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Abstract
Feature selection can be seen as a multi-objective task, where the goal is to select a subset of
features that exhibit minimal correlation among themselves while maximizing their correla-
tion with the target label. Multi-objective particle swarm optimization algorithm (MOPSO)
has been extensively utilized for feature selection and has achieved good performance. How-
ever,mostMOPSO-based feature selectionmethods are randomand lackknowledgeguidance
in the initialization process, ignoring certain valuable prior information in the feature data,
which may lead to the generated initial population being far from the true Pareto front (PF)
and influence the population’s rate of convergence. Additionally, MOPSO has a propensity
to become stuck in local optima during the later iterations. In this paper, a novel feature
selection method (fMOPSO-FS) is proposed. Firstly, with the aim of improving the initial
solution quality and fostering the interpretability of the selected features, a novel initial-
ization strategy that incorporates prior information during the initialization process of the
particle swarm is proposed. Furthermore, an adaptive hybrid mutation strategy is proposed
to avoid the particle swarm from getting stuck in local optima and to further leverage prior
information. The experimental results demonstrate the superior performance of the proposed
algorithm compared to the comparison algorithms. It yields a superior feature subset on nine
UCI benchmark datasets and six gene expression profile datasets.
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1 Introduction

In this era of data explosion, as the number of instances and thedimensionality of data continue
to increase, the processing and parsing of data have become increasingly challenging. Feature
selection (FS) is a mainstream data reduction technique that aims to eliminate redundant and
noisy attributes. Its primary objective is to select the smallest subset of features from the
original feature set based on a FS criterion [1]. The advantage of FS lies in its ability to
compress the search space of the learning algorithm and lower the size of the feature set,
thereby diminishing the dimensionality of the data, easing the learning task, and improving
model efficiency [2].

In recent years, numerous researchers have applied swarm intelligence evolutionary
algorithms (EA) to the field of FS. Swarm intelligence optimization algorithms exhibit char-
acteristics such as simple operation, fast convergence, and robust global search ability,making
themwell-suited for tackling intricate optimization problems. Swarm intelligence algorithms,
including genetic algorithm (GA) [3, 4], artificial bee swarm algorithm (ABO) [5], grey wolf
algorithm (GWO) [6], particle swarm algorithm (PSO) [7], have demonstrated promising
results. Among them, PSO stands out as one of the most frequently employed optimization
techniques. PSO is not only used to feature selection problems, but also widely applied in
other fields. Many scholars have made different improvements to in different fields. Wang
et al. [8] proposed a particle swarm optimization algorithm based on reinforcement learning
level (RLLPSO) for large-scale problems, which increases the diversity of the population,
improves the search performance and convergence speed of the population. Inspired by con-
ditional integrals in automatic control, Xiang et al. [9] proposed an adaptive search direction
learning method for PSO (ISPSO). This method has faster global convergence speed and
higher solution accuracy. Xia et al. [10] proposed an MFCPSO algorithm to address the
shortcomings of fitness based selection, which exhibits promising characteristics in large-
scale complex functions. However, these evolutionary optimization algorithms also have
certain limitations. Most of them are designed for single-objective FS problems, whereas FS
can be viewed as a multi-objective optimization problem. Typically, two optimization objec-
tives are considered: maximizing the classification accuracy of the selected feature subset and
minimizing the size of the subset. In fact, researchers have explored the use ofmulti-objective
EA, including theMOPSO algorithm, for solving the FS problem. Pradip et al. [11] proposed
a two-phasemulti-objective FSmethod aimed at selecting themost relevant features. The one
phase involves global search using PSO, while in the other phase, a combination of PSO and
GWO, based on a modified Newton’s second law of motion, performs local search starting
from the results obtained in the global search. Wang et al. [12] introduced a multi-objective
evolutionary FS algorithm that incorporates a correlationmetric and a novel redundancymet-
ric for class correlation redundancy. The method uses Pareto optimality to assess a subset of
candidate features to find the compact feature subsetwithmaximumcorrelation andminimum
redundancy. Xue et al. [13] proposed a FS adaptive multi-objective genetic algorithm, which
incorporates an adaptive mechanism to dynamically select five different crossover operators
during various evolutionary processes, allowing the algorithm to remove multiple features
while ensuring classification performance. Feng et al. [14], aims to improve the global search
capability and mitigate the stagnation of local optimal solutions phenomenon, the model was
modified in the PSO part using genetic operators and Levy flight. These algorithms strive to
discover a collection of solutions that strike a balance between classification precision and
the size of the selected feature subset.
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However, these algorithms ignore the prior information contained in the feature data during
the initialization process, and use random initialization methods to generate initial solutions
that may be far from the true Pareto front, affecting the convergence speed of the population.
To alleviate this problem, Han et al. [15] introduced an improved feature selection method,
which sets the selection threshold according to the correlation between features and categories
in the initialization stage to select feature subsets of superior quality. Yu et al. [16] presented
a swarm initialization strategy that combines blended initialization and threshold selection
techniques. Additionally, PCA is employed to rank the importance of features. Although
these methods take into account the prior information contained in the feature data during
the initialization process, the particles are still susceptible to fall into local optima. Aim-
ing at this problem, Fu et al. [17] introduced a novel multi-objective binary GWO method
that incorporates a guided mutation strategy. The method utilizes the Pearson correlation
coefficient to guide local search, enhancing the population’s ability to explore local regions.
Additionally, a dynamic perturbation mechanism is employed for mutation, preventing pop-
ulation stagnation caused by a single strategy. This dynamic adjustment ensures population
diversity is maintained and improves the algorithm’s detection capability. Zhou et al. [18]
presented an adaptive hierarchical update PSO algorithm to overcome the issue of particle
swarm algorithms frequently getting trapped in local optima and struggling to escape. The
proposed method incorporates multi-level update formulas for both the global exploration
subgroup and the local exploitation subgroup. This approach enhances the resistance to local
optima and improves the algorithm’s ability to explore globally optimal solutions. Wei et al.
[19] employed a neighborhood search strategy to enhance the local search capability of the
swarm during stagnation periods. Xiang et al. [20] proposed a PID based PSO strategy (PBS-
PSO) to avoid premature convergence of particle swarm optimization, in order to accelerate
convergence and adjust the search direction to escape local optima. Xue et al. [13] introduced
a mechanism for detecting search stagnation aimed at mitigating premature convergence in
PSO.Although thesemethods can avoid particle swarms fromgetting trapped in local optima,
due to most of them are lack of prior information guidance, restrict the search performance
of swarm intelligence algorithms and hinders their ability to converge towards the global
optimum.

