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Abstract

This paper focuses on the global asymptotic stability (GAS) problem for Takagi—Sugeno (T-S)
fuzzy quaternion-valued bidirectional associative memory neural networks (QVBAMNNY)
with discrete, distributed and leakage delays by using non-separation method. By applying
T-S fuzzy model, we first consider a general form of T-S fuzzy QVBAMNNSs with time
delays. Then, by constructing appropriate Lyapunov—Krasovskii functionals and employing
quaternion-valued integral inequalities and homeomorphism theory, several delay-dependent
sufficient conditions are obtained to guarantee the existence and GAS of the considered neural
networks (NNs). In addition, these theoretical results are presented in the form of quaternion-
valued linear matrix inequalities (LMIs), which can be verified numerically using the effective
YALMIP toolbox in MATLAB. Finally, two numerical illustrations are presented along with
their simulations to demonstrate the validity of the theoretical analysis.

Keywords Quaternion-valued neural network - BAM neural network - Global asymptotic
stability - Lyapunov—Krasovskii functional - Takagi—Sugeno fuzzy model

1 Introduction

In recent years, NNs have become increasingly popular among researchers due to their poten-
tial applications in a variety of domains such as secure communications, parallel computing,
image processing, optimization, and others [1-6]. In 1987, Kosko devised a two-layered
hetero associative memory network called bidirectional associative memory neural networks
(BAMNNS). Compared with other NNs, BAMNNS have recently attracted increased attention
due to their superior features in pattern recognition, automatic control, associate memory, and
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others [5-10]. Therefore, various theoretical studies have been published on the dynamics of
BAMNNS using LKFs and LMIs [7-11].

Recently, real-valued neural networks (RVNNs) and complex-valued neural networks
(CVNN5s) have been successfully implemented in automatic control, parallel computing, sig-
nal processing, pattern recognition, optoelectronics, computer vision, remote sensing, and
others [3—12]. However, RVNNs and CVNNs have some restrictions, especially when it
comes to high-dimensional data such as color images, four dimensional signals and body
images [11-13]. Meanwhile, quaternion numbers provide a natural and elegant solution
for high-dimensional data representation. Therefore, quaternion-valued neural networks
(QVNNSs) have become a powerful modelling tool for quaternion-valued data processing
and they have many advantages over usual RVNNs and CVNNs [14-20]. Recently, several
researchers have studied QVNNs more closely with some interesting results [21-25]. For
example, by employing homeomorphism theory and inequality technique, several sufficient
criteria for global p-stabilization of quaternion-valued inertial BAMNNSs via impulsive con-
trol are obtained in [23]. Based on the nonlinear measure approach, a set of new stability
conditions for quaternion-valued inertial BAMNNSs has been established in [24]. By consid-
ering two different types of activation functions, LMI-based sufficient conditions are derived
to ensure the global dissipativity of QVBAMNNSs by plural decomposition method in [25].
There are some other results pertaining to QVNNs dynamics that can be found in [26-29].

As is known to all, mathematical representation of physical systems is quite challenging.
It has been demonstrated that fuzzy logic theory is an effective algorithm for modeling com-
plex nonlinear systems. In [30], T-S fuzzy model is represented by fuzzy IF-THEN rules that
express local input—output relations of a nonlinear system, which has been successfully used
in complex nonlinear systems [30, 31]. The overall fuzzy model of a system is obtained by
fuzzy blending of the linear system models. Based on the good approximation property of
T-S fuzzy systems, T-S fuzzy NNs models are regarded as an important means to estimate
complex nonlinear systems. Recently, by incorporating fuzzy logic in NNs, there are several
stability conditions for T-S fuzzy NNs have been presented by using LKFs and LMIs [33-36].
For illustration, by employing suitable LKFs and matrix inequality technique, the authors of
[35] have determined the exponential convergence for T-S fuzzy CVNNSs including impul-
sive effects and time delays. By decomposing the original Clifford-valued NNs into 2" n-
dimensional RVNNS, the authors of [36] have derived the GAS of T-S fuzzy Clifford-valued
NNs with time-varying delays and impulses.

On the other hand, time delay is inevitable in the process of signal propagation of NNs
describing very large scale integration circuits because of the finite transmission speed of
information. In addition, NNs have a special nature because they consist of many parallel
pathways of different axon lengths and sizes, they can be modeled with distributed delays
[37-41]. Similar to usual time delays, leakage delays also has a significant impact on the
dynamics of NNs [42—44]. These time delays can result in undesirable system behaviors,
such as oscillations, instability, and bifurcation, and others. Therefore, it is essential to study
how delays affect the system’s dynamics. Recently, several research papers regarding the
dynamics of NNs involving different time delays have been published [45-49]. On the other
hand, recent studies have used various integral inequalities to deal with integral terms in the
real domain. However, only Jensen’s inequality has been utilized since the beginning to deal
with integral terms in the quaternion domain. To fill such gaps, a new quaternion-valued
integral inequality has been developed in this paper, which includes the famous auxiliary
function-based integral inequality (AFBII).

