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Abstract
Accurate prediction of time series data is crucial for informed decision-making and economic
development. However, predicting noisy time series data is a challenging task due to their
irregularity and complex trends. In the past, several attempts have been made to model
complex time series data using both stochastic and machine learning techniques. This study
proposed a CEEMDAN-based hybrid machine learning algorithm combined with stochastic
models to capture the volatility of weekly potato price in major markets of India. The smooth
decomposed component is predicted using stochastic models, while the coarser components,
selected using MARS, are fitted into two different machine learning algorithms. The final
predictions for the original series are obtained using optimization techniques such as PSO.
The performance of the proposed algorithm is measured using various metrics, and it is found
that the optimization-based combination of models outperforms the individual counterparts.
Overall, this study presents a promising approach to predict price series using a hybrid
model combining stochastic and machine learning techniques, with feature selection and
optimization techniques for improved performance.
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Abbreviations

ANN Artificial neural network
ARIMA Autoregressive integrated moving average
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
ELM Legates and McCabe index
GARCH Generalized autoregressive conditional heteroscedasticity
IMF Intrinsic mode function
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression splines
MASE Mean absolute scaled error
ML Machine learning
NSE Nash–Sutcliffe efficiency
PSO Particle swarm optimization
RMSE Root mean squared error
RRMSE Relative root mean squared error
SVR Support vector regression
WI Willmott’s index

1 Introduction

A time series is often used to analyze and predict trends or patterns in various fields such
as economics, finance, and engineering. ARIMA model is most used parametric time series
model that combines AR and MA components with a differencing process to handle non-
stationarity. GARCH is an extension of the ARIMA model that can capture the conditional
variance of a time series. A vast literature is available for parametric time seriesmodel includ-
ing their application; such as Paul et al. [1] applied ARIMA model with various important
weather parameters as exogenous variable to forecastwheat yield data in the district ofKanpur
in Uttar Pradesh. Paul [2] used a long memory time series model, Autoregressive fractionally
integrated moving average (ARFIMA)model to forecast daily wholesale price of pigeon pea.
Rakshit et al. [3] utilized various asymmetric GARCH-type ofmodels to capture the volatility
of weekly modal price of onion in Delhi, Lasalgaon and Bengaluru market and proved the
outperformance of the Asymmetric power autoregressive heteroscedastic (APARCH) model
over other alternatives.

As literature suggests, in many of the cases such as presence of noise, high skewness
and heteroscedasticity, parametric time series models cannot capture the underlying data
generating process and estimate the function efficiently. So, several non-parametric methods
including machine learning (ML) algorithms are evolved. ML methods, such as ANNs and
SVR, are efficient algorithms in time series analysis that can handle complex non-linear
relationships and interactions between variables. ANNs can model complex patterns in time
series data by learning from historical data and adapting to changing patterns [4], while
SVR can identify a hyperplane that maximizes the margin between the data points and the
hyperplane to capture non-linear patterns and make accurate predictions [5]. Application of
ML techniques in time series forecasting may be found in many available literatures [6–10].
Gu et al. [11] developed a method for housing price forecasting using genetic algorithm and
Support vector machine (SVM). Gu et al. [12] also developed a new SVR based forecasting
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model for late blight of potato (BLIGHT-SVR). Thivakaran and Ramesh [13] proposed novel
supervised and ANN algorithm-based demand and sales forecasting approach for big mart.
Chen et al. [14–16] tried hybrid ML algorithm combining various models including SVR,
PSO etc. in several areas, viz, for customers’ credit assessment, prediction of traffic etc.

To improve the accuracy of time series forecasting, a combination of multiple method-
ologies has been explored, which can mitigate the risk of selecting an erroneous method
and also provide the advantages of several methods [17]. Zhang [17] developed a hybrid
ARIMA-ANN model which was used to predict water quality [18] and forecast electric-
ity price [19]. The fusion of ARIMA and ANN was identified as an effective approach to
enhance wind speed forecasting by refining the associations between wind speed and various
meteorological variables [20]. As ARIMA method cannot model non-linearity in the time
series data induced by high volatility, Rubio and Alba [21] introduced a hybrid ARIMA
and SVR-based hybrid methodology (ARIMA–SVR) to forecast stocks of New York stock
exchange (NYSE). Combination of multiple forecasting models is commonly implemented
by assigning equal weightage to each model’s output [22–24]. However, optimizing these
weights is a rare practice in the literature.

