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Abstract
The Siamese network-based tracker calculates object templates and search images indepen-
dently, and the template features are not updated online when performing object tracking.
Adapting to interference scenarios with performance-guaranteed tracking accuracy when
background clutter, illumination variation or partial occlusion occurs in the search area is a
challenging task. To effectively address the issue with the abovementioned interference and
to improve location accuracy, this paper devises a Siamese residual attentional aggregation
network framework for self-adaptive feature implicit updating. First, SiamRAAN introduces
Self-RAAN into the backbone network by applying residual self-attention to extract effec-
tive objective features. Then, we introduce Cross-RAAN to update the template features
online by focusing on the high-relevance parts in the feature extraction process of both the
object template and search image. Finally, a multilevel feature fusion module is introduced to
fuse the RAAN-enhanced feature information and improve the network’s ability to perceive
key features. Extensive experiments conducted on benchmark datasets (GOT-10K, LaSOT,
OTB-50, OTB-100 and UAV123) demonstrated that our SiamRAAN delivers excellent per-
formance and runs at 51 FPS in various challenging object tracking tasks. Code is available
at https://github.com/MallowYi/SiamRAAN.
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1 Introduction

Visual object tracking is one of the critical research topics in the field of computer vision [1,
2]. It serves as a fundamental task in computer vision and is extensively applied in the fields of
public security, human-computer interaction and autonomous driving. Visual object tracking
algorithms are required to give an object’s initial position and size in a video sequence and
to achieve a continuous and stable tracking of the object in subsequent frames. Despite many
advances in the field recently [3–5], it remains a challenging task to achieve long-term stable
object tracking.

Recently, deep learning has evolved rapidly andmany advances have beenmade in feature
learning [6–9], and it has demonstrated impressive performance in the field of computer vision
[10, 11]. Consequently, deep learning-based object-tracking algorithms have been introduced
successively. Among them, Siamese networks have attracted more attention and research due
to their higher computational speed compared to other deep learning algorithmic frameworks.
For example, Bertinetto et al [12] introduced the Siamese network for visual object tracking,
which first transformed the visual object tracking task into an object matching problem by
learning a generic similarity mapping through the inter-correlation operation between the
object template and the search region. Liu et al [13] proposed a multi-level similarity model
to improve the tracker’s recognition of semantic interference. SiamRPN [14] introduced a
region proposal network that leverages classification and regression branching to distinguish
object-background regions andfine-tune candidate regions.Recentwork such asDaSiamRPN
[15], SiamRPN++ [16], and C-RPN [17] have enhanced SiamRPN. SiamCAR [3] devised
an anchor-free and proposal-free framework and decomposed the tracking problem into two
sub-problems, pixel classification and regression at that pixel, to solve the object tracking
problem in a pixel-by-pixel manner.

Siamese-based trackers are trained completely offline using a large number of frame pairs
collected from video, so there exists the problem that object templates can not be updated
online, it exposed inevitably potential risk for tracking drift, especially for these accurate
tracking objects with highly variable appearance, similarities or occlusion. Furthermore, in
the Siamese architecture, the characteristics of the target object and the search image are
calculated independently, where background context information is completely discarded in
the target feature, but background information is important for distinguishing between targets
and interferers. Recent work [18, 19] attempted to enhance the object representation by inte-
grating features of the preorder object with neglect of the distinguished context information
in the background. In [20, 21], the attention and depth characteristics of the target template
and the search image are calculated separately, while the template features remain unchanged
during tracking, which limits the potential performance of the Siamese architecture.

In this paper, we introduce a novel Siamese attention mechanism by introducing self-
attention and cross-attention in Siamese network to encode the rich background contextual
information into object representation, the attention mechanism enables to enhance object
representation ability with strong properties against changes in appearance and to strengthen
the distinguished ability for object against disruptors and complicated background infor-
mation with promising outcomes of more stable and accurate tracking. We leverage the
SiamCAR [3] as the benchmarks tracker and introduce Siamese Residual Attentional Aggre-
gation Network to enhance the features learning ability of Siamese-based tracker called
SiamRAAN. Meanwhile, SiamCAR utilizes compressed different depth features for corre-
lation operations to obtain response maps, and compression causes loss of accuracy. This
paper proposes MFF module to alleviate the issue, which uses completely different depth

123



SiamRAAN: Siamese Residual Attentional Aggregation Network ... Page 3 of 22    98 

features for the correlation operation and then fuses the different response maps to boost the
accuracy of the response maps.

The main contributions of this work are as follows:

• We design a novel Siamese attention mechanism, which embeds Self-RAAN and Cross-
RAAN in backbone, aiming to achieve effective mining of object features and empower
the feature representation.

• We devise a multi-level feature fusion module to achieve more accurate tracking by
calculating the depth cross-correlation between different feature layers and then fusing
and compressing multiple response maps, effectively enhancing the inter-correlation
response maps of shallow features.