Based on the above analysis, incorporating prior knowledge into both the population
initialization and search process would inevitably expedite the algorithm’s search speed
and enhance the explainability of the selected features. Introducing prior information in
the initialization process can bring the generated initial solutions closer to the true Pareto
front, accelerate population convergence speed, and also increase the diversity of population
particles. Coupling prior knowledge into the search process can effectively guide particles to
search in a better direction, improve the search performance of the population. Therefore, this
paper proposes an adaptive multi-objective particle swarm feature selection algorithm based
on feature-label relevance information guidance, combining the advantages of filtered and
wrapped FS algorithms on the basis of full consideration of prior information. The primary
differentiating factors of this paper from other algorithms can be summarized as follows:

Firstly, a strategy for setting feature encoding intervals is proposed, which determines the
interval boundaries based on the magnitude of correlation between features and categories.
This strategy increases the probability of selecting features with higher correlation to the
categories, thereby enhancing the explainability of the selected features.

Secondly, a novel swarm initialization method based on feature-label correlation is pro-
posed. This method improves the quality of initial solutions and the distribution of particles,
resulting a significant improvement in the proximity of initial solutions to the true Pareto
front. Additionally, It expedites the rate at which the population converges.
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Finally, an adaptive hybrid perturbation strategy is proposed to facilitate the particles in
escaping from local optima, taking into account the performance of the particles, the selection
probability of the features and the selection situation.

The paper is organized as follows in the subsequent sections: Sect. 2 presents an overview
of existing work related to MOPSO, and information entropy. Sect. 3 provides the proposed
FS algorithm. In Sect. 4, the experimental results are presented and analyzed, providing a
comprehensive discussion of the obtained findings. Finally, Sect. 5 gives the conclusions of
this paper.

2 Preliminaries

2.1 Multi-objective Optimization Problems (MOPs)

Problemswithmultiple optimizationobjectives are calledmulti-objective problems, and since
the objectives are in conflict with each other, a solution cannot be optimal for all objectives.
The solutions that satisfy the Pareto optimality criteria in such problems are referred to as
Pareto optimal solutions. These solutions allow for a trade-off among different objective
functions, as improving one objective may come at the expense of another [21, 22]. The
minimum MOP can be described in the following manner:

minimize F(x) = ( f1(x), f2(x), . . ., fn(x))

subject to : ui (x) ≤ 0, i = 1, 2, . . . , k

e j (x) = 0, j = 1, 2, . . . , k (1)

where X = (x1, x2, x3, . . . , xD) represents the D-dimensional vector in decision space
and n is the number of objectives, fi (X) indicates the i th minimized objective function,
ui (X) and e j (X)are the inequality and equlaity constraints, respectively. Given two feasi-
ble solutions X1 and X2, X1 dominates X2, if and only if for ∀a , fa(X1) ≤ fa(X2) and
∃b, fb(X1) < fb(X2), a, b ∈ {1, 2, . . . , n}. If no other solution dominates X∗, then X∗ is
known as a Pareto-optimal solution. The set of all Pareto-optimal solutions is known as the
Pareto-optimal set, while the objective values associated with these solutions form the Pareto
front.

2.2 Particle SwarmOptimization

PSO has beenwidely used in a diverse range of optimization problems [23, 24]. In the particle
swarm algorithm, each particle corresponds to a prospective solution to an optimization prob-
lem, and collectively, all particles form a set of candidate solutions. Each particle possesses
two fundamental properties: velocity and position. The update of velocity and position for
the particle swarm is performed as follows.

vi (t + 1) = ω ∗ vi (t) + c1 ∗ r1 ∗ (pbesti − xi (t)) + c2 ∗ r2 ∗ (gbesti − xi (t)) (2)

xi (t + 1) = xi (t) + vi (t + 1), i = 1, 2, . . . , n (3)

where ω represents the inertia weight, t represents the number of current iterations, c1 and c2
are the learning factors, r1 and r2 are two random values uniformly distributed in the interval
[0,1], and pbesti and gbesti serve as representations for the individual optimal position and
the global optimal position, respectively, of particle i .
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2.3 Information Entropy

2.3.1 Entropy

Entropy quantifies the level of uncertainty associated with a random variable. Higher entropy
corresponds to greater uncertainty in the randomvariable. The entropyof a continuous random
variable X , denoted as H(X), is defined by the following equation:

H(X) = −
∑

x∈X
p(x)log(p(x)) (4)

where X denotes the random variable and p(x) is the probability density function of X .

2.3.2 Relative Entropy

Relative entropy is a measure that quantifies the difference or dissimilarity between two
probability distributions. It provides a measure of how one distribution differs from another
in terms of their information content or structure. Specifically, it measures the additional
amount of information needed to encode data fromone distribution using a code optimized for
another distribution. The definition of the relative entropy between probability distributions
p(x) and q(x) is as follows:

D(p||q) =
∑

x∈X
p(x)log

p(x)

q(x)
(5)

2.3.3 Mutual Information (MI)

MI is ameasure used to quantify the amount of information that one random variable contains
about another random variable [25]. It reflects the degree of correlation between the variables,
with higher values indicating stronger correlation. The MI between two discrete variables X
and Y is defined as follows:

(X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y)log

p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)) (6)

where p(x, y) denotes the joint probability density of x and y, and p(x) and p(y) refer to
the marginal probability densities of x and y respectively.