In recent years, several papers have been published on the stability of QVBAMNNS with
time delays; however, the T-S fuzzy QVBAMNNSs have not been fully explored and are
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not receiving much attention. As far as we know, there have been no papers published on
the existence and GAS of T-S fuzzy QVBAMNNS with discrete, distributed, and leakage
delays. Therefore, this study aims to fulfill this research gap by exploring the existence
and GAS of T-S fuzzy QVBAMNNSs with discrete, distributed, and leakage delays by using
non-separation method. The following are the main merits of this paper: (1) To represent
more realistic dynamical behaviors of QVNNs, we considered a general form of T-S fuzzy
QVBAMNNS s with discrete, distributed and leakage delays. (2) We proposed and proved a new
quaternion-valued AFBII, which provides a novel analytical pattern and helps to address the
mathematical challenges associated with system decomposition method. (3) By constructing
appropriate LKFs and employing quaternion-valued AFBII and homeomorphism theory,
several sufficient conditions have been derived in the form of simplified quaternion-valued
LMIs to ensure the existence and GAS of the considered NNs.

This paper is structured as follows: Sect. 2 provides the problem model, definitions of
GAS, assumptions about activation functions and time-varying delays, and some helpful
lemmas. Section 3 presents the main results of the paper: Theorem (5) presents sufficient
criteria for the existence and uniqueness of the equilibrium point; Theorem (6) provides
sufficient criteria for the GAS of the considered NNs. In Corollary (7) and (8), the results of
stability criteria are discussed in a special case. Section 4 gives numerical illustrations that
demonstrates the validity of the results. Section 5 presents the conclusion of this paper.

2 Problem Formulation and Preliminaries
2.1 Notations

Let us denote the quaternion, complex, and real numbers by H, C and R, respectively. The
n-dimensional quaternion, complex and real vectors are denoted by H”, C"* and R”, respec-
tively. The quaternion, complex and real matrices of size n x n are denoted by H"*"*, C"*"
and R"*", respectively. Let the matrix P < 0 (P > 0) means P is negative (positive) definite
matrix. P7 and P* denote the transpose and Hermitian transpose of matrix P. Z,, denotes
the identity matrix of dimension n, and the block diagonal matrix is shown by diag{-}, while
the symmetric term in a matrix is showed by *.

2.2 Quaternion Algebra

The quaternion H consists of a four-dimensional vector space over R with an ordered basis,

represented by i, j and k. The real quaternion can be written as follows:
z=zR+izI+jz]+sz e H,

where z®, 2! 27, zX ¢ R, and i, J» k are the quaternion basis which subjects to Hamilton’s

multiplication rules as follows:
it=jl=k>=-1, jk=—kj=i, ki=—ik=j, ij=—ji =k

Some basic definitions, rules of operation, and some essential aspects of quaternions and
quaternion matrices are given as follows [14—18].

(1) The conjugate of the quaternion as follows:

i:zR—izl—sz—szeH.
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(2) The modulus of the quaternion as follows:
2| = V1z =V (2F)? + (212 + (2))? + (2F)2.

(3) Letx = xR +ix! + jx’ +kxX e Handy = y® + iy’ + jy’/ +kyX e H. The addition
and multiplication of two quaternions can be accomplished as follows:

x+y=&R+yO+ix +y) + i) +y) + kX +y5),
Xy = (XRyR —xlyl —xlyl XKyK)
+ i(nyI +xlyR pxlyK — XKyJ)
+ j(XRyJ +xlyR _xlyK 4 XKyI)
+ k(XRyK +xKyl 4 xly/ — XJyI)'

(4) Following are some other properties of quaternions: Let o, 8 € H; M, N" € H"*", then
() le + B| < || + |B] and |eB| = |Ba| = |a||B]. (i) (M) = (MT), (iii) (MN)*
NEME, (iv) (MAN) ™D = NI M1 if M and A are invertible, (v) (M*)~! = (M_l)
if M is invertible, (vi) For any quaternion « can be formulated uniquely as« = y1+ 2/,
where y1, 2 € C, (vii) jy =y jor jyj* =%, Vy € C.

(5) For M.\ € H"™"; My, Mo, Ni. N € € and M = My + Maj. N = Ny +Maj.
Then (i) M* = M% — M j, (i) MN = (MIN] — MoN2) + (M2 + MoN ) .