• Extensive evaluations on theGOT-10K, LaSOT,OTB-50,OTB-100 andUAV123 datasets
have demonstrated the effectiveness of proposed SiamRAAN network, particularly in
successfully tracking objects in the presence of interference such as background clutter,
illumination variation and partial occlusion, while tracking at a speed of 51 FPS.

This paper is organized as follows. Section2 provides a review of the related work for the
proposed method. Section3 introduces the proposed SiamRAAN tracker. Section4 presents
the experimental results of the proposed method. Section5 offers the conclusions.

2 RelatedWork

This section presents related work in two ways. Section2.1 describes recent trackers based
on Siamese networks. Section2.2 illustrates the attention-based mechanism tracker.

2.1 Siamese-Based Tracker

Twin networks were originally applied to video object tracking tasks in SINT [22] and
SiameseFC [12] published in 2016, where the algorithms first transformed the visual object
tracking task into a object matching problem, learning generic similarity mappings through
mutual correlation operations between object templates and search regions. The SiamRPN
[14] algorithm built on SiameseFC, incorporated the idea of a region candidate network to
extract target candidate boxes, and improved the accuracy of the algorithm by introducing
RPN [23] to fine-tune the prediction edges of the targets. DaSiamRPN [15] improves the
generalization ability of the model by training set data augmentation and also improves the
discriminative ability of the model by introducing negative samples with different degrees
of difficulty for training. c-RPN [17] solves the problem of data imbalance by adding cas-
caded rpn between different layers in the Siamese network. SiamRPN++ [16] enhances the
SiamRPN in the sample sampling strategy to prevent the problem that positive samples are
all located in the center of the image and affect the target localization. SiamDW [24] utilized
a deeper and wider convolutional god-general network in the Siamese tracking algorithm to
improve the robustness and accuracy of the algorithm. SiamCAR [3] performed classification
and regression on a pixel-by-pixel basis, greatly reducing the number of hyperparameters
through an anchor-free approach, allowing the tracker to be used without complex parameter
tuning. SiamGAT [25] established the correspondence between the target and the search area
through a graph-notice network, adapting to different object size and aspect ratio variations
and improving the tracking accuracy. SiamGLM [26] proposed a Siamese network object
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Fig. 1 The framework of the proposed Siamese Residual Attentional Aggregation Network (SiamRAAN). It
consists of a Siamese backbone with residual attentional aggregation network(RAAN), a multi-level feature
fusion(MFF) module and a classification and regression network

tracking algorithm based on global and local feature matching, which makes the network
more robust to deformed objects.

2.2 Attention-Based Tracker

RASNet [20] introduced the attention mechanism model into the Siamese network object
tracking problem and proposed three models, the generic attention mechanism, the residual
attention mechanism, and the channel attention mechanism. CGACD [27] proposed a pixel-
guided spatial attention module and a channel-guided channel attention module to highlight
corner areas for corner detection. SiameAttn [28] suggested Deformable Siamese Attention
Networks to improve the feature learning capability of the Siamese network tracker. The
literature [29] provided a convolutional attentionmodule to enhance the feature space location
and the weight of the feature channels. DSN [30] designed a joint module of modal channel
attention to assignweights in the feature extraction stage and improve the accuracyof tracking.
In these works [21, 31], residual channel attention was introduced to determine the channel
weights of the object template features using the relationship between feature channels, so
that the attention of template feature extraction is focused on the channel features of the target
foreground and more effective features are selected.

3 Methodology

This section elaborates the proposed SiamRAAN framework. As presented in Fig. 1,
SiamRAAN includes three components: Siamese backbone with residual attentional aggre-
gation network (RAAN) is responsible for features extraction, Self-RAAN improves the
feature representation and Cross-RAAN enhances the recognition of tracked target features
through information interactions, multi-level feature fusion (MFF) module coordinates to
compute and fuse the inter-correlation response maps of the template with the features of
the search image at different depths, and classification and regression network is designed to
bounding box prediction.
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3.1 Overview of SiamRAAN Framework

The proposed tracker’s Siamese backbone network was constructed using the same modified
five-stage ResNet-50 as SiamRPN++ [16], with a progressively larger chunk of features
computed as the number of layers deepened. The network consists of twobranches of template
and search, the former regards the template patch Z as the input and the latter leverages
search zone X as the input with the application of backbone network to effectively extract
corresponding image features, meanwhile, two branches and their backbone network share
the same unfilled convolutional architecture. We introduce residual attentional aggregation
network (RAAN) in Siamese backbone (see in 3.2) in order to efficiently mine the relevance
features between template patch and search image to improve location accuracy. Each stage
of output feature stems from the template and search branch ofmodified five-stage ResNet-50
is defined as ϕi (Z) and ϕi (X), i = {1, 2, 3, 4, 5}, where the output of the second stage is fed
into the subsequent stages by Self-RAAN self-enhancement, and the features of the third,
fourth and fifth stages are cross-enhanced by the corresponding Cross-RAAN to generate the
final attention features. The output features of template branch and search branch with the
Cross-RAANare denoted byψ3(Z), ψ4(Z), ψ5(Z) andψ3(X), ψ4(X), ψ5(X), respectively.