The relationship between MI and entropy can be described as follows:

I (X; Y ) = H(X) + H(Y ) − H(X , Y ) (7)

3 The ProposedMethod

In this section, in order to improve the quality of the initial solutions of the population and to
expedite the convergence process. A novel particle swarm initialization strategy is proposed,
which couples prior information in the initialization process and enhances the explainability
of the selected features. At the same time, an adaptive hybrid perturbation strategy is proposed
in order to avoid the PSO algorithm from falling into local optimal solutions. The specific
details of the two strategies are as follows.
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3.1 A Novel Initialization Strategy

Toenhance the dispersion of particles and improve the quality of initial solutions, it is essential
to thoroughly take into account the interrelation between features and categories. In this paper,
mutual information is utilized as ametric to assess the correlation between features and labels.
A higher value of mutual information indicates a stronger relevance between the features and
labels. In order to ensure the diversity of particles, half of the particles of the population are
initialized using feature-label guidance, while the other half is left to be initialized randomly.
The overall process is illustrated in Algorithm 1.

Algorithm 1 The proposed initialization strategy
Input: Dataset, D(the number of features),N (Number of Particles)
Output: NewPopulation
1: Calculate the MI of value of each feature using Eq. (6);
2: for k = 1 to D do
3: Calculate feature coding intervals using Eq. (8)and Eq. (9);
4: end for
5: for i=1 to N/2 do
6: Pi ← Initialize particles based on feature-label correlation information
7: end for
8: for i=N/2 to N do
9: Pi ← Randomly initialized
10: end for
11: return NewPopulation

3.1.1 The Initialization Strategy Based on Feature-Label Correlation Information

FS can be viewed as a binary optimization problem since it entails making decisions on
whether to select or exclude features.While binary PSO can directly encode particle positions
as binary values, continuous PSO has shown better performance in FS [26]. Therefore, in
this paper, continuous PSO is employed to adjust the position information of particles in
the FS algorithm. Nonetheless, evaluating fitness in continuous particle swarm algorithms is
challenging, requiring the conversion of real values to binary values before fitness evaluation.
In the conversion process, most PSO-based feature selection algorithms encode particle
position information in the range of [0, 1] and use a fixed conversion threshold. However,
this fixed feature encoding interval and conversion threshold donot adequately incorporate the
correlation information between features and categories. To tackle this problem, we propose
a feature encoding interval setting strategy based on feature-label correlation.

Different feature coding intervals are set according to the magnitude of the correlation
value. This paper divides the encoding interval of features into two categories: one sets the
lower bound of the feature encoding interval (Xlb), and the other sets the upper bound of the
feature encoding interval (Xub). The rules for setting the interval bounds are as follows.

Xlb is set when the correlation value between features and categories exceeds the average
correlation value across all features and labels. Conversely, Xub is set when the correlation
value is below the average. The calculation formulas are shown in Eq.(8) and Eq.(9).

Xlb = α ∗ I ( f j ,C)

max(I ( f ,C))
, j = 1, 2, ..., D, α = 0.2 (8)
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Xub = T + β ∗ I ( f j ,C)

max(I ( f ,C))
, j = 1, 2, . . . D, β = 0.4 (9)

where I ( f j ,C) represents the value of the MI between the feature and the category C . T
represents for selection threshold. α,β are two different moderators, the exact values of which
are discussed in Sect. 4.6.

The encoding process of the features is as follows. Taking a data set with D-dimensional
features as an example, then the position information of the i th particle can be represented by
a string ofD-dimensional real-valued data, denoted as vector Fi = (xi,1, xi,2, xi,3, . . . , xi,D).
The range of values of each component in Fi is divided into two cases, as shown in Eq.(10)

xi, j ∈
{

[Xlb, 1], I ( f j ,C) > MeanMl

[0, Xub], I ( f j ,C) ≤ MeanMl
, i = 1, 2, 3, . . . , N , j = 1, 2, 3, . . . , D

(10)

where MeanMl represents the mean of all feature-label relevance values.
Based on the equation mentioned above, it can be inferred that, given a fixed selection

threshold, a higher mutual information value leads to a wider interval of selected features.
This ensures that features with a stronger relevance have a higher likelihood of being chosen
for selection.

The random initialization of particle position information is shown in Eq.(11).

xi, j ∈ [0, 1], i = 1, 2, 3, . . . , N , j = 1, 2, 3, . . . , D (11)

Similar to the approach used in HMPSOFS [27], this paper utilizes a consistent binary
threshold. Consequently, the particle’s position is converted into a binary value for each
dimension, relying on this threshold. The conversion process is shown in Eq. (12), xi, j is set
to 1 when xi, j is greater than T, otherwise it is set to 0.

Fi, j =
{
1, xi, j > T
0, xi, j ≤ T

(12)

where Fi, j denotes the j th feature belonging to the feature subset Fi . When Fi, j = 1
represents that the feature is selected and Fi, j = 0 means that the feature is not selected.
Referring to previous studies [13, 22, 23], the threshold T is set to 0.6 in this paper.