Furthermore, noise present in existing datasets cannot be captured accurately by any para-
metric or non-parametric method, or combination of models. In such cases, decomposition
methods are a valuable tool in time series modeling as they allow us to separate the different
components of a time series, which can be analyzed and modeled independently to achieve
more accurate predictions and forecasts [25–27]. Decomposition of the original dataset has
been explored by many researchers [28, 29]. Babu and Reddy [30] have used MA filter for
smoothening the dataset followed by an application of ARIMA on smoothed component and
ANN in the remaining part. There are many decomposition methods available in the litera-
ture such as: EMD, EEMD, EWT, CEEMDAN etc. Among themCEEMDAN decomposition
technique has been explored in this research work. CEEMDAN, a popular decomposition
method, can extract useful features from the actual dataset that can improve prediction accu-
racy. By breaking down the time series into its underlying components, we can analyze and
model each component separately, leading to more precise predictions. According to Torres
et al. [31]CEEMDANcan resolve all of the flaws by providing a better spectral decomposition
of the IMFs at lower computational time [32]. Li and Li [33] used an improved CEEMDAN
and PSO-SVR-based algorithm for glucose detection. Garai and Paul [23] developed an
ensemble model using CEEMDAN decomposition and Machine Intelligence (MI) models
to forecast S&P 500 index. But they have not utilized any feature selection algorithm or any
optimization technique to get final prediction. The combination model utilizing CEEMDAN
for short-term load forecasting demonstrated superior performance compared to alternative
models [34, 35].

Many feature extraction techniques have been evolved to get the latent signal contained in
the data for further processing [36, 37]. Therefore, the extracted features only can be fitted into
various models to eliminate noise, reduce the redundancy and computational complexity as
well as improve the prediction accuracy [38–40]. Some of feature selection techniques used
in literature are principal component analysis (PCA), decision trees (DT) [41], MARS etc.
MARS is a popular feature selection technique that uses a combination of linear and nonlinear
regression to identify the most relevant features. Kao et al. [42] applied MARS-based feature
selection technique for variable selection in the domain of stock market forecasting. Adnan
et al. [43] combined MARS and least square SVR technique for streamflow prediction. Bose
et al. [44] implementedMARS and deep neural network in the area of stock price forecasting.
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Optimization of weights to combine different models’ predictions is an essential aspect
of ensemble learning, which can significantly improve the accuracy and reliability of pre-
dictions [45]. Maximizing the predictive power, reducing the impact of errors, addressing
model biases, improving robustness, and interpretability of the ensemble are some reasons
why optimization of weights is important [37, 46–48]. PSO, an optimization algorithm,
works by simulating the behavior of a swarm of particles, where each particle represents
a potential solution to the optimization problem [49, 50]. Preprocessing coupled with fea-
ture selection and optimization had also been studied for performance improvement. Heidari
et al. [51] pointed out the importance of highly accurate prediction models. By decom-
posing the original signal, the series can be denoised and features can be extracted at
different frequencies. Despite these advantages, the use of variable selection techniques on
CEEMDAN-decomposed series have not been explored.

Therefore, an attempt has been made to developed a CEEMDAN based hybrid machine
learning model usingMARS-based feature selection technique and PSO optimization. Based
on the above discussion, this work proposed two different hybrid models (CARIGAAN and
CARIGAS) for the efficient handling of noisy complex time series data. To evaluate the
performance of the proposed model with existing stochastic and machine learning models,
high volatile agricultural price series have been used.

2 Methodology

2.1 CEEMDANDecomposition

CEEMDAN was fundamentally proposed by Wu and Huang as an extension to the original
EEMDmethod [52, 53]. Later, Torres et al. [31] developed an altered version of CEEMDAN.
They named it as EMD-NN as their method of selection for relevant IMFs was NN. CEEM-
DAN may be considered as a signal processing technique in time-series analysis, that can
handle non-stationary as well as noisy series. A signal can be decomposed using CEEMDAN
algorithms as follows.

Step 1 IMFs are generated using EMD (Eq. 1).
Step 2 Standard deviation (σ ) of the IMFs generated in step 1 is calculated. Now, they are
grouped into certain frequency bands.
Step 3 Each of the frequency band is added with a white noise. Their Standard deviations
(SD) are determined from σ . Perform step 1 on these new IMFs which are less prone to noise.
Step 4 Step 2 and step 3 are repeated.

Repeat steps 2–4 until a stopping criterion is met, like desired noise level or maximum
number of iterations whichever achieved first.

y(t) �
N∑

i�1

hi (t) + r (t) (1)

Here, original signal (y(t)) is decomposed by EMD into N number of IMFs (Eq. 1). The
i th IMF is hi (t)which is of zero mean and has a well-defined frequency: fi and an amplitude:
ai ; r (t) is residual. The difference of number of extrema and zero-crossings must be at most
one. The envelope formed by maxima and minima of the series must also be zero. Then step
3 is applied (Eqs. 2, 3, and 4).

hi (t) � ai (t) + cos(θi (t)) (2)
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ai (t) � Ai (t) + εi (t) (3)

θi (t) �
∫

ωi (s)ds + ϕi (t) (4)

Amplitude envelope is represented as Ai (t) and noise added to the signal at i th frequency
band is εi (t) in Eq. 3. Instantaneous frequency and initial phase are represented as ωi (s) and
ϕi (t) respectively in Eq. 4. Final IMFs obtained by CEEMDAN process are less noisy and
can be used for further analysis.