ϕ3(Z) = FSel f −RAAN (ϕ2(Z))

ϕ3(X) = FSel f −RAAN (ϕ2(X))
(1)

ψi (Z), ψi (X) = Fi
Cross−RAAN (ϕi (Z), ϕi (X)), i = {3, 4, 5} (2)

FSel f −RAAN (·) and FCross−RAAN (·) are applied to residual attention aggregation network
for feature enhancement.

With the intention of improving the accuracy of identifying object’s locations and their
bounding boxes based on using two branches to produce comprehensive information, our
model generated multiple cross-correlation response maps of different depths of the relevant
layers with features extracted from the last three convolution blocks in the Siamese backbone.
Specifically, the model performs the following operations:

R = FMFF (ψi (Z), ψi (X)), i = {3, 4, 5} (3)

FMFF (·) is adopted to a multi-layer feature fusion module for fusing features of different
depth-related layers.

The MFF module performs a deep correlation operation on features of different depths
in two branches (Conv3, Conv4 and Conv5) to obtain response maps containing 512, 1024
and 2048 channels respectively, and then fuses these three response maps to obtain the
comprehensive responsemap.To reduce the number of features and speedup the computation,
our model leverages a 1×1 convolution kernel to dimensionality reduction calculation for
the comprehensive response map, then reduce the channel dimensionality to 256, which is
regarded as the input to the regression classification network.

Our module will obtain a six-dimensions vector T(i, j) = (cls, cen, l, t, r , b) by perform-
ing classification and regression to comprehensive response map R, where cls, cen, l + r
and t + b denotes the prospective probability of classification at the location, the centrality
score for this location, width and height in the current frame, respectively. Then the object’s
location and bounding box information of current frame is obtained with T(i, j).
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Fig. 2 The main architecture of Self-RAAN. The network contains two-order modules of channel and spatial.
Complement channel-level and spatial-level feature, where the base branch retains original features, channel
attention branch and spatial attention branch produces channel feature and spatial feature in response to
different channel weights and channel weights respectively

3.2 Self-Residual Attentional Aggregation Network

To improve the expression ability of feature maps and tracking performance, Self-RAAN
introduces attention mechanism in Siamese backbone, as shown in Fig. 1. Motivated by
CBAM [32], our Self-RAAN focus on both channels and special positions, using both
max-pooling and average-pooling to collect important information about object features.
In contrast to tasks such as classification or detection of predefined object classes, visual
object tracking is a task that is not tied to the object class and the class of the object is fixed
throughout the tracking process. Each channel of advanced convolutional features maps a
response that is typical to a specific object class, and handling features equally in all chan-
nels would hinder the representational power of the feature map. Also due to perceptual field
limitations, features at each spatial location can only represent local information about the
image. It is therefore extremely critical to learn global contextual information from the whole
image.

By combining the two aspects of channels and special positions, our Self-RAAN is able to
learn the category information of the tracked target, focusing on the feature representations of
specific channels, and at the same time learn the context information of the spatial position,
obtaining the global context information from the local features, which can better understand
and differentiate the differences between the target and the background, and improve the
performance and robustness of target tracking.

Specifically, the proposed Self-RAAN contains two modules channels attention and spa-
tial attention. It can be seen from Fig. 1, with the Siamese features extraction network,
template patch Z in the second stage of template branch input is transformed template fea-
ture with 31×31×n, search region X in search branch input is transformed search feature
with 63×63×n, then template feature and search feature in their each Siamese branch is
inputted into shared parameters of Self-RAAN. As presented in Fig. 2, input features of Self-
RAAN finish self-adaptive enhancement operation by channel attention model and spatial
attention model in order. Feature map dimensions is denoted by RH×W×C , where H ,W and
C presents the feature map of high, width and the number of channels, respectively.
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In channel attention model, the model firstly performs max-pooling and average-pooling
operations to preserve the channel information and compress the height and width of the
feature map to 1×1 to aggregate the spatial information of the features, generating two dif-
ferent spatial contexts of information. Be different from CBAM [32], two pooled features
were inputted into a one-dimension convolution of shared parameters rather than shared
multi-level perceptron (MLP) network. While high accuracy is achieved with the help of
MLP networks but without account of higher model complexity and significant compu-
tational overhead. Simultaneously, the methodology of applying dimensionality reduction
before computing attention using MLP networks brings side effects to channel attention pre-
diction, capturing the dependencies between all channels is inefficient and unnecessary. We
use a one-dimensional convolution operation to capture correlations between channels more
effectively with the objectives of reducing the number of model parameters and improving
computation efficiency while maintaining a certain level of model expressiveness. Behind the
shared Conv1D network, our network can obtain the channel attention map Ac ∈ R

1×1×C

by using elements to sum and sigmoid function in accordance to max-pooling feature map
Acm ∈ R

1×1×C and average-pooling feature map Aca ∈ R
1×1×C . Eventually, channel atten-

tional features can be obtained after multiplying the input features X ∈ R
H×W×C with the

channels corresponding to the channel attention weights Ac. The process of channel feature
enhancement is computed below:

Acm = f 5(Max Pool(X)) (4)

Aca = f 5(AvgPool(X)) (5)

Ac = σ {Acm + Aca} (6)

Mc = Ac × X + X (7)

σ presents sigmoid operation and f 5 expresses the one-dimensional convolution operation
with convolutional kernel size is equal to 5.