3.2 The Adaptive Hybrid Mutation Strategy

To leverage the correlation information between features and labels more effectively and
prevent the particle swarm from converging to local optima, an adaptive hybrid mutation
strategy is introduced. The age threshold in dMOPSO [28] is introduced to determinewhether
the particles fall into a local optimum. In the early stage of the algorithmoperation, the particle
swarmexhibits powerful search ability and the individual optimal positions of the particles are
updated continuously during the search process. However, with the progression of population
updates, the search ability of the particles gradually declines, resulting in the particles easily
entering a stagnant state. When the age of the particle is below the predetermined, it indicates
that the particle still possesses good search ability, so the particle is slightly perturbed by
using non-uniformmutation [29]. On the other hand,When the particle’s age goes beyond the
preset age limit, it implies that the particle is likely to trapped in a local optimum and requires
a larger perturbation, so adaptive variation approach is implemented to support the particle in
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breaking free from the local optimum and exploring different domains of the solution space.
The detailed process is outlined in Algorithm 2.

Algorithm 2 The adaptive hybrid mutation strategy
Input: Pop(swarm), Pbest, N(Number of particles), Ta(threshold of age)
Output: NewPopulation
1: Calculate the probability of mutation using Eq.(17) and Eq.(18)
2: for i=1 to N do
3: if age(Pi) <= Ta then
4: Pi ← Nonuniform Mutation(Pi );//According to section 3.2.1
5: age(Pi) = age(Pi) + 1;
6: else
7: Pi ← Adapative Mutation(Pi );//According to section 3.2.2
8: age(Pi) = 0;
9: end if
10: end for
11: return NewPopulation

3.2.1 Non-uniformMutation

The non-uniform mutation operator ϕ incorporates a dynamic decrease in mutation proba-
bility as the number of iterations increases. During the iteration process, the PSO algorithm
has been pursuing the balance between exploration and exploitation. In the early stage of
the iteration, by increasing the exploration intensity, the algorithm is more likely to find the
global optimal solution or a solution close to the optimal solution. Therefore, using a higher
mutation probability can improve the global search ability of particles. In the later stages of
the iteration, when the search space is reduced and the global optimal solution is closer, local
search becomes more important. At this time, the mutation probability is reduced and the
exploitation of existing excellent solutions is increased.

xi, j =
{
xi, j + Pbesti, j ∗ (1 − r (ϕ)λ ), r ≤ 0.5

xi, j − Pbesti, j ∗ (1 − r (ϕ)λ ), r > 0.5
(13)

ϕ = 1 − t

maxlt
(14)

where r is a random number in the range of 0 to 1, t is the current number of iterations of the
population, and max I t is the maximum number of iterations. λ is a system parameter that
determines the dependence of the random number perturbation on the number of iterations,
and based on related research [30, 31], the algorithm proposed in this chapter λ will be set
to 3.

3.2.2 Adpative Mutation

The adaptive mutation strategy further utilizes the prior information contained in the feature
data, and calculates the feature mutation probability according to the performance of the
particle itself, combined with the selection probability of the feature and whether the feature
is selected.

Firstly, the performance of the particle is defined. Without considering any preferences,
the Euclidean distance between the particle’s position in the target space and the origin of
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Fig. 1 An example of a specific perturbation

the target space is employed as a metric to evaluate the particle’s performance. A smaller
distance indicates better performance for the particle. It is calculated as follows:

per f ormancei =
∥∥∥ f (x)

∥∥∥
2

(15)

where per f ormancei denotes the performance of the i th particle, denotes the target vector
of particle i .

Next, the probability of a feature being selected is calculated based on the feature encoding
interval set during initialization. The feature coding interval length is 1 − Xlb or Xub and a
fixed selection threshold T is used. The selection probability of a feature (Ps) is defined as
follows:

Ps =

⎧
⎪⎪⎨

⎪⎪⎩

1 − T

1 − Xlb
, xi, jε[Xlb, 1]

Xub − T

Xub
, xi, jε[0, Xub]

(16)

For a feature f j , as shown in Eq.(16), different feature encoding intervals correspond to
different mutation probabilities.

Finally, the probability of variation is calculated based on the selection of features, which
is divided into the following two cases.

Case 1: If the feature is selected, its mutation probability will be calculated as follows:

MP = exp(−PS) ∗ (1 − per f ormancei ) (17)

Case 2: If the feature is not selected, the probability of its mutation will be calculated as
follows:

MP = (1 − exp(−PS)) ∗ (1 − per f ormancei ) (18)

An example of a specific perturbation is shown in the Fig. 1.When theMP of feature exceeds
the generated random number, the mutation operation is executed, and vice versa.

3.3 The Framework of the ProposedMethod

Algorithm 3 outlines the general framework of fMOPSO-FS. The fMOPSO-FS framework
primarily comprises two phases. The first stage is the initialization stage. Firstly, the mixed
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initialization method is used to initialize the population. As outlined in Algorithm 1, certain
particles are initialized based on prior information derived from the feature data, while the
remaining particles are initialized randomly. Additionally, the external archive and particle
ages are also initialized. The main loop stage constitutes the second phase of the framework,
which mainly involves the evaluation of particles and the update of adaptive hybrid mutation
and external archives. As depicted in Algorithm 2, when the age of the particle exceeds the
predefined age threshold, adaptive mutation is performed; otherwise, non-uniform mutation
is utilized. Adaptive mixed perturbation strategies can help them break through local optima
and increase population diversity. As the external archive is continuously updated, the final
set of leader archive serves as the final outcome. In this paper, minimizing the feature subset
size andminimizing the classification error rate are chosen as the evaluation functions, which
are conflicting objectives. Minimizing the feature subset size is denoted as f1, minimizing
the classification error rate is denoted as f2. These two evaluation functions are calculated
according to the Eq.(19) and Eq.(20) respectively.

f1 = si
D

, Si =
D∑

j=1

Fi, j (19)

where Si represents the number of features in the feature subset Fi and D represents the total
count of features in the dataset.

f2 = (FP + FN )

(FP + FN + T P + T N )
(20)

where FP , FN , T P and T N represent false positive, false negative, true positive and true
negative respectively.

