing for them, especially
in complexmaritime scenarios. It could benefitmarine object detection [5, 6] a lot. Therefore,
an efficient deraining method has an urgent requirement for many applications as a crucial
visual preprocessing.

B Weina Zhou
wnzhou@shmtu.edu.cn

Linhui Ye
1870190134@qq.com

1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11541-z&domain=pdf


   63 Page 2 of 12 W. Zhou et al.

At present, deraining methods could be divided into video-based deraining [7, 8] and
single-image deraining (SIDR). And SIDR is more popular in the research field for it could
be utilized as an auxiliarymethodwhen video-based deraining is disabled in a rapidly changed
background. However, removing rain streaks from a single image is also more challenging
since it lacks any prior information such as the temporal and spatial correlation of rain streaks
in a video.

In the researches of SIDR, some model-based deraining algorithms [9–11] always build
models to simulate the relationship between rain and the background, then optimize themodel
to complete the deraining task. Their deraining effect is constantly constrained by the compli-
cated environment, thus themodel exhibits poor generalizability. Nowadays, driven by a large
amount of training data and the excellent fitting ability of convolutional neural networks [12–
15], deep learning has become the research trend of the current deraining task. Fu et al. [16]
propose amethod for deraining by reducing the topological range (DDN). Li et al. [17] present
a recursive context expansion network to extract rain information (RESCAN). Ren et al. [18]
propose a recurrent structure to synthesize the background progressively (PreNet). Jiang et
al. [19] propose a multi-scale progressive fusion deraining network (MSPFN), and non-
local fusion module [20] and attention fusion module [21] to further explore the local–global
features in the progress network. Chen et al. [22]and Frants et al. [23] both introduce a multi-
stage multiscale neural network to boost the performance of image restoration networks.
In recent days, researchers consider deraining tasks from different perspective, transformer-
based methods [24, 25] have achieved great success in capture long-range dependencies.
Works [26–28] adopted progressive coupled network, unpaired adversarial framework and
a direction aware wavelet network for SID tasks in different perspectives. These deraining
networks improve network performance by adopting a multi-branch structure or increasing
depth. The architecture is too complicated, making the network harder to train. Additionally,
they did not fully utilize pixel and channel information, which usually resulted in problems
such as residual rain streaks and inadequate recovery of texture details.

To address these issues, we propose a novel single-image deraining network called Resid-
ual Contextual Hourglass Network (RCHNet). RCHNet uses an end-to-end network structure
with parameter sharing to reduce the total number of parameters and simplify the network
complexity. Since rain streaks show apparent self-similarity in different sclaes, our frame-
work can acquire complementary rain streaks feature by the residual up-down sampling
structure. The hourglass network enhances the receptive field of the network through a multi-
level up-down sampling structure, which improves the perception of global information and
accurately predicts the critical details of each key point. Moreover, we proposed residual
downsampling block (RDB) and residual upsampling block (RUB) to maintain residual fea-
tures and dual attention mechanism (DAM) to fully utilize pixel and channel information.
Therefore, RCHNet can quickly extract detailed information to achieve rain removal in com-
plex rainy environments. The main contributions of our work are as follows:

1. A contextual distillation block (CDB) is proposed to extract local features across different
scales and capture rich contextual detail information.

2. The proposed dual attention mechanism (DAM) integrates multiple receptive fields to
compensate for spatial and channel information lost in sampling during the coding stage
with the parallel spatial and channel dual attention.

3. Residual downsampling block (RDB) and residual upsampling block (RUB) are used
in our hourglass framework to preform the up-down sample operation, which maintain
residual features in the structure and gain deeper image feature.
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Fig. 1 Full overview of the proposed Residual Contextual Hourglass Network structure

4. Extensive experiments on five synthetic datasets and a real-world dataset demonstrate
that our proposed RCHNet outperforms existing state-of-the-art deraining approaches.
The score of average PSNR by RCHNet on all synthetic datasets is as high as 33.31dB.