In spatial attention model, it adopts the same idea of channel attention model to aggregate
information with max-pooling and average-pooling operations. For the spatial level, we first
aggregate the channel information of the features by compressing the channel number C of
the featuremap to 1 in the same two poolingwayswith the channel attentionmodel, then stitch
them together along the channel direction and utilize a standard convolution layer to perform
convolution to complete the fusion of the two pooling information, and finally aid the sigmoid
function to complete the computation of the spatial attention map As ∈ R

H×W×1. Given the
input features as X ∈ R

H×W×C , the output of spatial attention features as Ms ∈ R
H×W×C ,

the process of spatial feature enhancement is computed as follows:

Xs = Cat(Max Pool(X), AvgPool(X)) (8)

As = σ { f 3×3(Xs)} (9)

Ms = As × X + X (10)

σ presents sigmoid operation and f 3×3 exhibits the two-dimensional convolution operation
with convolutional kernel size is equal to 3×3, Cat shows the splicing operation along the
channel dimension.

We adopt residual architecture in channel attention model and spatial attention model and
divide into base branch and attention branch. To obtain the final attention feature by summing
the features of base branch and attention branch after deriving from attention features. Since
the attention feature map generated by the attention branch enhances the features of the
target, while the base branch retains all the features of the original image, the introduction
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Fig. 3 TheMain architecture of Cross-RAAN. The network involves two branches of both template branch and
search branch, in which contains three sub-branch base branch, channel attention branch and cross attention
branch, where base branch retains the original feature, channel attention branch produces channel feature in
response to weights with variable channel and cross attention branch creates cross feature by using Siamese
network in cross manner with two branches of channel weights

of the residual structure can effectively enhance the feature representation capability of the
network.

To obtain comprehensive feature enhancement, Self-RAAN shares the weights of the
network in both branches of the Siamese network, which allows formore efficient exploration
of interdependencies between features. By introducing attention in the Siamese backbone,
Self-RAAN aggregates and enhances the self-semantic relevance of individual feature graphs
to further aggregate different features to provide stable and robust self-attentive features.

3.3 Cross-Residual Attentional Aggregation Network

Siamese network usually conducts prediction using features from the final stage, as the
two branches calculating features separately while they share a feature extraction network
using the same parameters for calculation, so there are a large number of relevant features
waiting to be discovered in both branches. In process of object tracking, it is common for
objects to show interferences such as deformation and background clutter. Thus, it is vital
for the search branch to learn relevant information about the template image to help generate
a more recognizable feature representation, meanwhile, it’s possible for template branch
to highlight more relevant features in the template image and search target by encoding
contextual information from the search branch into the object representation,which facilitates
more accurate object localization in various interference situations.

For this purpose, we propose Cross-RAAN, which computes cross-attention on the fea-
tures of two branches of the Siamese backbone network. By computing cross-channel
features, Cross-RAAN is able to capture the correlation between the search branch and
the template branch, which can help extract more discriminative features. By interacting
features across branches, the network is able to better utilize the correlated features to adapt
to various interference situations and improve the robustness of target tracking.

In detailed, the proposed Cross-RAAN embedded at the end of two branches of Siamese
backbone network is to perform cross-attention computing separately for the end of three
stages featureswith different depths, as shown in Fig. 3. By sharing attentionweights between
two Siamese branches in order to learn information from each other, the two branches can
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perform more collaboratively in extracting features. Cross-RAAN includes three branches:
base, channel attention and cross attention. Where the base branch stores the original infor-
mation of the features, the channel attention branch is designed to enhance the focus of the
image features, and the same idea of channel attention is aided for the cross attention branch,
but the weight of attention comes from another branch, so as to complete the collaborative
work of the template branch and the search branch in Siamese network to obtain better feature
extraction outcomes.

Due to template features and search features with the same number of channels but in
spatial size, we try to obtain attention weights based on the same channel attention comput-
ing method like the channel attention model of Self-RAAN. Considering the one-dimension
applied in channel attention of Cross-RAAN and the different three-level depth features of
Siamese backbone network, the same size of the convolutional kernel will alleviate the repre-
sentation ability of the model, so it’s necessary to design a convolutional kernel with different
sizes regardless of different depth feature. For the Conv3 and Conv4 layers corresponding
to Cross-RAAN, we use a convolution kernel of size 5. Since the number of channels gen-
erated by the Conv5 layer is 2048, which greatly exceeds the 512 of the Conv3 layer and
1024 of the Conv4 layer, further application of a convolutional kernel of size 5 will weaken
the performance of the model, and we set the size of the convolutional kernel of the Cross-
RAAN corresponding to the Conv5 layer to 7. Given the input features of template branch
as Z ∈ R