Algorithm 3 Framework of fMOPSO-FS
Input: Dataset, population size(N), maximal generation number ( maxgen )
Output: Archive(A)
1: /*Initialization*/
2: Pop ← Initialize particles(N); //Initialize Particles according to the Algorithm 1
3: Age ← Initialize Age(N);
4: A ← Update Archive(Pop);
5: /*Main loop*/
6: while the termination criterion is not fulfilled do
7: Pop, Age ← Adaptive hybrid mutation(Pop,age); //According to the Algorithm 2
8: A ← Update Archive(A ∪ Pop);
9: end while
10: return NewPopulation

3.4 Computational Complexity Analysis

The proposed algorithm mainly includes two stages: initialization and main loop. The ini-
tialization phase mainly includes initializing the velocity and position of particles, as well as
external archiving, etc. The main loop phase includes the search process of particles and the
selection of global optimal particles, etc. The main time cost in the initialization stage is to
calculate the correlation between features and labels, with a time complexity of O(D + N ),
where D represents the dimension of features, N denote the number of particles. The time
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complexity in the main loop stage is mainly affected by the search and update process of
particles, and the main time consumption in the particle search process is to calculate the
mutation probability of features, with a time complexity of O(N 2 + D), In the process of
particle update, the time complexity mainly depends on the selection of leading particles.
The selected time complexity is O(N ). If the selection and update of particles are carried out
serially, the time complexity of the main loop stage is O(N 2 + D + N ). Due to N 2 being
much larger than N and D, the time complexity of the proposed algorithm is O(N 2). Com-
pared with other similar feature selection algorithms based on particle swarm optimization,
although the proposed algorithm increases the calculation of the correlation between features
and labels and the probability of feature mutation, the increased time complexity is constant
level, so the overall time complexity did not increase.

4 Experiments and Discussion

4.1 Methods of Comparison and Corresponding Parameter Configurations

In this section, we have selected a series of multi-objective FS algorithms for compari-
son with fMOPSO-FS, which contains several classical and state-of-the-art multi-objective
optimization algorithms. The classical multi-objective optimization algorithms consist of
MOPSO [32], NSGAIII [33], MOEA/D [34], and the advanced multi-objective optimiza-
tion algorithms encompass HMPSOFS [27], RFPSOFS [35], MOEA/D-COPSO [36], and
AGMOPSO [15]. All four of these advanced algorithms employ the PSO to discover optimal
solutions.

To guarantee the impartiality of the comparative experiment, regarding the dataset pro-
cessing, to begin the experiment, the dataset undergoes a random partitioning process, where
it is divided into two subsets. The training set comprises 70% of the data, while the remain-
ing 30% is designated as the test set. Additionally, a 10-fold cross validation technique is
employed to evaluate themodel. This approach helpsmitigate the risk of overfitting themodel
on the training set and enhances the reliability of the training process. The classification error
rate of each particle is computed using the K Nearest Neighbor (KNN) classifier, with k
set to 5. The settings of parameters for different algorithms are presented in Table 1. These
algorithms are implemented onMATLAB R2020b, Intel(R) Core(TM) i5-8265U, 1.80 GHz,
8GB RAM.

4.2 PerformanceMetrics

To gauge the effectiveness of the comparison algorithm and the fMOPSO-FS algorithm,
two commonly used metrics, namely hypervolume (HV) and inverted generational distance
(IGD), are employed. These metrics, HV and IGD, are considered as the most representative
measures for evaluating the performance of optimization algorithms.

The evaluation method for the HV metric was initially introduced by Zitzler et al. [37].
The diversity and convergence of an algorithm are assessed by measuring the volume of the
hypercube formed by the individuals in the Pareto solution set and the reference points in
the target space. The larger the HV value is, the better the Pareto front set is. This evaluation
method quantifies the spread and performance of the algorithm’s solutions. In the specific
research paper mentioned, the reference point is defined as (1.0, 1.0) based on the objective
function’s design. The formula to calculate the HV is as follows:
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Table 1 Parameter configurations for seven algorithms

Algorithm Private parameters Common parameters

MOPSO The number of grids is fixed at 30 and β is set to 10 Population size N = 30

Crossover probability proC = 1 The number of iterations
max I t = 100

NSGAIII Crossover distribution disC = 20; Acceleration rate
c1 = c2 = 1.46

Mutation probability proM = 1 Inertia weight ω = 0.729

Mutation distribution disM = 20 Maximum velocity
vmax = 0.6

MOEA/D T = N/10

HMPSOFS Jumping probability J P = 0.01

RFPSOFS The number of grids is set to 10 and β is set to 2

MOEA/D-COPSO The strict particles identified through the Relief-F
algorithm

make up 35% of the entire particle set and T = 0.52.

AGMOPSO The reduction factor α is set to 0.7

HV = δ(∪|S|
i=1vi ) (21)

where δ is theLebesguemeasure; |S|denotes the number of non-dominated solutions obtained
by the algorithm, and vi denotes the HV comprising of the reference point and the i th solution
in the solution collection.

The IGD is a comprehensive metric for evaluating algorithm performance, and is mainly
used to evaluate the convergence performance and distribution performance of the algorithm
[38]. A lower IGD value indicates better overall performance of the algorithm in terms of
convergence and distribution. However, in multi-objective feature selection problems, there
is no true PF available. Therefore, in this paper, the set of non-dominated solutions generated
by all compared algorithms and the proposed algorithm in 30 independent runs is considered
as the surrogate Pareto front. The calculation of the IGD is performed as follows:

IGD(Ps, P
∗) = 	x∈P∗miny∈Ps Dis(x, y)

|P∗| (22)

where Ps represents the set of Pareto optimal solutions obtained from the algorithm and P∗
denotes a collection of uniformly distributed reference points that are sampled from the true
PF. Dis(x, y) is the Euclidean distance between point x in Ps and point y in the optimal
solution collection obtained by the method.