2 Methods

The hourglass structure is a relatively basic module in convolutional neural networks, includ-
ing bottom-up and top-down branches. It is similar to an encoder-decoder structure. The
proposed Residual Contextual Hourglass Network (RCHNet) is composed of four important
modules: residual downsampling block (RDB), residual upsampling block (RUB), contex-
tual distillation block (CDB), and dual attention mechanism (DAM). The overall scheme of
the RCHNet can be found in Fig. 1 Bottom-up: When the resolution is high, it utilizes the
large receptive field CDB to capture background image information before using the RDB
to scale down the feature map’s resolution. Top-down: After achieving the lowest resolution,
the network employs CDBmuch more effectively to collect deep information. Moreover, the
scale of the feature map is expanded layer by layer using the RUB operation, and cross-scale
feature fusion is accomplished using the DAM. The final network output is obtained by using
a 3 x 3 convolution after getting the same resolution as the input of network.

2.1 Contextual Distillation Block

Motivated by the advances of recent deraining methods [17, 22], we introduce a contextual
distillation block (CDB) as the basic structure of RCHNet to extract features at each scale.
Its architecture is illustrated in Fig. 1 To suppress useless features and extract useful infor-
mation from feature tensors, CDB consists of four parts: (1) Feature concatenation: Perform
instance normalization (IN) [29] on half of the input feature Xin ∈ R

H×W×C while keeping
context information (CI) by the other half of it, then contact them and output the concate-
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nation feature X f c ∈ R
H×W×C . This methodology effectively retains crucial details and

contextual information within the image. Here, H × W is the spatial dimension and C is
the number of channels. (2) Feature modeling: Reshaping X f c to obtain the global feature
X f m ∈ R

1×1×C , facilitating the comprehensive capture of global rain texture characteristics.
(3) Feature transformation: Capturing the passed inter-channel dependencies and yielding
novel attention feature X f t ∈ R

1×1×C . This enhancement significantly boosts the network’s
ability to identify rainfall-related patterns across channels. (4) Feature fusion: Element-wise
additive aggregation of the transformed features X f t onto the input features Xin , and yield
features Xcdb ∈ R

H×W×C . Feature fusion combines features from different stages, achiev-
ing more precise rain removal while preserving image details and structural information.
By combining these four components, RCHNet could extract key rain streak features and
address the complexity of deraining more effectively. The output of CDB can be expressed
as: ⎧

⎪⎪⎨

⎪⎪⎩

X f c = f 3×3
(
σ1

(
cat

[
I N (f 3×3(Xin))mid ,( f

3×3(Xin))mid
]))

X f m =cat
(
rs

(
X f c

)
, σ2

(
rs

(
f 1×1

(
X f c

))))

X f t = X f c + f 3×3
(
σ1

(
f 3×3

(
X f m

)))

Xcdb = Xin + σ1
(
X f t

)
(1)

where f 3×3(·) is the convolution layer with convolution kernels of size 3 × 3. I N (·)
denotes the instance normalization. σ1 indicates a non-linearity activation function termed
LeakyRelu with a negative slope of 0.2. f 1×1(·) is the convolution layer with convolu-
tion kernels of size 1 × 1. rs(·) denotes the reshaping operation. cat(·) is a concatenating
operation. σ2 indicates a Softmax function.

2.2 Residual Downsampling and Upsampling Block

The hourglass network presents a robust framework for capturing diverse raindrop informa-
tion across multiple scales. However, the upsampling and downsampling operations within
its layers are the consequential loss of nuanced rain streaks and intricate texture details within
the images. In order to uphold the residual characteristics integral to theRCHNet architecture,
this study introduces two key components: the Residual Downsampling Block (RDB) and
the Residual Upsampling Block (RUB). Both are designed to harness the efficacy of resid-
ual connections, thereby enhancing the preservation of fine image details. The RDB serves
to mitigate the challenge of gradient vanishing as the network progresses in depth, ensur-
ing improved information flow throughout deeper layers. Conversely, the RUB specializes
in recovering and retaining high-frequency fine details during the upsampling process. As
shown in Fig. 1, RDB first consists of two 3×3 convolutional layers, and each convolutional
layer is followed by a leaky rectified linear unit (LeakyRelu). Then it utilizes anti-aliasing
downsampling [30] and 1 × 1 convolution to get the output features, and finally connects to
the same downsampling features as the input layer. Given an input feature Xin ∈ R