H×W×C , the channel attention map as Az ∈ R
H×W×1, output of cross attention

features as Mz ∈ R
H×W×C , the input features of search branch as X ∈ R

h×w×C , channel
attention map as Ax ∈ R

H×W×1 and output of cross attention features as Mx ∈ R
H×W×C ,

respectively. The process of cross-feature enhancement is computed as follows:

Az = σ { f k(Max Pool(Z)) + f k(AvgPool(Z))}
Ax = σ { f k(Max Pool(X)) + f k(AvgPool(X))} (11)

Mz = Az × Z + Ax × Z + Z ,

Mx = Ax × X + Az × X + X , (12)

where σ presents sigmoid operation and f k symbols the one-dimension convolutional oper-
ation with convolution kernel is equal to k.

In order to maintain synergy between the template branch and the search branch when
extracting features, the two branches of the Siamese network share the parameters of the
one-dimensional convolution in Cross-RAAN to further enhance the feature representation
of both branches. Cross-RAANaggregates and enhances the semantic relevance of the feature
maps of both branches of the Siamese network, highlights the productive information from
the complex feature maps, and reduces interference from factors such as occlusion, providing
stable and robust cross-attention features for subsequent regression classification networks.

3.4 Multi-Level Feature FusionModule

Convolutional features of variable depths represent different information, and many methods
[16, 33, 34] use fusion of features of different dimensions to improve tracking accuracy.
Although the Conv3, Conv4 and Conv5 layers of the backbone network have the same spatial
resolution, their atrous convolution has different expansion rates, resulting in significant
variations in the feature information captured by the three convolutional layers. CF [35]
proposed that among the convolutional layers of different depths, the pre-layer captures fine-
grained information, such as edges, color and shape, which are essential for locating the target
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location, while the post-layer has a larger number of feature channels, which is more helpful
for encoding the abstract semantic information of the target and improves the robustness to
interference situations such as changes in object appearance.

The multi-level feature fusion (MFF) module was further developed with the aim of
exploiting the most representative information from the correlation features of different
depths. This module can effectively fuse features from different depths to enhance the per-
formance of target tracking. By establishing feature connections between the pre and post
layers, we can effectively interact and share the fine-grained information from the bottom
layer with the semantic information from the top layer. This cross-depth feature fusion can
help us make full use of different levels of feature representations in target tracking and
improve the robustness under target epistemic changes.

In this paper, the proposed approach is unlike the SiamCAR [3], we try to use directly
full feature image instead of compressing the feature map prior to deep correlation. MFF
model first leverages depth-wise cross correlations [12] operation for both the end three
layer features of Cross-RAAN enhancement Zi ∈ R

H×W×C , i = {3, 4, 5} and Xi ∈
R
h×w×C , i = {3, 4, 5}, response map R3, R4 and R5 containing 512, 1024 and 2048 is

obtained dependently. Then we use the convolutional kernel with 1×1 size to compress
the number of channels of three response maps into 256 to obtain R∗

i , i = {3, 4, 5}. Com-
pressing the channel dimension can significantly reduce the number of parameters and speed
up subsequent calculations. Finally, the three response maps were again fused into one using
a 1 × 1 convolution kernel, which produced a cross-correlated response map combining
shallow and deep features and was used as input to the subsequent classification regression
network for bounding box prediction, the formulations are as follows:

Ri = Zi � Xi , i = {3, 4, 5} (13)

R∗
i = f 1×1

1 (Ri ), i = {3, 4, 5} (14)

R = f 1×1
2 (Cat(R∗

i )), i = {3, 4, 5} (15)

where � presents channel-wise correlation operation, f 1×1
1 and f 1×1

2 shows the two-
dimensional convolutional operation with convolutional kernel size is equal to 1×1 and
Cat shows the splicing operation along the channel dimension of feature graph.

3.5 Ground-Truth and Loss

Throughout our training process, there were fewer sample imbalances due to the small
proportion of area occupied by the target and the background in the input search region.
Therefore in our research, we have employed the cross-entropy loss for classification pur-
poses, while utilizing the Intersection over Union (IoU) loss for regression tasks. We set the
coordinates of the upper-left and lower-right corners of the ground truth bounding box as
(x0, y0) and (x1, y1), the corresponding position of point (i, j) is denoted by (x, y). The
regression targets˜ti, j at A

reg
w×h×4(i, j, :) can be computed by:

˜t0i, j =˜l = x − x0,˜t1i, j =˜t = y − y0,
˜t2i, j = r̃ = x1 − x,˜t3i, j = ˜b = y1 − y.