4.3 Experimental Analysis on UCI Datasets

To evaluate the performance of the fMOPSO-FS, seven UCI datasets are selected as exper-
imental datasets in this subsection. The details of the datasets utilized are outlined and
presented in the following Table 2 [39].

Tables 3, 4, 5, 6 show the average and standard deviation of the HV and IGD values
obtained by the fMOPSO-FS algorithm and the comparison algorithms on the seven UCI
datasets.The values ’↑’,’↓’ and ’◦’ indicate that the comparison algorithm outperforms,
underperforms and approximates fMOPSO-FS, respectively, while the values preceding and
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Table 2 Details of relevant UCI datasets

Dataset Number of features Number of records Number of classes

German 24 1000 2

Sonar 60 208 2

Hill valley 100 606 2

Musk1 166 476 2

LSVT 310 126 2

Madelon 500 2000 2

Isolet5 617 1559 26

Multiple features 649 2000 15

CNAE 856 1080 9

following the symbol ’±’ indicates the mean and standard deviation of the relevant algorithm
on the dataset, respectively. Since the sample data do not have normality, non-parametric tests
are used to compare the differences in the data. Judgment based on the P value obtained by
non-parametric test. If the difference in the judgment results is not significant, it means that
the performance of the two algorithms is close, represented by ’◦’. If there are significant
differences, the evaluationwill be carried out according to the evaluationmethods of different
indicators. The larger the HV value, the better the algorithm performance. The smaller the
IGD value, the better the algorithm performance. Choose ’↑’ or ’↓’ to represent it according
to the corresponding situation. The bold font represents the best performing among these
algorithms.

When analyzing the results from the training set perspective, as presented in Tables 3
and 4, it is evident that fMOPSO-FS outperformsMOPSO, MOEA/D and NSGAIII, and the
obtainedHVvalue and IGDvalue are close to those ofMOEA/D-COPSO andAGMOPSOon
the German dataset.The HV value obtained by theMOEA/D-COPSO algorithm is better than
that of the fMOPSO-FS algorithm, but its IGD value is worse than that of the fMOPSO-FS
algorithm. The stability of fMOPSO-FS shows a slight decrease compared to MOEA/D-
COPSO. However, in contrast to other comparison algorithms, fMOPSO-FS consistently
outperforms them in terms of HV and IGD values across various datasets.

In accordancewith the test set results shown in Tables 5 and 6, it can be seen that fMOPSO-
FS achieves HV and IGD values comparable to HMPSOFS, RFPSOFS,MOEA/D-COPSOS,
and AGMOPSO on the German dataset. On the Sonar dataset, fMOPSO-FS demon-
strates similar performance to HMPSOFS and MOEA/D-COPSOFS. On the Musk1 dataset,
fMOPSO-FS exhibits HV and IGD values similar to RFPSOFS and MOEA/D-COPSO,
but it outperforms them to emerge as the top-performing algorithm overall. Meanwhile,
AGMOPSO obtained better IGD values on the CNAE, but fMOPSO-FS obtained better HV
values. MOEA/D-COPSO algorithm has shown good performance in LSVT, with better HV
and IGD values than the fMOPSO-FS algorithm and showcases strong stability across the
Sonar, Hillvalley, Musk1, and CNAE datasets. In contrast, fMOPSO-FS demonstrates excel-
lent stability specifically on the Sonar and Hillvalley datasets. Nevertheless, fMOPSO-FS
does not yield significantly improved results on the German dataset. This could be attributed
to the dataset’s weak correlation with categories or disregard for potential redundancies
among features. Overall, when compared to other comparative algorithms, the fMOPSO-FS
algorithm consistently achieves better performance.
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Fig. 2 Pareto fronts of the maximum HV value in the training set for each algorithm for each dataset

To visually verify the aforementioned conclusions, Figs. 2, and 3 show the PF with the
maximum HV values obtained by each algorithm for 30 experiments on the training and test
sets of each dataset, respectively. In Fig. 2, it is evident that fMOPSO-FS is able to obtain a
set of Pareto solution sets with low classification error rates and compact feature subset sizes
across the majority of the datasets. For theMultipleFeatures dataset, although the diversity of
solutions obtained by the fMOPSO-FS algorithm is not as extensive as the other comparative
algorithms, the fMOPSO-FS algorithm obtains candidate solutions of better quality than
the other comparison algorithms. Moving to Fig. 3, compared to other algorithms on the
test set, fMOPSO-FS continues to show its unique advantages. When the same number of
features are selected, the fMOPSO-FSalgorithmoutperformsbothHMPSOFSandMOEA/D-
COPSO on the Isolet5 dataset. While HMPSOFS and MOEA/D-COPSO exhibit a broader
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Fig. 3 Pareto fronts of the maximum HV value in the test set for each algorithm for each dataset

distribution of solution sets, their classification error rates are considerably higher compared
to the fMOPSO-FS algorithm.