2.2 ARIMA and GARCHModel

ARIMA [54] and GARCH [55] are most commonly named time series models in financial
and economic forecasting. ARIMA captures autocorrelation of a series by using its lags and
differences in the model. The ARIMA is mathematically represented as follows (Eq. 5).

yt � c +
p∑

i�1

∅i yt−i +
q∑

j�1

θ jεt− j + εt (5)

An ARIMA representation of original time series (yt ) in Eq. 5 contains c, ∅i , θ j , and
εt which are a constant, autoregressive and moving average coefficients, and an error term
respectively. Number of autoregressive and moving average lags included in the model are
p and q respectively. GARCH is a model that captures the time-varying volatility of a time
series. However, a GARCH model can be represented as follows (Eqs. 6, and 7).

εt � σt zt (6)

σ 2
t � α0 +

p∑

i�1

αiε
2
t−i +

q∑

j�1

β jσ
2
t− j (7)

A GARCH model is used to grab time-varying volatility of a time series. In Eq. 6, zt is a
standard normal variate. In Eq. 7, σ 2

t is the conditional variance of the time series which has
been modelled against lagged error and variance terms.

2.3 ANN

ANNs are ML algorithm that consists of layers of interconnected neurons, which process
information [56–58]. A single node in an ANN can be mathematically presented as (Eq. 8)

n j � f

(
∑

i

wi xi + b

)
(8)

Output from j th node or neuron is n j ; wi is weight associated with i th input, yi ; b is
bias term and f represents activation function applied to the weighted sum of the inputs in
Eq. 8. Sigmoid, Rectified linear unit (ReLU), softmax are some of themost popular activation
functions. With these notions a feedforward NN is presented below (Eq. 9).

y � f (W2 f (W1x) + b1) + b2 (9)

Weight matrices, input vector, biases, and output vector are represented in Eq. 9 as W , x ,
b, and y respectively. Subscripts in this equation represent 1st and 2nd layers. Training of the
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NN comprises of adjusting these weights and biases such that predicted output minimally
differs from the actual input. However, one optimization technique for doing so is stochastic
gradient descent. Time series analysis is one of its wide range of applications.

2.4 SVR

SVR is a type of regression algorithm that cultivates Support vector machines (SVM) to
establish relationship between the predictors and response variables. It maximizes the mar-
gin between the predicted and actual values by finding a hyperplane ( f (x)) which can be
mathematically presented as below (Eq. 10)

f (x) � w
′
x + b (10)

In Eq. 10,w is the weight vector. A user-defined tolerance parameter ε is used to minimize
difference between predicted and actual values. Some slack variables are used to allow the
possibility of some observations lying out of bound of the margin in SVR optimization
process which is certainly a quadratic programming problem. Whereas, penalty parameter
will control the tradeoff width of the margin and amount of error tolerable which is defined
by external user.

2.5 MARS Algorithm

MARS is a non-linear and non-parametric regression technique. This method was firstly
introduced by [59]. A divide and conquer technique is used to train the model by partitioning
the training dataset in separate regions. Through a fast and intensive search procedure and
hinge functions, the knot points, i.e., the end points of the intervals of the input feature space
are found. The important input variables are chosen one by one, as well as the relationship
or interactions between them if any are also found for the better fit of the model. A general
MARS model can be expressed by Eq. 11.

f (x) � a0 +
M∑

m�1

am

K∏

k�1

[
sk,m

(
x(k, m) − tk,m

)]
(11)

a0 is constant, am are the model coefficients, M is the number of basis functions, K is the
number of splits, and tk,m depicts knot locations. sk,m � −1or + 1, indicates the left/right
sense of the associated hinge functions respectively. x(k, m) is the label of the independent
variables.

It is a two-phase process to build and optimize a MARS model. Initially, all the variables
available are allowed to freely enter into themodel and interactwith each other or are restricted
to enter as additive components only. Then MARS finds the pairs of basic functions for the
maximum reduction of sum of squares. In a pair, two functions are two different side of a
mirrored hinge function. A hinge function can be defined by the knot/constant (t) and the
variable (x) as: max(0, x − t) or (0, t − x). The basis functions are continuously chosen for
the MARS model through the greedy search algorithm until the change in the residual error
is too small to be considered or the maximum number of functions reached, i.e., the end of
the process. This ends the first stage of MARS model building. Now, in the second stage,
general cross validation (GCV) criterion (Eq. 12) is used to choose and keep the best of the
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Fig. 1 MARS-based piecewise modeling

basis functions and delete the less important ones.

GCV (M) � 1

N

N∑

i�1

[yi − fM (xi )]2
[
1 − C(M)

N

]2 (12)

N and M are number of observations and the number of basis functions: [ fM (xi )]; C(M)

is cost-penalty measure for model-complexity to penalize the complexity of the fitted model
and for avoiding overfitting to make the model parsimonious.