(16)
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With ˜ti, j , the IOU can be computed between the ground-truth bounding box and the
predicted bounding box. Then we compute the regression loss by using

Lreg = 1
∑

I(˜t(i, j))

∑

i, j

I(˜t(i, j))L I OU (Areg(i, j, :),˜t(x,y)), (17)

where L I OU is the IOU loss and I(·) is a custom function defined by:

I(˜t(i, j)) =
{

1 if˜tk(i, j) > 0, k = 0, 1, 2, 3,

0 otherwise.
(18)

The branch parallel to the classification branch is the center-ness branch, which is used to
eliminate outliers generated at locations far from the center of the target. The score C(i, j)
in Acen

w×h×1(i, j) is defined by:

C(i, j) = I(˜ti, j ) ×
√

min(˜l, r̃)

max(˜l, r̃)
× min(˜t,˜b)

max(˜t,˜b)
, (19)

where C(i, j) is in contrast with the distance between the corresponding location (x, y) and
the object center in the search region. If (x, y) is located in the background, the value of
C(i, j) is set to 0. The center-ness loss is

Lcen = −1
∑

I(˜t(i, j))

∑

I(˜t(i, j))==1
[C(i, j) × log Acen

w×h×1(i, j)+
(1 − C(i, j)) × log(1 − Acen

w×h×1(i, j))].
(20)

The overall loss function is

L = Lcls + Lcen + λLreg (21)

where Lcls represents the cross-entropy loss for classification. During model training, dif-
ferent values of λ can bring different accuracy to regression prediction. We set the constant
λ = 3 based on our experimental experience.
4 Experiments

In this section, our experiments aim to explore, evaluate and validate the effectiveness and
performance of our proposed method. To achieve this goal, we designed a series of experi-
ments and collected relevant data for qualitative analysis and comparison. This section will
first summarize the implementation details of the experiments, and then step-by-step present
the qualitative analysis of the experiments and the test results of the various datasets as well
as the ablation experimental part.

4.1 Implementation Details

TheproposedSiamRAANis implemented inPythonwith Pytorch on a singleTeslaV100.The
input size of template patch and search region is same as SiamRPN++ [16] with 127×127 and
255×255 pixels respectively. We tend to use backbone networks initialized with parameters
pre-trained on ImageNet [36] to extract features.

Our model adopts the Stochastic Gradient Descent (SGD) to train 20 epochs. The warmup
learning rate of prior five epochs vary from 0.001 to 0.005, the value of remaining 15 epochs
decreases from 0.005 to 0.0005 in exponential decay. In the prior half of epochs, the value
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Fig. 4 In comparison with three excellent trackers based on GOT-10K with five challenging sequences. Our
network successfully tackles the challenges in accordance with object removing fast and scale changes

of batch size is fixed 80 and the parameters of Siamese backbone network are frozen during
training classification and regression network. And in the end of the half, last three-stages
of ResNet-50 are release to train and reduce the number of batch size to 32. For overall
training, our RAAN and MFF module performs training all time. The training datasets of
proposed model is equal to COCO [37], ImageNet DET, ImageNet VID [36], YouTube-BB
[38], GOT-10K [39] andLaSOT [40], which are to demonstrate the experimental performance
on GOT-10K, LaSOT, OTB-50 [41], OTB-100 [42] and UAV123 [43].

4.2 Qualitative Analysis

We visualize the tracking results based on the proposed SiamRAAN, AFSN, SiamCAR and
SiamRPN++ in dataset GOT-10K test to qualitatively evaluate our methods and demonstrate
the effectiveness of our algorithms, and choose five video test sequences to evaluate the
tracking effectiveness of the proposed network and the object prediction frames for each
algorithm are shown in Fig. 4.

In the videos in the first and second rows, where there are interference conditions such
as deformation of the target, all the compared algorithms succeed in tracking the target, but
our SiamRAAN show the more superiority that it always uses the main body of the target as
the tracking object, while the remaining three trackers fail to recognize the deformed target
as a whole, which results in the predicted bounding box not covering the target completely.
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Fig. 5 Visualization of confidence maps used by SiamCAR (middle) and our method (right) SiamRAAN.
The red box indicates the tracking object for each image (left). the feature map of SiamCAR does not cope
well with the object location. In contrast, the object confidence map obtained by our model has a stronger
discriminative power in predicting the target location

In the video in row 3, the target suffers from fast moving and deformation interference.
AFSN loses the target in frame 40, SiamCAR and SiamRPN++ only focus on part of the
target’s position in frames 50 and 70 and cannot identify the overall target profile, while the
target is completely lost in frame 85. Our proposed SiamRAAN, by contrast, never lose the
target position throughout and is robust to fast-moving targets that produce large amounts
of deformation. In the video in row 4, the complex surroundings of the target lead to a
drifting situation in the AFSN in frame 50, while SiamCAR fails to identify the target on the
whole and the target bounding box deviates from the target. In the video in row 5, there is
interference such as fast moving and low resolution in the target, and SiamCAR, AFSN and
SiamRPN++ lose the target at frame 92, which leads to the subsequent inability to track the
target consistently, making the tracking accuracy lower.

Visualization of confidence maps used by SiamCAR (middle) and our method (right) is to
confirm the effectiveness of the proposed algorithmwith three video sequences in the LaSOT
dataset as shown in Fig. 5.