4.4 Comparison of Seven Feature SelectionMethods using Different Classifiers

To verify the effectiveness of the proposed FS approach in this paper, this section classifies
a subset of the features obtained by all the algorithms using the classical classifiers SVM,
Naive Bayes and KNN, and the classification results are given in the Tables 7, 8, 9. In these
tables, the mean classification precision on the training set is denoted by TrAcc, while T eAcc
represents the mean classification precision on the test set.
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An observation from Tables 7 and 8 reveals that for the datasets German, Ioslet5 and
MultipleFeatures, the feature subset selected by fMOPSO-FS shows better classification per-
formance on SVM and Naive Bayes classifiers than other comparison algorithms. Although
MOEA/D and NSGAIII can demonstrate superior classification accuracy in most datasets,
it becomes apparent from Figs. 2 and 3 that it is difficult to find a set of solutions with good
diversity using these two algorithms, and the feature subset selected by these algorithm are
significantly larger in size compared to the feature subset chosen by fMOPSO-FS. In Table
7, the classification accuracy of the fMOPSO-FS algorithm on the LSVT dataset differs sig-
nificantly from other comparison algorithms. This may be due to the low correlation between
features and categories in the LSVT dataset, resulting in the selection of representative fea-
tures and poor classification performance of the algorithm. According to Table 9, the feature
subset obtained by MOEA/D demonstrates superior classification performance on most of
the datasets. However, for the Hillvalley dataset, the feature subset chosen by RFPSOFS
performs better than other comparison algorithms, while for the Musk1 and Isolet5 datasets,
fMOPSO-FS exhibits better classification performance. Table 10 shows the average number
of features selected in the subset of features selected by each algorithm. From Table 10, it can
be seen that on most datasets, the fMOPSO algorithm selects fewer features than other com-
parison algorithms, except on the German dataset. Although some comparison algorithms
have achieved better classification accuracy on some datasets, taking into account the number
of selected features, diversity of candidate solutions and the evaluation results of HV and
IGD indicators, the fMOPSO-FS algorithm still has better performance compared with other
algorithms.

4.5 Experimental Analysis on Gene Expression Datasets

The preceding subsection showcases the satisfactory performance of the proposed algorithm
on conventional datasets, which are typically characterized by low feature dimensionality and
a large number of samples. To verify that the fMOPSO-FS algorithm can also demonstrate its
advantages on high-dimensional datasets, therefore, we selected six gene expression profile
datasets, Colon, SRBCT, Lymphoma, Leukemia3, Lung and Kolod, which have high latitude
and a small number of instances. Table 11 [40, 41] presents the specifications and details of
the datasets used in the paper. For testing, Tables 12 and 13 show the HV values obtained by
the fMOPSO-FS algorithm and other comparison algorithms on the training and test sets of
the above six datasets. From the perspective of the training set, in Table 12, the fMOPSO-FS
algorithm obtained HV values on the Colon and Lung datasets that were close to those of
the AGMOPSO algorithm, and achieved better HV values compared to other comparative
algorithms. On the SRCBT and Leukemia3 datasets, the HV values obtained by fMOPSO-FS
were only slightly lower than those obtained by the AGMOPSO algorithm. The HV value
obtained by fMOPSO-FS on the Lung dataset is only slightly lower than that obtained by the
MOEA/D-COPSO algorithm. On the Kolod dataset, fMOPSO-FS achieved better HV values
than other comparison algorithms. From the perspective of the test set, in Table 13, the HV
values obtained by fMOPSO-FS and AGMOPSO algorithm are similar on most datasets,
but lower than those obtained by MOEA/D-COPSO algorithm on the lung dataset. The HV
values obtained from the Leukemia3 dataset are close to those obtained fromHMPSOFS and
RFPSOFS algorithms. In summary, it can be inferred that the fMOPSO-FS algorithm can
also perform well on high-dimensional datasets.
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Table 11 Details of relevant gene expression profile datasets

Dataset Number of features Number of records Number of classes

Colon 2000 62 2

SRBCT 2308 83 4

Lymphoma 4026 66 2

Leukemia3 7129 72 2

Lung 7129 96 2

Kolod 10686 704 3

4.6 Parameter Analysis

The proposed initialization strategy contains two adjustment factors α and β. As the selection
threshold is fixed at 0.6 and β affects the upper bound of the coding interval for less relevant
features, β taken at 0.4 enables the feature coding interval to range from [0, 1] in line with
the random initialization interval, while also ensuring that features with higher relevance
have a higher selection probability. Thus, this section focuses on the effect of α on particle
mass and particle distribution. The Fig. 4 depicts the initialization process of the fMOPSO-FS
algorithm on various datasets with different values of α. The graph reveals a gradual decline
in the quality of the generated initial solutions as α increases. Hence, it is unnecessary to set a
large α value, while a small α value has a negligible impact on the population. Consequently,
we define the range of α selection as 0.1, 0.2, 0.3, 0.4, 0.5. Notably, when α is set to 0.1, the
particles in the target space are positioned closer to the origin, which means that the obtained
initial solutions have higher quality. Therefore, the value of α is set to 0.1.

4.7 Analysis of the Proposed Strategies

To further analyze the effectiveness of the algorithm, the proposed feature-label correlation-
guided initialization strategy and adaptive perturbation strategy as well as the introduced
mutual information theory are validated separately.

4.7.1 Initialization Strategy Analysis

In order to assess the effectiveness of the initialization strategy, we compared it with the
random initialization strategy. In Fig. 5, PF represents the Pareto front simulated by the non-
dominated solutions produced by fMOPSO-FS and all the comparison algorithms after 30
times independent runs. It can be clearly seen from Fig. 5 that the initial solution generated
by the proposed initialization strategy on most data sets exhibits greater proximity to the
Pareto front. Although the impact on the Musk1 and SRBCT datasets is not significant, it is
likely due to the limited correlation between the feature data and class labels. However, it is
worth noting that this hybrid initialization method still effectively enhances the diversity of
initial solutions compared to a single initialization method. The initial solutions generated
by a single initialization method will be limited to a certain area in the target space, while
using a mixed initialization method will cover more areas and expand the search range of
particles.
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Fig. 4 Distribution of particle populations on different datasets with different α values

4.7.2 Analysis of Adaptive Hybrid Perturbation Strategies

To validate the efficacy of the adaptive hybrid perturbation strategy, the MOPSO-FL-FS
algorithm retained only the feature-label-guided initialization strategy, and the fMOPSO-FS-
F algorithm retained the feature-label-guided initialization strategywhile using a perturbation
strategy with a fixed probability of variation. Each algorithm is run independently for 30
times, and the Tables 14 and 15 show the HV values of the algorithms on the training and
test sets of each dataset, respectively. In the Tables 14 and 15, it can be seen that the HV
values obtained by the fMOPSO-FS algorithm are significantly better than those obtained
by the MOPSO-FL-FS algorithm on both the training and test sets, and compared with the
fMOPSO-FS-F algorithm, although the HV values obtained on most of the datasets are the
HV values obtained are similar, the advantage is also demonstrated on some of the datasets.
One possible reason for this is that the adaptive hybrid perturbation strategy can dynamically
adjust the variation probability based on the performance of the particles themselves, unlike
fixed variation probability. This adaptiveness allows the strategy to fine-tune and optimize
the exploration and exploitation trade-off, leading to improved results.