*

2.3 Problem Formulation

In this paper, we consider the following QVBAMNNS with discrete, distributed and leakage
delays

t

P = —Dip(t —8) + Aifi(q() + Bigi(q(t — (1)) +C, / K1t — )hi(q(s)ds + Ti,

p() = ¢1(1). t € [—0.0], )
t
Q) = —Dag(t — 8) + Aby (1)) + Baga(p(t — L) +Ca / Ka(t — )hy(p(s))ds + T,

qt) = ¢2(t), t € [-0,0],

(D
where p(t) = [pi(t), ... pn()]T € H", q() = [qi(®),....qu®)]T € H" are
the state vectors; Dy = diag{diy,...,d1,} € R"™", D, = diag{dr,...,d2,} €
R™ ™ are the self-feedback connection weight matrices with each d;, > 0, r =
1,2,..,n, dpg >0, s = 1,2,....m. Ay € H>" B € H”™", C; € HY", A, €

H"" By, € H"", Cy € H™ " are the interconnection weight matrices; f;(q(-)) =
[F11(@1 (), o B (@ (DT € H”, g1@() = [211@1(0), o 81, @n (N7 € H",
hi (@) = (hi1(@1(), oo By @n (DI € H, B(p()) = [F21(p1 (), -.os F2, (Pu (N7 €
H", 2 (p() = [821(P1(), s 82,2 (D] € H  hy(p()) = [h21(p1()). ... ho,y (Pa(N]T
€ H”" are the neuron activation functions; 7, = [Jig,...J 1,7 € H', BHh =
[Ja1, ..., Jom]T € H™ are the external input vectors; Kq(-), K2(-) : [0, +00) — [0, 4+00)
are the delay kernels; 0 < § and £(¢) are the leakage delay and discrete time-varying delays,
respectively; ¢ € €([—o, 0], H"), ¢» € €([—0o, 0], H™) are the initial conditions, where
o = max{d, £}.

Assumption: 1 [49] Th@ discrete delay £(¢) : R — R is differentiable and bounded which
satisfies 0 < £(t) < £, £(t) < u, where £ and w are real numbers.

@ Springer



Non-separation Method-Based Global Stability Criteria... Page50f32 101

Assumption: 2 [49] The activation functions fi;(-), g15(-), hi5(-), £2,(-), g,(), ha,(-) are
satisfy the Lipschitz continuous; that is, there exist positive constants /', l§1 N lfz, l,gz,
l;‘z eR,suchthatr =1,2,...,nands =1,2....m
I£1,(0) = fis ] < I x =y,
|g1s(x) — g1s (M| < 1§ 1x =y,
[his () = hiy ()] < B x =y,
2, (x) — 2, ()] < [21x =y,
|g2r () — g2s (M| < [ |x =y,
o, () = has ()] < [} ]x =y,

for any x, y € H. Furthermore, we define Ly, = diag{lf‘, s l,f,}}, Lg = diag{lg', l,g;l‘},
Ln, = diag{l™, .. I}, Lo, = diagil®, .12}, L4 = diag{l®,...I®), Ln, =
diag(I™, ..., I},

Assumption: 3 [29] The delay kernels K (-) and K> (-) are some real value non-negative con-

—+00 400
tinuous functions defined in [0, +00) and satisfy / Ki(s)ds =1, / Kr(s)ds = 1.
0 0

2.4 Preliminaries

To achieve the main results, the following definitions and lemmas are used.

Definition 1 The NNs (1) with initial conditions ¢; € % ([—0,0],H") and ¢» €
([—0, 0], H"), the trivial solution is called GAS if lim {lIp@t, eDII* +llat, eI} =0,
— 400

where p(¢, ¢1) and q(z, ¢2) are the solutions of NNs (1) at time # under the initial conditions
@1 and ¢, respectively.

Lemma 1 [48] For any vectors p,q € H" and a scalar € > 0, then the following inequality
holds: p*q + q*p < ep*p + ¢ 'q*q.

Lemma?2 [48] LetH(p, q) : H'"""™ — H"™ is a continuous map that satisfies the following
criteria:

(i) H(p, q) is injective on H* ™,

(ii) |H(p, @) || — oo as ||(p, Q) || — oo, then H is homeomorphism of H'*™ onto itself.

Lemma 3 [49] A Hermitian matrix TT = TR 4+ iT1! 4+ jI17 + k1K € H™", then T1 < 0
is equivalent to

nk —mn’ —n! nx¥
n’ n® ok !
n’ —moX n® -’
-k —n! mn’/ nk

<0,

where TIR = Re(IT), T1! = Im(I), 1Y = Im(I1) and T1X = Im(IT).
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Lemma4 (Quaternion-valued AFBII) For every differentiable function w : [a,b] — H"
and Hermitian matrix 0 < TT = TIR +iT17 + jTI7 + k11K € H'*", the following inequality
holds:

b 1 & Imo o &
/w*(s)l'[w(s)dszi o 03I 0 o,
a b—
& 0

where

b
9] :/ w(s)ds,

§2=/ w(S)dS—if / w(s)dsdu,
. 12 b pb b
§3=/ w(s)ds—i/ / w(s)dsdu + —a)z/ / / w(s)dsdudv.