In the first row, SiamCAR only focuses on the partial features of the target and fails to
achieve recognition of the target as a whole when the target with a fast moving and deforming
state, while our proposed SiamRAAN identifies the target as a whole. In the second row, in
the face of the presence of similar semantic information, SiamCAR identifies the right-
hand interference as a target as well and with high confidence. SiamRAAN is not completely
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Fig. 6 Experimental results of different methods on GOT-10K testing dataset

excluded fromsimilar interferencewith lowconfidence level,which has no impact on tracking
normally. In the third row, SiamCAR failed to recognize the outline of the target confronted
with blurred target features since it identifies the environment to the left of the target as
part of the target as well, while SiamRAAN successfully detect the complete outline of
the target. In summary, with the analysis of multiple video sequences, the proposed object
tracking network in this paper provides better accuracy and robustness in the face of various
challenging tasks.

4.3 Results on GOT-10K

GOT-10K contains more than 10000 video sequences of objects moving in the real world.
The comparison results are shown in Fig. 6 and Table. 1 in accordance with the proposed
tracker and other trackers. Evaluation indicators including success plots, average overlap
(AO) and success plots (SR) are to verify the performance, where AO indicates the average
overlap between all estimated bounding boxes and the true bounding box. SR0.5 presents
the percentage of successfully tracked frames with an overlap greater than 0.5, while SR0.75
shows the percentage of successfully tracked frames with an overlap greater than 0.75. We
evaluate the performance of SiamRAAN on GOT-10K dataset in comparison with SiamCAR
[3], SiamRPN++ [16], SPM [34] and other nine cutting-edge baseline trackers. Compared
with SiamCAR, the proposed SiamRAAN enables to improve AO, SR0.5 and SR0.75 by an
average of 1.4%, 2.0% and 3.5%, respectively.

4.4 Results on LaSOT

Dataset LaSOT contains over 3.25 million manually annotated frames and 1,400 videos with
covering a total of 70 categories in 20 tracking sequences. Evaluation indicators based on
the dataset including precision plots and success plots in one-pass evaluation (OPE) are to
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Table 1 Evaluation on GOT-10K testing dataset

Tracker AO SR0.5 SR0.75 FPS Hardware Language

Ours 0.579 0.685 0.447 51.62 Tesla V100 Python

SiamCAR [3] 0.565 0.665 0.412 55.89 Tesla V100 Python

AFSN 0.558 0.659 0.413 39.06 GTX 1080ti Python

ATOM18 0.556 0.634 0.402 20.71 GTX 1050 Python

SiamRPN++ [16] 0.517 0.616 0.325 49.83 RTX 2080ti Python

SiamRPN_R50 [14] 0.516 0.620 0.334 26.68 GTX 1080Ti Python

SPM [34] 0.513 0.593 0.359 72.30 Titan Xp Python

CGACD [27] 0.511 0.612 0.323 37.73 Tesla P100 Python

SiamRPN_R18 0.483 0.581 0.270 97.55 Titan X Python

SiamMask_EU 0.453 0.550 0.248 15.37 Tesla P100 Python

THOR 0.447 0.538 0.204 1.00 RTX 2070 Python

DaSiamRPN [15] 0.444 0.536 0.220 134.40 Titan RTX Python

SiamFC [12] 0.348 0.353 0.097 44.52 Titan X Python

The best results are in bold
The trackers are ranked according to AO measure

Fig. 7 Results OPE on LaSOT

verify the performance. We tend to validate the performance of SiamRAAN compared with
13 cutting-edge baseline trackers such as DaSiamRPN [15], SiamGAT [25], SiamCAR [3]
and SiamRPN++ [16] et al. The proposed model enables to improve the OPE and precision
plots by an average of 3.1% and 2.8% contrasted with SiamCAR as shown in Fig. 7.

4.5 Results on OTB-50

OTB-50 Contains 50 challenging videos with large variations and considers the average
success rate per frame at different thresholds. A tracker is considered successful for a given
frame if the intersection and concurrency ratio (IoU) between the predicted and true values
of the tracker is higher than a certain threshold. These trackers are then compared based on
the area under the success rate curve at different thresholds. We compare our SiamRAAN
with a set of trackers including SiamCAR [3], TADT [44], DaSiamRPN [15], SiamRPN [14]
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Fig. 8 Results OPE on OTB-50

Fig. 9 Results OPE on OTB-100

and nine other baseline methods. Figure 8 shows the results of our tracker compared to the 9
state-of-the-art trackers. Compared with SiamCAR, SiamRAAN improved the success rate
and accuracy by 0.6% and 0.7%, respectively.

4.6 Results on OTB-100

The OTB-100 dataset is a widely used in tracking benchmark containing 100 challenging
videos. We attempt to confirm the performance of SiamRAAN contrasted with 9 baseline
trackers such as SiamCAR [3], TADT [44], DaSiamRPN [15] et al. as presented in Fig. 9
shows the experimental results. In comparison with SiamCAR, SiamRAAN could improve
the success rate and precision rate by an average of 0.4% and 1.2% respectively.