H×W×C ,

the output feature of RDB is Xrdb ∈ R
H
2 × W

2 ×2C . Similarly, bilinear upsampling is used in
RUB as shown in Fig. 1. Given an input feature Xin ∈ R

H×W×C , the output feature of RUB

is Xrub ∈ R
2 H×2W× C

2 .

2.3 Dual AttentionMechanism

It is crucial to exploit the image background features and keep them to the end of themodel for
deraining. However, as the depth of the network increases, some useful feature information is
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Table 1 Datasets description

Datasets Training samples Testing samples Testset rename

Rain800 [35] 700 100 Test100

Rain200H [36] 0 100 Rain100H

Rain200L [36] 0 100 Rain100L

Rain14000 [16] 11, 200 2800 Test2800

Rain1200 [37] 0 1200 Test1200

Rain1800 [36] 1800 0 Rain1800

Total count 13, 700 4300 –

easily lost in the sampling process. And it also affects the ability of spatial representation in
the transmission process, resulting in a large number of redundant features. To address these
issues, we propose a dual attention mechanism (DAM) between the same-scale encoder
and decoder to integrate multiple receptive fields. Its structure is shown in Fig. 1. DAM
compensates for the loss of spatial information during sampling and transmission at the
bottom-up branch. The spatial attention and channel attention mechanisms [31] are utilized
to achieve feature recalibration. Specifically, spatial attention (SA) [32] captures the inter-
spatial dependencies of different features by employing global average and max pooling
operations. Channel attention (CA) [33, 34] applies global average, max pooling, and multi-
layer perceptron to calculate channel attention features more efficiently. And it can utilize
feature context information andmine the relationship between hierarchical features to achieve
feature distillation. Given an input feature Xin ∈ R

H×W×C , its output is described as:

{
X f r =cat

(
Xsa⊗Xca⊗ f 1×1 (Xin) ,Xca⊗Xsa⊗ f 1×1(Xin)

)

Xdam = Xin + f 1×1
(
X f r

) (2)

where Xsa ∈ RH×W×1 is the output of spatial attention, Xca ∈ R1×1×C is the output of
channel attention, X f r ∈ RH×W×C denotes the output of feature recalibration. f 1×1(·)
is the convolution layer with convolution kernels of size 1 × 1. cat(·) is a concatenating
operation. ⊗ indicates element-wise product.

3 Experimental Results

3.1 Datasets andMetrics

In our experiments, the detailed descriptions of datasets for training and testing are listed in
Table 1. A total of 13,700 clean/rain image pairs [19] from multiple datasets are used for
training. Testing 4300 labeled reference samples and 147 real-world images (DDN-SIRR
[38]). We employ peak signal-to-noise ratio (PSNR) [39] and structural similarity index
(SSIM) [40] as the evaluation index on synthetic datasets, when compared with several state-
of-the-art deraining methods. Due to the difficulties of collecting corresponding ground truth
for real-world images, the performance is evaluated via visual comparisons.
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Fig. 2 Visual comparisons of state-of-the-art deraining methods on synthetic datasets

Table 3 Comparison result of model parameters and average inference time

Methods RESCAN PreNet MSPFN HINET QSAM-Net RCHNet

Par.(M) 0.15 0.169 13.35 88.67 22.29 56.92

Times(S) 0.562 0.167 0.519 0.548 0.362 0.298

3.2 Implementation Details

In the training process, our network is implemented using the PyTorch deep learning frame-
work and trained on two Tesla V100 GPUs. The learning rate is initially set to 2 × 10−4 by
using Adam optimizer and then reduced to 1 × 10−7using the cosine annealing technique.
The network is trained on 256 × 256 patches with a batch size of 8 for 5 × 105iterations.
Image flipping and rotation are used at random for data augmentation [22].