Proof: Let w(s) = wR(s) +iw! (s)+ jw’ (s) +kwk (s) e H,¢, = ¢f+ic) +j¢] +keX
H, 0=1,2,3,11=08+in! + j117 + k[1X € A", where [T* = I1 & (17T = 1%,
—mHT =n!, —m’/)" =/, (mX)T = —nX. Using, AFBII [50], we get

T
wR(s) nk -/ —n! ok wr(s)
b b I J R K I 1
w' (s IT I IT IT w' (s
w*(s)Mw(s)ds = j( ) I K R 7 J( ) ds,
p o | W) m —-mn* mn* -1 w” (s)
wk (s) -nX —n/ 1/ nk wk (s)

— _.T — —_
it of
¢l rnof —n/ -/ ok o 0 0 0 0 0 0 0o ¢
% n/ ok ok o/ o 0 0 0 0 0 0 0 o
L n’ —-nfk nk -’ o 0 0 0 0 0 0 0 b
6 n -’ n®f o o o 0 0 0 0 0 d
R R

1 & 0 o o0 o0 3mkF 3/ -3n'3mK o 0 0 0 &
> 5] 0 0o o0 o 3/ 30f 30K 3n0f o 0 0o 0 &
“b—al ¥ 0 o o o 3nf —30f3nk 30/ o 0 0 0 o |

X 0 0 0 o0 -30fX 30/ 3/ 3mRk o 0 0 0 K
¢k 0O 0 0 0 0 0 0 0 snf —si/ —snf shk ¢k
3 0 0 0 0 0 0 0 0 s’/ snR sk osif 3
531 0O 0 0 0 0 0 0 0 sif —sof sof —sm/ 53]
3 L o o o0 o0 0 0 0 0 —snf —sif sm’ osnR d | &
K K

L ¢ L¢3

- *

1 ;l Imo o é‘l
= ) 0 3IT 0 o .

b—a
1 83 0 0 5II g3

3 Main Results

In this section, we provide new sufficient criteria for ensuring GAS of the considered NNs
(1) using quaternion-valued AFBII with LKFs and LMI methods.

3.1 Existence and Uniqueness of the Equilibrium Point

Firstly, we obtain sufficient criteria that guarantee the existence and uniqueness of the equi-
librium point for NNs (1) under Assumption 2.
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Theorem 5 [f Assumption 1-3 are fulfilled, the NNs (1) has a unique equilibrium point if
there exist Hermitian matrices 0 < Py, 0 < Pa, and diagonal matrices 0 < O1, 0 < O»,
0 < 03,0 < O4,0 < Os, 0 < Og such that the following LMIs hold:

(O P1A| P1Bi PiC |

* —01 0 0

* x =03 0 <0, 2)
| * x x  —Os |
[©2 PrA; P2y P2Cs ]

* —0Op O 0

* * =04 0 <0, &)
| * * *  —0g |

where ®1 = —P1D; — D1 P1 + [,EOz[,fz + ,ng O4Lg, + [,;:206[,],2 and ©y = —Pr D,y —
DyPa + EE O1Lg, + EEI O3Lg, + ﬁi’;l OsLp,.

Proof Define the function H(p, q) : H*™" — H"*™" by
Dy 0 |(p A 0 | [ fi(q) Bi 0 |gi(q)
Hp,q) = —
P [ 0 DJ [q] * [ 0 Az} [fz(p) 10 5|0
C1 0| [hi(q Ji
+ + . 4
[0 Cz] [hz(p) 7 @
We start by proving that H(p, q) is injective. Assume by contradiction that there exist [z:|,

/ /
[2,] e HV, [gi| + [g,], such that H(p, q) = H(p’, q'), or equivalently

r o D o][p-p A 0 | [fi(@) —fi(q)
Hp@) —Hp.q) = [ 0 Dz] [q - q’:| * [ 0 «42] [fz(P) - fz(P’)]
n [Bl 0} [gl(Q) - gl(Q’)] n [Cl 0] [hl(Q) - hl(q/)] -0
0 B2 |g(p) —g2) 0 C2| | ha(p) —ha(p)
5)