4.7 Results on UAV123

The UAV123 dataset contains 123 video sequences and over 110K frames. All sequences
are fully labeled with upright borders. Objects in the dataset can be seen with fast motion,
large scale and lighting variations, and occlusion, which makes tracking with this dataset
challenging. We compare our SiamRAANwith state-of-the-art trackers including SiamCAR
[3], SiamGAT [25], SiamRPN [14] and SiamRPN++ [16]. Here, we use the success rate
curve and accuracy rate curve of OPE to evaluate the overall performance. Figure 10 shows
the results of our tracker compared to the 9 state-of-the-art trackers. Compared to SiamCAR,
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Fig. 10 Results OPE on UAV123

the success rate and accuracy rate of our SiamRAAN are improved by 0.8% and 1.4%,
respectively.

4.8 Attribute-Based Comparison

The test sequences of LaSOT dataset contains 14 properties to express multiple challenging
aspects including illumination variation, partial occlusion, deformation, motion blur, camera
motion, rotation, background clutter, viewpoint change, scale variation, full occlusion, fast
motion, out-of-view, low resolution and aspect ration change. Compared with 13 cutting-
edge methods such as DaSiamRPN [15], SiamGAT [25], SiamCAR [3] and SiamRPN++
[16] et al. to demonstrate the performance of the proposed model and Fig. 11, Fig. 12
show the experimental outcomes of our method and other trackers conducted on multiple
different attributes. The overall performance of SiamRAAN ranks among the first or second
in precision rate and success rate. The proposed model with superior performance in the face
of changes in target aspect ratio and deformation attributes to both the proposed Self-RAAN
will capture more detailed information connected with the object greatly and our Cross-
RAAN can enhance effectively object template feature. Especially in the case of background
clutter, the proposed mechanism enables to improve the precision rate and success rate to
6.1% and 4.8% with the help of RAAN and MFF modules.

4.9 Ablation Study

In this subsection, we try to perform an ablation analysis of the proposed Residual attentional
aggregation network (RAAN) and (MFF)modules on the GOT-10K dataset. Noted that in the
table. 2, our method can improve the score of AO, SR0.5 and SR0.75 by 0.3%, 0.6% and 2.6%
on GOT-10K dataset when we firstly added Self-RAAN module, the approach will increase
the score of evaluation metrics by 0.5%, 0.7% and 0.5% as added the Cross-RAAN module
subsequently, and finally the framework enables to increase the score of these indicators
by 0.6%, 0.7% and 0.4% after embedded with MFF module. Meanwhile, it’s noticed that
our baseline algorithm SiamCAR ran at 55.89 FPS while our method SiamRAAN ran at
51.62 FPS when tested under the same experimental conditions, which demonstrates that the
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Fig. 11 The success plots for six challenging attributes: background clutter(a), deformation(b), motion blur(c),
partial occlusion(d), rotation(e) and scale variation(f) on LaSOT testing dataset

123



SiamRAAN: Siamese Residual Attentional Aggregation Network ... Page 19 of 22    98 

Fig. 12 The precision plots for six challenging attributes: background clutter(a), deformation(b), motion
blur(c), partial occlusion(d), rotation(e) and scale variation(f) on LaSOT testing dataset
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Table 2 A Comparison among different modules based on GOT-10K testing dataset under the same experi-
mental conditions

Self-RAAN Cross-RAAN MFF GOT-10K
AO SR0.5 SR0.75 FPS

0.565 0.665 0.412 55.89

� 0.568 0.671 0.438 53.63

� � 0.573 0.678 0.443 52.95

� � � 0.579 0.685 0.447 51.62

RAAN and MFF modules perform without a significant burden on the tracking speed while
achieving higher accuracy and robustness.

5 Conclusion

This paper proposes a novel SiameseResidualAttentionalAggregationNetwork (SiamRAAN)
framework, based on the thought of feature enhancement, in combination with the features
of Siamese network with two branches simultaneously. The framework enables to effectively
leverage the its features information of channel and spatial and to realize robustness tracking
in a complementary way with two branches information in Siamese network. In compari-
son with baseline SiamCAR, the proposed tracker has significant improvement conducted
on the datasets GOT-10K, LaSOT, OTB-50, OTB-100 and UAV123 and demonstrates its
effectiveness.

Since our model uses multi-layer attention for feature enhancement, the training and
inference of SiamRAAN are slower than normal Siamese methods, while requiring more
GPU resources. Also, SiamRAAN may have difficulty in accurately distinguishing between
tracking targets and environmental objects when they are extremely similar in appearance.
In addition, SiamRAAN always uses the first frame as the input to the template branch
during tracking, and lacks the integration of historical information, making it difficult to
cope with severe distortion of appearance in long-term sequences. In the future, we plan to
further improve our tracker in terms of model compression, inter-branch correlation feature
enhancement, history information fusion, etc.
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