4.7.3 Validation of the Validity of the Mutual Information Theory

The validity of the MI theory is also validated for the different datasets. In this section, the
subset of features obtained by running the fMOPSO-FS algorithm 30 times independently
on each of these datasets are analysed, and the Fig. 6 shows how well the algorithm works
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Fig. 5 Distribution of particles with different initialization strategies on different datasets

Table 14 HV values obtained for each algorithm on the training sets of each dataset

MOPSO-FL-FS fMOPSO-FS-F fMOPSO-FS

German 0.7300±0.0107↓ 0.7416±0.0102↓ 0.7465±0.0075

Sonar 0.7965±0.0295↓ 0.8768±0.0133◦ 0.8729±0.0172

Hill valley 0.5531±0.0280↓ 0.6264±0.0195◦ 0.6239±0.0144

Musk1 0.7905±0.0196↓ 0.8571±0.0135↓ 0.8660±0.0186

LSVT 0.7677±0.0137↓ 0.8328±0.0142◦ 0.8339±0.0190

Madelon 0.7895±0.0167↓ 0.8024±0.0203↓ 0.8365±0.0141

Isolet5 0.7175±0.0228↓ 0.7771±0.0150↓ 0.7914±0.0138

MultipleFeatures 0.8504±0.0153↓ 0.9060±0.0088◦ 0.9021±0.0096

CNAE 0.7926±0.0155↓ 0.8602±0.0110◦ 0.8562±0.0081

↑,↓,◦ 0/9/0 0/4/5
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Table 15 HV values obtained for each algorithm on the test sets of each dataset

MOPSO-FL-FS fMOPSO-FS-F fMOPSO-FS

German 0.7099±0.0168◦ 0.7204±0.0152 ◦ 0.7143±0.0171

Sonar 0.7397±0.0444↓ 0.7936±0.0321◦ 0.8078±0.0296

Hill valley 0.5266±0.0274↓ 0.5698±0.0330↓ 0.5844±0.0207

Musk1 0.7564±0.0318↓ 0.8189±0.0202◦ 0.8252±0.0272

LSVT 0.7328±0.0189↓ 0.7536±0.0216◦ 0.7464±0.0349

Madelon 0.7573±0.0178↓ 0.7824±0.0184↓ 0.8277±0.0205

Isolet5 0.7018±0.0254↓ 0.7599±0.0139↓ 0.7745±0.0168

MultipleFeatures 0.8395±0.0209↓ 0.8872±0.0134◦ 0.8834±0.0168

CNAE 0.7824±0.0244↓ 0.8445±0.0173◦ 0.8387±0.0172

↑,↓,◦ 0/8/1 0/3/6

Fig. 6 Statistics on the frequency of feature selection

on these datasets in terms of the number of times each feature was selected and the statistics
of how often they correlate with the categories.

In Fig. 6 the X-axis denotes the feature ordinal number, determined by ranking their
relevance to class labels from highest to lowest. The left and right Y-axis represent the
frequency of FS and the correlation between features and categories, respectively. FromFig.6,
it is evident that on the MultipleFeature and CNAE datasets, as the correlation between a
feature and the label increases, the frequency of selecting that particular feature also increases.
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Conversely, as the correlation decreases, the corresponding features are less selected. On
the gene expression profile datasets Colon, SRBCT and Lung, the correlation and feature
frequency trends of the selected features are roughly the same. For other datasets, since the
correlation of features and labels is not so obvious, there is no obvious regularity in the
presented images. It can be concluded that the incorporation of prior information can guide
the algorithm to select features with higher relevance to the class labels, thus obtaining a
higher quality subset of features, and can enhance the explainability of the selected features.

5 Conclusions

The randomness and lack of knowledge guiding the initialization process of most existing
MOPSO-based feature selection methods may lead to the initialized solutions searching or
even repeating meaningless regions of the search space during the evolution process, and the
generated initial population may be far from the true Pareto front. Furthermore, the absence
of sufficient selection pressure on the particle population during the later stages of iterative
evolution results in a predisposition for the population to converge towards local optima.
In order to enhance the distribution of the initial population and the quality of the initial
solutions, while avoiding the particle swarm from being stuck in local optima, an adaptive
MOPSOFSmethod based on feature-label correlation guidance is proposed in this paper. The
method adopts a novel initialization strategy that makes full use of the prior knowledge in
the feature data to obtain higher quality initial solutions. Simultaneously, an adaptive hybrid
mutation strategy is proposed to enable the particle swarm to escape local optima. This
mutation strategy dynamically adjusts the mutation rate based on the convergence status of
the swarm, facilitating exploration of the search space and reducing the likelihood of getting
trapped in suboptimal solutions.

The experimental findings validate that the method has greater advantages in solving the
multi-objective FS problem, but there are still some problems to be tackled. Firstly, it can be
time-consuming in obtaining prior information on feature data, especially for datasets with
large feature dimensions. Secondly, the method mainly considers the correlation between
features and categories, so there may still be a small number of redundant features in the
obtained feature subset. Hence, improving the efficiency of obtaining certain prior informa-
tion, combining the correlation between features and further eliminating redundant features
should be the primary areas of focus for future research.
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