MARS perform better than optimally pruned extreme learning machine (OP-ELM) and
M5 model tree (M5Tree) [43]. MARS model (Fig. 1) is flexible in the sense that it fits
piecewise linear equations at distinct intervals of the regressor variable space to approximate
the non-linearity of the model. This means there will not be a fixed slope for the model and
may change at the change of one interval to another when the ‘knots’ are crossed.

2.6 PSO Optimization

The PSO technique can be considered as a good solution for the engineering challenges of
combining different forecast results to combine into one for the best performance of the sets
of models. Convergence speed of the PSO technique is very fast and this technique can also
solve multidimensional problem. The method was first proposed by Kenny [60] and also by
Kennedy and Eberhart, [61]. PSO optimization can be obtained by iterative formulae [33]
using Eq. 13 and Eq. 14.

(13)

Vi , j (k + 1) � ω ∗ Vi , j (k) + c1 ∗ rand (.) ∗ (
pbesti , j (k) − Xi , j (k)

)

+ c2 ∗ rand (.) ∗ (
gbesti , j (k) − Xi , j (k)

)

Xi , j (k + 1) � Xi , j (k) + Vi , j (k + 1) (14)

i th particle from the initial swarm (particle) of size i � 1(1)N and dimension j � 1
(1)D is represented by Xi � (Xi , 1, Xi , 2, . . . , Xi , D)T . The velocity of each particle in the
population is expressed as Vi � (Vi , 1, Vi , 2, . . . , Vi , D)T . rand(.) represents the random
number between 0 and 1. The individual and global extreme values is expressed by the terms
pbesti , j and gbesti , j respectively. Learning (acceleration) factors, i.e., c1 and c2 falls between
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2 and 2.05 [62]. Weighting factor ω helps to decrease the velocity of the particles and control
the swarm in this way and is expressed in Eq. 15.

ω � ωmin +
(Tmax − T )(ωmax − ωmin)

Tmax
(15)

In Eq. 15, T , and Tmax indicates current and maximum iteration numbers.
To determine the best combining weights of the prediction values of different models

MSE can be employed as a fitness function. The steps of PSO algorithm (Figs. 2 and 3) is
provided below:

Step 1 Initializing the weights of prediction values.
Step 2 Set T � 1
Step 3 Set the parameter values of the PSO algorithm, and also mention the population size.

Fig. 2 PSO algorithm steps

Fig. 3 PSO finding local and global best

123



CEEMDAN-Based Hybrid Machine Learning Models for Time Series … Page 9 of 24    92 

Step 4 Produce particles through mentioning position (Xi ) and velocity (Vi ) vectors.
Step 5 Calculate the fitness of every generated particle.
Step 6 Update the individual extreme value (pbesti , j ) if the value of its fitness is better than
previous extreme value.
Step 7 Update the global extreme value (gbesti , j ) accordingly if in step 6 individual extreme
value is being updated. In the meantime, compute and update the velocity and position of the
particle also.
Step 8 Repeat these steps by increasing the iteration number (T � T + 1) until T � Tmax .
Step 9 End of optimization.

After completion of the optimization process, final weights of the prediction combination
with minimum MSE will be obtained and also final forecast by then.

2.7 Formulation of Proposed Algorithm

In this section, we present a comprehensive account of the creation of a hybrid model based
on the CEEMDAN algorithm. Additionally, we incorporate a feature selection technique
using MARS, and combine it with stochastic models such as ARIMA and GARCH, as well
as machine learning models including ANN and SVR. To further enhance the performance
of the model, we optimize the weights of prediction combinations using PSO. A step-by-step
procedure for constructing the algorithm is described below (Fig. 4).

i. Prepare the log return series and the lag series of actual and log-return series.
ii. Create training and testing series for both the actual and log-return series.
iii. Apply CEEMDAN to the log-return series and divide it into training and testing parts.
iv. Fit the smooth part of the training data obtained from CEEMDAN using an

ARIMA/GARCH model and obtain forecasts for the testing data.
v. Check the residuals obtained from step iv for any patterns and store them if necessary,

for step vi.

Fig. 4 Step-by-step procedure for the proposed methodology
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Fig. 5 Flowchart for CARIGAAN or CARIGAS hybrid models

vi. Use MARS algorithm to perform feature selection on the training IMFs (from step 3)
and residuals (from step 5) and prepare lag series for the selected features.

vii. Utilize the selected features for prediction using ANN and SVR algorithms separately
on the training sets.

viii. Store the fitted model for every selected feature and predict the training and testing
data using the prepared data frames from step vi.

ix. Combine and optimize the predictions from the ANN and SVR models using the PSO
algorithm.

x. Back-transform the predictions to obtain the predictions for the actual training and
testing sets.