Pre multiplication on both sides of (5) with |:g _ 2,] [Zl 782], we get

[p—p’]* [Pl 0 ](_ [Dl 0 } [p—p’] N [Al 0 } [ﬁ(q) —ﬁ(q’)]
q—dq 0 P 0 D2)|lq—¢ 0 Az [f2(p) — f2(p")
N [Bl 0] [g1(q) - gl(q’)] N [01 0} [hl(q) - hl(q’)D —0
0 By [g(p) — g2(p) 0 C2] [ha(p) — ha(p) '
(6)

that is
—@P-p)'PIDip—p) —(@—q)'PD2(q—q) + (p— p)*Pr A (fi (@ — fi(q)
+ (q — @) P2 Ay (F2(p) — £2(p") + (p — P P1Bi(g1(q) — 81(q)) + (q — q)* P22
X (g2(p) — &) + (p—p)*PiCi(hi (@) —hi(q)) + (q — ¢)*P2Cs
x (ha(p) — ha(p)) = 0. @)
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Applying the complex conjugate, we get
—(-p)"DiPi(p—p) — (@ —q)"D2P2(q — q') + (Fi(q) — £1(q)* AP (p — p')
+ (f2(p) — f2(0)* A3P2(q — q) + (21(q) — 1(q)*BiPi(p — p) + (22(p) — g2(p")*
x B3P2(q — q') + (hi(q) — hi(q)*CiPi(p — p) + (h2(p) — ha(p))*C3 P2
x(q—q')=0. (®)
By combining (7) and (8), we get
0=(p—p)'(=P1D1 —D1P)®P—p) + (q—q) (—=P2D2 — D2P2)(q — q)
+2(p — p)*PrAI(fi(@ — f1(@) +2(q — ¢)*Pr A (F2(p) — F2(D"))
+2(p — p)*PiBi(g1(q) — g1(q) + 2(q — q)*P2Ba2(g2(p) — 82(p))
+2(p — p)*PiCi(hi(q) — hi(q)) +2(q — q)*P2C2(ha(p) — ha(p')). 9

By Lemma (1) and Assumption 2, there exist diagonal matrices 0 < 01,0 < 0,, 0 < Os,
0 < 04,0 < 05,0 < Og, yields

2(p — p)*PrAI(1(@) — fi1(q) < (p— P PLAIO] AP (p — P)

+ (@ — q)*Lf 01 L, (q — q), (10)
2(q — @) PrAr (2 (p) — £2(p) < (q — @) P24 Oy A3Pa(q — q')

+(p— P LE 02 Ly, (p — ). (11)
2(p — p)*P1Bi(g1(@) — g1(q)) < (p—p)*Pi1BIO;' B{Pi(p—p)

+(q—4q)" Ly O3Lg (q - q), (12)
2(q — ) P2Ba(g2(p) — 22(p)) < (q — @) P2B0; ' ByPa(q — q)

+(p—p) "Ly, 01Lg,(p — P, (13)
2(p — p)*PiCi(hi(q) — hi(q)) < (p—p)*P1C1O5 ' CiPi(p — D)

+ (g — q)*L};, Os Ly (q — q), (14)
2(q — q)*P2Ca (o (p) — ha(p)) < (g — @) P05 ' C3Pa(q — q)

+ (P —P)" Ly, O6Ln, (P — P (15)

Substituting (10)—(15) in (9), the right side of (9) can be bounded as

@ —pP)'(=P1D1 = DiP)(P —P) + (@ = q) (=P2D2 — D2P2)(q — q))
+2(p — p) PrA(f1(q) — f1(q) + 2(q — q)* P2 A (F2(p) — £2(p))
+2(p — ) Pi1Bi(g1(q) — g1(q)) + 2(q — q)* P2 B2 (g2(p) — 2(p))
+2(p — p)*PiCi(hi(q) —hi(q")) +2(q — ¢)*P2Ca(ha(p) — ha(p))

<P—-p)'(—PiD1 —DiP)P-p)+@—q) (—PDy — D2P2)(q — q)

+(p— P PLAIOT ATPI(p — P) + (q — q)*LF O1 L1, (q — q)
+(q — q)*P2A205  A5Pa(q — q) + (p — P L, 02 L, (p — P)
+(—p)PIBIO; ' BiPi(p—p) + (a— q)* L O3Lg,(q — q)
+(q— q)*P2B0; ' BsPa(q — q) + (p — P)* L5, 04Llg, (p — P)
+ (P —p)PICIO; CiPiI(p — P) + (q — 4)* L}y OsLh, (q — q)
+(q — q)*P2020g 'G5 Pa(q — q) + (p — P)* Ly, O6 Ly (p — P)
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< (—pP) (=PiD; — D1 Py + PrAO] APy + L O2 Ly, + P1B1O5 ' BYPy
+ L5, 04Lg, + P1CIO5 ' CI Py + L}, O6 L1y (p — P)
+ (4 — ) (=PyDy — DyPy + PaAr 05 A5Py + L} O1 Ly, + P2B20} ' By Py
+ L3, 03Lg, + P2C20; ' C3 P2 + Ly, OsLny)(q — q). (16)

If (2) and (3) hold, by Schur complement, we have

—P\Dy = DiPy + PrA Oy APy + L], 02 Ly, + P1BIO3  BY Py + L, O4Lg,

+ P1C1O5 ¢ Py + L, O6Lh, < O, (17)
—PyDy — Dy Py + PaArO5 ' APy + L O1 Ly, + POy By Py + L3, 03Lg,
+ PrCr0g ' C3Py + L}, OsLy, < 0. (18)

and thus, that is to say the right side of (16) is negative, which is a contradiction. Therefore,
the function H(p, q) is injective.