Loss Function: PSNR [39] loss is verified in many literatures on deraining tasks, thus it
is also employed in RCHNet to construct our objective function. It is formulated as follows:

Loss = −PSN R ((O + I ), B) (3)

where O represents the output derained image, I is the input image, and B is the ground-truth
image.

3.3 Results on Synthetic Datasets

Our method are compared with five state-of-the-art methods on synthetic datasets (Test100
[35], Rain100H [36], Rain100L [36], Test2800 [16], and Test1200 [37]), and the test results
are shown in Table 2. The bold entries represent the best results in the table. All methods are
trained and tested on the same datasets and experimental environment. On all five datasets,
our method achieves the highest PSNR and SSIM scores. Especially, the test results on
datasets Rain100H [36], Rain100L [36], and Test1200 [37] have been significantly improved,
which shows that our model has better generalization ability. Furthermore, a comprehensive
comparision about parameter numbers and reference time is shown in Table 3. Compared to
the recent best method QSAM-Net [23], our model parameters is larger, but our detection
time is competitive compared to most of the state-of-the-art algorithms.

We randomly select the test results, and compare the deraining performance of different
methods from the visual level. As shown in Fig. 2, RCHNet effectively removes rain streaks,
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Fig. 3 Visual comparisons of state-of-the-art deraining methods on real datasets

Fig. 4 Effectiveness of different components on five datasets

and its result is closer to the ground truth in terms of details and colors. In comparison, other
methods have problems such as blurred details and texture distortion. Especially, RESCAN
[17] and PreNet [18] still have the residue of rain marks.

3.4 Results on Real-World Images

To more strongly demonstrate the adaptability of the proposed method, test results on real
rainy images from the dataset DDN-SIRR [38] are randomly selected to show by Fig. 3. The
results of RESCAN [17] and MSPFN [19] have residual rain streaks, while RCHNet obtains
better results. Moreover, compared to PreNet [18], HINet [22] and QSAM-Net [23], which
have texture distortion and blurred details in magnifying boxes, RCHNet preserve details
much successfully.

3.5 Ablation Study

Toverify the effectiveness of the proposed different components in the architecture,we design
some variants of the model to perform ablation studies, which are illustrated as follows: (1)
w/o CDB: RCHNet directly uses the residual block [41] without CDB. (2) w/o DAM:
RCHNet without DAM. (3) w/o RDB: RCHNet adopts maximum pooling for downsam-
pling without RDB. (4)w/o RUB: RCHNet employs transposed convolution for upsampling
without RUB. (5) w/o all: RCHNet without all components above.

Based on the results presented in Table 4 and Fig. 4, all the variantmodels showed a drop in
the average of the PSNR and SSIM index in five datasets compared to the original RCHNet.
Meanwhile, our RCHNet achieved a significant improvements of 4.2 dB on average values
across all datasets compared to the baseline. It suggests that the original RCHNet outperforms
its variants in terms of deraining. Furthermore, the absence of CDB resulted in the most
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apparent drop in performance, demonstrating that CDB plays the most crucial role in our
network.

4 Conclusion

In this paper, we propose a novel network named RCHNet for single-image deraining to
extract and integrate rain features of different scales. Specifically, it could adapt to the irreg-
ular distribution of rain patterns in space and color, and realize rain removal in complex
environments. Experimental results show that our method achieves the highest PSNR and
SSIM scores while obtaining strong generalizability at the same time. The visual results also
demonstrated that our model could better restore the details and color information of the
image. However, our algorithm still has potential for further improvement in terms of the
model parameters. By pruning our model to get a more effective and lightweight model, we
can improve the efficiency and performance of the algorithm. We expect our model could
benefit to solve more deraining tasks in vision applications in the future.
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