The performance of the algorithm is evaluated using various statistical measures such
as RMSE, RRMSE, MAE, MAPE, MASE, ENS , WI, and ELM . The effectiveness of the
proposed algorithm is compared to benchmark models, such as ARIMA/GARCH (ARIGA),
ANN, and SVR. The proposed algorithm and the benchmark models are compared based on
their prediction performance. The flowchart of the proposed algorithm is shown in Fig. 5.

3 PerformanceMeasures

To confirm the significance of the performance of the newly developed algorithms and estab-
lish whether they are capable for providing relevant and accurate prediction, a number of
statistical indicators are used, as a single metric of evaluation cannot determine the benefit
and feebleness of a model.
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3.1 RMSE

Root mean squared error (RMSE) is formulated in Eq. 16

RMSE �
√√√√ 1

N

N∑

t�1

e2t (16)

The RMSE value is expected to be lesser to prove the efficiency of the newly developed
model.When the prediction error is following normal distributionRMSEwill be amore useful
metric for the evaluation of the models. In other cases, the relative alternative measures of
accuracy like RRMSE and MAPE will be more fruitful to evaluate model accuracy.

3.2 RRMSE

RRMSE � 100 ∗
√

1
N

∑N
t�1 e

2
t

Y
(17)

In Eq. 17, representing RRMSE, Y is the mean of the actual observations used for
prediction. RRMSE < 10% indicates the model’s performance is excellent, in case of
10% < RRMSE < 20%, the model is considered as good, fair if it provides 20% <

RRMSE < 30% and it will be considered poor if the RRMSE value given by the predic-
tion of the model is more than 30% [63].

3.3 MAE

MAE is expressed with the given equation (Eq. 18).

MAE � 1

N

N∑

t�1

|et | (18)

MAE takes the average of absolute errors of prediction and lesser is considered as better.

3.4 MAPE

MAPE is expressed in Eq. 19.

MAPE �
(
1

N

N∑

t�1

|et |/yt
)

∗ 100% (19)

The more it is the less accurate prediction the model gives.

3.5 MASE

A modified version of MAPE is represented as MASE in Eq. 20.

MASE � N − 1

N

∑N
t�1|et |∑N

t�2|yt − yt−1|
(20)
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3.6 NSE (ENS)

ENS � 1 −
[ ∑N

t�1 e
2
t

∑N
t�1

(
Yt − Y

)2

]
;−∞ ≤ ENS ≤ 1 (21)

When ENS value (Eq. 21) achieved from a model’s performance in prediction as or near
1, it is considered as an outstanding model in its domain [64].

3.7 WI

W I � 1 −
[ ∑N

t�1 e
2
t

∑N
t�1

(∣∣Yt − Y
∣∣ +

∣∣Ŷt − Y
∣∣)2

]
; 0 ≤ W I ≤ 1 (22)

W I value (Eq. 22) of or close to 1 is considered as the best performing model [64].

3.8 ELM

Legates and McCabe Jr [65] has updated the WI index as ELM . This index (ELM ) repre-
sented in Eq. 23 provides greater accuracy than classical WI when relatively large values are
predicted due to the squaring of error term [66–68].

ELM � 1 −
[ ∑N

t�1|et |∑N
t�1

∣∣Yt − Y
∣∣

]
;−∞ ≤ ELM ≤ 1 (23)

et � yt − ŷt , is the error of prediction, yt and ŷt are actual and predicted values of the original
time series at t th time respectively.

4 Results and Discussion

The daily wholesale prices of potato (in Rupees per quintal) from six major Indian markets
have been collected from the Agricultural Marketing Information System (AGMARKNET)
website (https://agmarknet.gov.in/) during period January 1, 2011 to December 31, 2022.
The daily data sets have been transformed into weekly data before proceeding for analysis.

4.1 Characteristics of Data

Figure 6 and Table 1 display line plot and descriptive statistics of weekly price series of
potatoes. Table 1 reveals that the minimum price was recorded at the Ahmedabad market,
while the maximum price was observed in Kolkata. The lowest price was recorded in January
2012, and the highest price was observed in January 2021. Bengaluru has the highest average
potato price, followed by Mumbai. The Agra market has the lowest average potato price.

Kolkata has the highest standard deviation (SD) of 606.485, whileMumbai has the lowest.
Agra, Ahmedabad, and Mumbai have similar SD values. In contrast, the coefficient of varia-
tion (CV%) indicates that Agra, Ahmedabad, Delhi, and Kolkata markets are highly volatile.
On the other hand, Bengaluru and Mumbai markets show lower volatility, with CV% values
below 40%. All price series show positive skewness and leptokurtosis. The Shapiro–Wilk
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Fig. 6 Line chart of potato weekly price series

Table 1 Descriptive statistics of weekly potato wholesale price series of different markets

Statistics Agra Ahmedabad Bengaluru Delhi Kolkata Mumbai

Minimum 304.286 222.143 528.571 312.857 290 492.857

Maximum 2931.429 2885.714 3550 3015.714 3845.714 3300

Mean 916.866 929.765 1412.804 1032.581 1169.714 1302.557

SD 475.287 467.29 503.116 520.908 606.485 459.679

CV (%) 51.838 50.259 35.611 50.447 51.849 35.29

Skewness 1.291 1.17 1.109 1.3 1.168 1.1

Kurtosis 2.239 1.704 1.399 1.949 1.508 2.158

Shapiro–Wilk 0.9*** 0.921*** 0.923*** 0.895*** 0.909*** 0.937***

***Indicates significance of values at 1% level

test has been conducted on each dataset, indicating non-normality for all data series. These
results provide insights into the nature of potato price series in different Indian markets,
which can be useful for developing model strategies.