Now, we shall show that ||H(p, q)|| — oo as |[(p, q)|| — oo. We infer that from (17),
(18) and small constant € > 0 exist, such that

—P1Dy — D1P1 + PrAIOy AP + L, 02 Ls, + P1BIOY BI Py + L5, O4 Ly,
+ P1C1O5 ' CPy + L}, O6 L, < —€Zy,

—PyDy — Dy Py + PrAr 05 APy + LF O1 L, + POy ByPy + L3, 03Lg,
+ PrCr0g 3Py + L, OsLh, < —€L.

Taking (p’, q') = (0, 0) and using (16) and the above relations, we have

pl* [P 0
[q] [0 732] (H(p, q) — H(0,0))

< p*(=PiD1 — D1 Py + P A O] APy + L§ 02 Ls, + P1B1O; B Py
+ L3, O4Lg, + P1C1O5 ' CIP1 + Ly, O6 Lny)P + q*(—P2 Dy — Dy
+ PrA O3 APy + LF O1 Lty + PaBBO) ' By Py + L3, 03 Lg,
+ P2C205 'GPy + L, OsLay)q
< —e(lpll* + llal®. (19)

Using the Cauchy-Schwarz inequality, then (19) becomes:
e(lpl® + llal®) < 20, QI 1P IP2] (IH P, @l + 1170, 0)1), (20)

which gives result that || H(p, q)|| = oo as ||(p, q)|| — oco. Hence, the map H(p, q) satisfies
all conditions in Lemma (2) and is homeomorphism of H"*" onto itself. Then, there exist
(p*, q*) such that H(p*, q*) = 0, that is, NN (1) has a unique equilibrium point (p*, q*).
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Letu(z) = p(r) — p*, v(t) = q(t) — q*, we can get

t
W) = —Diu(t — 8) + Aifi(v(0) + Bigi (v(t — £()))+C / Ki(t — s)hy (v(s))ds,
u(t) = él(t)» re [_Uv 0]7

t
V()= —Dyv(t — 8) + Ahr (u(t)) + Bago(u(t — £(1)))+Ca / Ka(t — s)ha(u(s))ds,

vty = ¢(1), t € [—0,0],
21

wheref; (v(-)) = f1(q()+q*+T)—f1(q"+71), 81 (v(") = g1 (@) +q*+T)—gi1(@* +T1).
hi(v()) =hi (@) +q" +T71) —hi(@* + 7). L)) = L) +p* + 72) —HL(p* + 7).
W) =gMC)+p*+70) -0+ 7). @) =hC)+p*+7) —h(p*+7),
¢1=¢1 —p*. ¢2 =92 —q*and ¢; € €([—0,0], H"), $ € ¢([—0, 0], H").

3.2 Quaternion-Valued T-S Fuzzy BAM Neural Networks

To describe a nonlinear system, the continuous fuzzy system was introduced in [30] and this
concept well discussed in [31, 32]. As shown in [33-36], the T-S fuzzy QVBAMNNSs with
time delays can be described as bellow.

Plant Rule z:

If 91 (7) is ] and ¥2(¢) is n5 and ... and ¥4 (1) is ng, Then

t

W) = —Diu(r — 8) + Aif1(v(1) + Big1 (v(t — £(1)+C; / Ki(t — s)hy (v(s))ds,

u(®) = ¢i1(1), t € [-0,0],
t
v(t) = —Div(t —8) + Ahu®)) + By (u(t — K(Z)))+C§/ Ko (1 — s)ha(u(s))ds,

—00

V()= @a1), t € [—0,0],
(22)

where the premise variables are 9.(t), ¢ =1, ..., g, the fuzzy setsare n%, z =1,...,m;c =
1, ..., g and m is the number of If-Then rules.
The final output of T-S fuzzy QVBAMNNSs can be derived from the fuzzy models as

follows:

m t
Zw:(ﬂ(z)){ - Diu(t — 8) + A (v(1)) + Bigi (vt — €1)) + Cf [ Ky (t — $)hy <v<s>>ds}

li(l): z=1 -

> w.@)
z=1

u(r) = ¢1(1), t € [—0,0],
m '
sz(ﬂ(t)){ —Div(t — &) + Asb(u(r)) + +B58: (u(t — £(1))) +C5 / Ko (t — S)hz(U(s))dS}