In Table 2, the KPSS test indicates that all prices are stationary with truncation lag
parameter 6. The non-linearity of all the price series has been checked using the Broock-
–Dechert–Scheinkman (BDS) test [69]. The null hypothesis of the BDS test is that the series
is independently and identically distributed (i.i.d.). The BDS test statistics have been calcu-
lated for embedding dimensions of 2 and 3, and presented in Table 3. It is evident that test
statistics for all the series are significant at 1% level of significance. Therefore, it can be
concluded that the price series exhibit non-linear behaviour, and simple linear model may
not be effective for modelling.
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Table 2 Stationarity tests and lag order

Test Parameters Agra Ahmedabad Bengaluru Delhi Kolkata Mumbai

KPSS KPSS level 1.219 0.651 2.409 0.519 2.539 1.922

Truncation Lag
parameter

6 6 6 6 6 6

p-value 0.01 0.018 0.01 0.037 0.01 0.01

Stationary? Yes*** Yes*** Yes*** Yes*** Yes*** Yes***

***Indicates significance of values at 1% level

4.2 Modelling

The potato price series from six different markets have been analysed using various models
including ARIGA, ANN, SVR, and two proposed hybrid models—CARIGAAN and CARI-
GAS. The data has been split into a training set and a testing set with a 90:10 ratio, and
the performance of each model has been evaluated using several performance metrics. The
RMSE, RRMSE, MAE, MAPE and MASE are expected to be lower for an efficient model,
while NSE, WI and LME coefficients approaching 1 are considered good.

Table 4 depicts the performance of implemented models for all the data series. The results
indicate that for Agra market, CARIGAAN outperforms other models for predicting test data
for all the accuracy measure expect WI. The WI value infer the superiority of CARIGAS
model. In the case of the Ahmedabad market, the WI value of the CARIGAANmodel is like
that of CARIGAS. However, all other measurements witness the superiority of CARIGAAN
model. Bengalurumarket has themixed interpretation about the CARIGAAN andCARIGAS
model. CARIGAAN is found to be best model for Delhi and Kolkata markets whereas
CARIGAS found proven its efficiency is Mumbai markets. Overall, the proposed hybrid
models—CARIGAAN and CARIGAS—perform better than the other models in predicting
potato prices in different markets. Furthermore, these models can capture the non-linear and
volatile nature of the price series, which makes them suitable for real-world applications.

To examine potential of the proposed model in multi-step forecast, accuracy of 7 days,
10 days, 15 days and 30 days ahead forecast in terms of MAPE, RMSE and MAE have been
computed and presented in Table 5. Regression lines of actual vs predicted value of proposed
models have been depicted in Fig. 7.

A perusal of Table 5 indicates that the CARIGAAN and CARIGAS models have lower
MAPE, RMSE and MAE values for all multi-step ahead forecast computed from all the data
series. In Fig. 7, all regression line exhibited more that 90% R-square value. These results
further supported the supremacy of our proposed models (CARIGAAN and CARIGAS).

5 Conclusions and FutureWorks

This paper proposes two different hybrid models for the efficient handling of volatility in
agricultural price series. The proposedmodels outperformbenchmark stochastic andmachine
learning models in this regard. The use of these hybrid models has significantly increased
the efficiency of price series modeling over the benchmark models, with similar performance
observed across different price volatilities. The proposed hybrid models are not limited to the
application in agricultural data but can be used for other financial series such as stockmarkets,
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Table 3 Test for linearity (BDS
test) Statistics Embedding dimension

2 3

Agra

eps[1] 178.859*** 297.247***

eps[2] 77.355*** 91.204***

eps[3] 55.311*** 56.616***

eps[4] 45.314*** 43.433***

Ahmedabad

eps[1] 147.96*** 242.028***

eps[2] 71.776*** 84.787***

eps[3] 52.241*** 53.58***

eps[4] 45.953*** 44.319***

Bengaluru

eps[1] 129.172*** 204.284***

eps[2] 67.985*** 79.802***

eps[3] 9.112*** 50.716***

eps[4] 41.428*** 40.458***

Delhi

eps[1] 152.784*** 243.662***

eps[2] 76.096*** 89.242***

eps[3] 49.512*** 50.416***

eps[4] 38.307 *** 36.506***

Kolkata

eps[1] 157.869*** 260.99***

eps[2] 76.866*** 91.702***

eps[3] 55.384*** 57.269***

eps[4] 45.438*** 43.598***

Mumbai

eps[1] 141.575 *** 235.642 ***

eps[2] 79.639*** 94.913***

eps[3] 58.026*** 59.930***

eps[4] 48.283*** 46.736***

***Indicates significance of values at 1% level

weather, pollution data, etc. Future research will involve the application of the proposed
models to simulated data with different volatility levels to determine their performance and
improvements over other models. This will provide insight into the effectiveness of the
proposed hybrid models in capturing volatility in a series and how their performance varies
with different volatility levels.