Y w3 )
z=1

Vi) = &

v(t) = ¢2(t), t € [-0,0],
(23)
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or equivalently
u@) = sz(ﬁ(t)){ Diu(t — 8) + Affi (v(1) + Bj&i (v(t — (1))

B t
+C¢ / Kl(t—s)ﬁl(v(s))ds’,
ut) =@, t €[-0,0],

m (24)
v = szw(z)){ Div(t — 8) + A5 () + Biga u(t — £(1)))
= t
+c§/ Ka(1 —s)ﬁz(u(s))ds},
v(t) =@, t €[00l
8
where (1) = (D1(1), ..., D), X @) = 5T and w (1) = [ [nE@@).

sz(ﬁ(r)) e=1
The term nZ (9 (¢)) is the grade membership of 19 (t) in ng. It is stated that w,(J(r)) >

0, z=1,...,mand sz (W (t)) > 0 for all + > 0. From the fuzzy set theory, we have

z=1

m
%(@(®) 20, z=1,...mand y_x.(?(1)) = 1 forall t > 0.

z=1

3.3 Stability Analysis

This subsection presents new sufficient criteria for ensuring GAS for the NNs (24). In order
to simplify, we have used the following notations:

£(n) = [u*(t) ut(t — L) w(— 0 w8 H@) g — L)

‘ 1ot 1ttt
/ u*(s)ds 7/ / u*(u)duds —2/ / / u*(v)dvduds
t—¢ 14 t—C Js 14 t—tJs Ju

¢ 1ot 1ttt
/ u*(s)ds 7/ / u*(u)duds —2/ / / u*(v)dvduds
t—38 8 t—8 Js 8 t—8Js Ju

t
/ Kt — s)ﬁﬁ(u(s))ds Vi) v —L(0) V(=) V(=)

—0o0

frv(n) g — @) / vi(s)ds — / / v (u)duds
t—¢

t
62[ z/ / v*(v)dvduds /zfa v¥(s)ds g./zfs.l v¥*(u)duds
t
—2/ / / v*(v)dvduds / Kg(t—s)h (v(s))ds] ,

) t—8Js Ju —00

e = [Ouxi—1)n Zuxn O26x—nnl, ¥ =1,2,...,26,
Q‘i = [e1 — Dfel()]*'Pl[ — Dfel + Aielg + Bfelg + Cfezﬁ]
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+ [ — Dier + Afeis + Bieo + Ciex ] "Pi[er — Dieio]
+ [e1s — Diexs ] Pa[ — Diers + Ases + Bieg + Cens)
+ [ — Dieis + Ades + Bies + Ciei3] “Pafeis — Diens],
=e][Q1 + Q3 + Qsle; —e5Q1e3 + e[4[Q2 + Q4 + QOslers — e Qoers
—e;Qze4 —ef;Q4e17 — (1 — p)esQser — (1 — p)efsQseys,
Q3 = ef[(*R1 + 87 Rser + €[, [(*Ra + §°Ryers

— *

€7 Ry 0 0 €7
- e7 — %eg 0 3R O e7 - %eg
Le7 — Seg + %69 | 0 0 SRi||er— Ses+ 269
— —_k - R —_
ezo2 R, 0 O 6202
- €0 — 7€zl 0 3Ry 0 €20 — 7€21
6 12 6 12
e — e+ 7en| | 0 0 SRy |ex — jex + Fexn |
— —_k — - -
€10 Ry 0 O €10
2 2
- €10 — 7eil 0 3R3 0 el — [eu
6 12 6
lelo—zenn+zein| [0 0 SR3] [eo—genn+ 72612_
— —_% - - - —_
‘3232 Rse 0 O 0232
- €23 — 7€24 0 3R4 O €3 — 7€4 ,
6 12 6 12
[e3 — e+ 7e5 | | 0 0 SRy [ e — jexn+ Feos |

Q4 = €[4 Ly, X Ln €14 — €50 Xe26 + €] Ly Vin,€1 — ej3)e3,
Q5 = eTﬁ}"zglﬁfzel —esGies + e§£§292£g2e2 —e;Gres + e’f4£}k1 G3Ly 14
—ejgGaers + ejs Ly GaLly €15 — e]gGaelo.