It would be interesting to explore the use of othermachine learning or deep learningmodels
to determine the extent of further efficiency improvements that can be achieved. The proposed
models can be further improved by using the Improved CEEMDAN (ICEEMDAN) method
instead ofCEEMDAN.Additionally, other feature selection and optimization techniques such
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Table 4 Comparison of prediction performances of different models in test sets of all markets

Metrics ARIGA ANN SVR CARIGAAN CARIGAS

Agra

RMSE 68.059 62.181 58.984 34.613 36.663

RRMSE 5.747 5.251 4.981 2.923 3.096

MAE 48.562 44.228 42.237 27.132 27.26

MAPE 4.255 3.919 3.703 2.416 2.481

MASE 1.014 0.924 0.882 0.567 0.569

NSE 0.942 0.952 0.957 0.985 0.983

WI 0.986 0.988 0.989 0.996 0.996

LME 0.811 0.828 0.836 0.895 0.894

Ahmedabad

RMSE 79.253 78.69 76.401 50.01 48.414

RRMSE 7.18 7.129 6.922 4.531 4.386

MAE 57.066 58.966 57.197 38.722 37.048

MAPE 5.432 5.717 5.502 3.839 3.627

MASE 1.001 1.034 1.003 0.679 0.65

NSE 0.9 0.901 0.907 0.96 0.963

WI 0.975 0.975 0.977 0.99 0.99

LME 0.756 0.748 0.756 0.835 0.842

Bengaluru

RMSE 287.118 311.927 304.93 210.872 215.13

RRMSE 14.259 15.491 15.144 10.472 10.684

MAE 218.478 241.75 231.982 165.991 154.117

MAPE 11.156 12.244 11.827 8.594 7.844

MASE 0.989 1.095 1.05 0.752 0.698

NSE 0.588 0.514 0.535 0.778 0.769

WI 0.89 0.874 0.878 0.944 0.94

LME 0.417 0.355 0.381 0.557 0.589

Delhi

RMSE 128.844 123.567 128.937 74.125 93.662

RRMSE 11.216 10.757 11.224 6.453 8.153

MAE 88.068 78.098 83.858 54.003 67.931

MAPE 7.771 6.833 7.384 4.655 6.154

MASE 1.007 0.893 0.959 0.618 0.777

NSE 0.878 0.888 0.878 0.96 0.936

WI 0.969 0.972 0.97 0.99 0.984

LME 0.732 0.762 0.745 0.836 0.793

Kolkata

RMSE 132.147 120.421 116.154 87.007 96.836

123



CEEMDAN-Based Hybrid Machine Learning Models for Time Series … Page 17 of 24    92 

Table 4 (continued)

Metrics ARIGA ANN SVR CARIGAAN CARIGAS

RRMSE 7.163 6.528 6.296 4.716 5.249

MAE 91.617 86.916 80.259 66.583 71.707

MAPE 5.627 5.286 4.893 4 4.345

MASE 1.011 0.959 0.886 0.735 0.792

NSE 0.918 0.932 0.937 0.964 0.956

WI 0.979 0.983 0.984 0.991 0.989

LME 0.788 0.799 0.814 0.846 0.834

Mumbai

RMSE 105.155 108.61 107.667 60.856 56.958

RRMSE 6.743 6.965 6.904 3.902 3.652

MAE 83.615 85.052 83.9 50.214 45.443

MAPE 5.529 5.601 5.465 3.261 2.968

MASE 0.984 1 0.987 0.591 0.535

NSE 0.833 0.822 0.825 0.944 0.951

WI 0.957 0.955 0.956 0.986 0.988

LME 0.611 0.605 0.61 0.767 0.789

Bold values are the best values; ARIGA represents ARIMA/GARCH model

Table 5 Accuracy measures of implemented models for multi-step forecasting

Datasets Days ARIGA ANN SVR CARIGAAN CARIGAS

MAPE

Agra 7 5.75 6.28 6.04 4.79 4.33

10 7.74 8.41 6.82 4.53 4.15

15 6.83 7.14 5.97 3.94 3.76

30 4.50 4.61 4.21 2.67 2.78

Ahmedabad 7 6.09 8.03 7.33 6.18 6.07

10 5.14 6.00 5.45 5.04 5.03

15 5.59 6.44 6.37 4.70 4.35

30 4.82 4.99 4.88 3.33 3.06

Bengaluru 7 13.81 13.79 14.40 10.39 9.36

10 16.90 16.87 17.12 16.09 14.30

15 13.13 12.97 13.35 12.80 11.44

30 10.15 10.81 11.02 8.42 7.79

Delhi 7 18.42 15.96 16.56 6.49 13.01

10 17.71 12.86 15.59 5.65 12.65

15 14.42 11.53 13.40 5.02 10.86

30 8.02 7.13 7.49 4.48 6.14

Kolkata 7 8.51 8.01 6.88 3.36 4.64
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Table 5 (continued)

Datasets Days ARIGA ANN SVR CARIGAAN CARIGAS

10 9.21 9.36 8.10 4.90 5.20

15 8.28 9.98 8.09 4.67 6.03

30 5.30 6.19 5.02 4.07 4.77

Mumbai 7 9.34 10.47 9.65 2.98 2.85

10 9.30 10.85 9.22 2.95 3.18

15 9.50 11.05 9.79 3.20 3.61

30 5.71 6.20 5.82 3.48 3.55

RMSE

Agra 7 103.83 104.31 98.21 66.41 57.78

10 117.82 117.83 104.89 61.33 55.61

15 102.56 99.93 89.57 51.92 48.34

30 70.42 69.35 65.66 37.21 37.46

Ahmedabad 7 94.75 105.26 104.43 69.69 58.24

10 81.12 88.34 87.54 59.95 52.42

15 76.09 81.58 83.19 53.99 46.93

30 70.97 71.94 69.42 42.17 38.65

Bengaluru 7 271.62 254.97 293.31 189.76 182.44

10 315.10 302.17 320.18 286.20 263.02

15 280.04 271.86 285.23 254.30 229.17

30 249.03 262.26 267.18 201.79 187.18

Delhi 7 253.40 231.53 245.88 99.13 183.61

10 223.11 195.71 213.56 84.44 161.92

15 186.82 166.99 180.04 71.32 136.42

30 123.17 112.43 118.79 61.45 85.72

Kolkata 7 132.95 124.24 120.66 61.71 81.25

10 175.54 174.22 164.92 98.14 117.07

15 158.91 173.30 153.63 88.71 124.49

30 120.46 130.49 114.49 86.33 105.78

Mumbai 7 182.13 217.39 187.77 54.06 53.14

10 167.86 201.82 172.38 49.62 52.82

15 150.78 182.00 159.18 47.87 57.50

30 108.89 122.71 111.66 62.62 64.40

MAE

Agra 7 70.29 76.82 73.40 57.21 50.38

10 87.46 95.11 79.10 52.64 47.53

15 71.70 75.94 63.77 42.44 39.57

30 48.79 49.66 45.61 28.53 29.05

Ahmedabad 7 58.32 77.07 70.16 57.15 55.44

10 48.64 57.33 51.97 46.25 45.71

15 48.93 56.88 55.71 41.41 38.35

30 50.44 51.03 50.41 33.27 31.00
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Table 5 (continued)

Datasets Days ARIGA ANN SVR CARIGAAN CARIGAS

Bengaluru 7 198.06 196.80 206.13 146.28 134.05

10 237.50 236.86 241.22 230.75 202.21

15 197.13 193.74 201.09 196.88 173.15

30 179.42 193.49 195.61 148.19 137.92

Delhi 7 222.98 188.27 208.40 73.86 149.39

10 193.08 143.53 176.55 60.21 131.76

15 146.48 116.16 138.04 48.61 104.00

30 83.71 73.69 79.32 46.85 61.48

Kolkata 7 114.26 109.79 93.54 48.10 63.70

10 132.19 135.46 116.44 74.62 76.40

15 118.47 142.67 115.85 69.84 88.02

30 86.06 98.46 79.75 66.72 78.35

Mumbai 7 151.56 165.19 155.39 47.01 43.58

10 141.86 161.61 140.81 44.01 45.90

15 130.14 148.53 132.95 42.81 47.27

30 82.61 88.35 84.26 51.91 52.53

as principal component analysis, stepwise multiple linear regression, whale optimization,
sparrow search algorithm, and farmland fertility algorithm can be used instead of MARS
and PSO. A trial-and-error approach can be used to fit different decomposed components or
groups of components into different models to determine any improvement in results.

123



   92 Page 20 of 24 S. Garai et al.

Fig. 7 Actual vs fitted plots with regression line of CARIGAAN and CARIGAS model for different data sets
(Agra: a-b; Ahmedabad: c-d; Bengaluru: e–f; Delhi: g-h; Kolkata: i-j and Mumbai: k-l)

123



CEEMDAN-Based Hybrid Machine Learning Models for Time Series … Page 21 of 24    92 

Fig. 7 continued
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