Theorem 6 If Assumption 1-3 are fulfilled, if there exist Hermitian matrices 0 < Py, 0 < Py,
0<91,0<973,0<093,0<940<0950<0950<R,0<Ry0<R30< Ry
and diagonal matrices 0 < X, 0 < Y, 0 < G, 0 < G5, 0 < G3, 0 < Gy such that the
following LMI holds forall z = 1,2, ...,m

Q§+QQ+Q3+Q4+S—25<O,Z:l,z,...,m, (25)
then the equilibrium point of NN model (24) is GAS.
Proof Consider the following LKFs (26) for NNs (24) described by

V(t,u(t), v(t),z) =Vi(t,u(t), v(t),z) + Va(t,u(t), v(t), z) + Va(t,u(t), v(t), z)
+ Va2, u(@), v(1), 2), (26)

where

t * t
Vit,u@),v(),z) = |:u(t) - D / . u(s)dsi| P1 |:u(t) - D / . u(s)dsi|
r— r—

t * t
+ [v(z)—pgf 6V(s)ds:| Pz[v(r) —Dgf 5v(s)ds],
t— —

t t
Wa(t,u(t), v(t), 2) =/ u*(S)Qlu(S)dS+/ V¥ (s)Qav(s)ds
t—L t—0

t '
+/ U*(S)Q3U(S)ds+f v (s)Qav(s)ds
t—§ -8
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t

t
+ / u*(s) Qsu(s)ds + / V¥ () Qsv(s)ds.
t

—L(t) 1—=L(1)

t ot t ot
Vi(t,u(t), v(t),z) = 6/ / u*(wW)Riu(u)duds + E/ / v¥(u)Rov(u)duds
t—L Js t—L Js
t ot t ot
—l—S/ / u*(u)R3u(u)duds +8/ / v¥*(u)R4v(u)duds,
t—8 Js t—8Js

m +00 o R
Va(t,u(r), v(1), 2) = sz/O Kl(s)/ hi(v()hy (v(u))duds
s=1 1=

n

+00 o .
+) / Ka(s) / b (u(u))ho (u(u))duds.
t—s

r=1 0

The time-derivative of V (¢, u(¢), v(t), z) can be obtained as follows:
V(t, u(t), v(t), z) =Vi(t, ur), v(t), 2) + Va(t, u(t), v(1), z) + Vs(t, u(t), v(t), 2)
+ Va(t, u(t), v(1), 2), 27

where

Vi, u(), v(1), 2) = [u(t) — D} f au(s)dsi| P [ﬁ(r) — Diu(t) + Diu(t — 5)]
i

+ u(t)—Dfu(t)Jeru(z—(S)] Py [u(z)—pff u(s)ds]
t—6

- . .
+[v()—D; / 6v(s)dsi| P, [vm — Div(1) + Div(r — 5)}
L t—

* t
+ [ V(1) = Div() + Divie — 5)} P |:V(t) - Dj / V(s)ds:|
t—8

= [u(;) — D f[ ia u(s)ds}*Pl [ é Xz(ﬂ(t)){ — Diu() + Aifi (v(1))
+Bigi (vt — £(1))) + C5 /_ too Ki(t — s)hy (v(s))ds”
+ [i xz(l‘/‘(t)){ — Diu(t) + A1 (v(1) + Bigi1(v(t — £(1)))
=1
+Cf /jw Ki(r — s)ﬁl(v(s))ds”*Pl [u(z) ~ D} /t; u(s)ds]
+ [v(t) -D; /t 18 v(s)dsTPz [ ZX: )(Z(ﬁ(t)){ — Div(t) + Aib (u(r)
+ B3g2(u(t — £(1)) +C5 /joo Ko(t — S)flz(U(S))dSH
+ [i xz(ﬁ(t)){ — Div(t) + Ashr (u(0)) + Biga(u(r — €(1)))
=1
+ G /_too Ki(t — s)ﬁz(u(s))dsH*Pz [v(t) -D; /t; V(s)ds]
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= sz(ﬂ(n){s*(r)szism}, (28)

z=1
Va(t, ut), v(t), ) < u* (1) Quu(t) — u*(t — O)Qu(t — ) + v* (1) Qv (1)
=Vt =) Qv — 0) +u* (1) Qzu(r) —u*(r — 8)Qzu(t — )
+ V(1) Qav(t) — Vi (t — 8)Quv(t — 8) + u* (1) Qsu(r)
— (1 = pu*(r — £(r)) Qsu(t — £(1)) + v* (1) Qv (1)
— (1= vt — L) Qev(t — £(1))

= sz(ﬂ(z»{s*(r)szzs(r)}, (29)

z=1
t
V3t u(t), v(t), z) = Cu*(ORu() — € f wi($)Riu(s)ds + 2V (R (1)
t—{
t t
—¢ / V¥ ($)Rav(s)ds + 8*u* (1) Rau(t) — 8 / u*(s)Rau(s)ds
t—4L t—68

t
+ 82VF (1) Rav(t) — (Sf V¥ (s)Rav(s)ds. (30)
t—8

Using (4), tighter bounds were obtained for integral terms in (30):

'
—¢ / u*(s)Riu(s)ds
t—¢

- t
/ u(s)ds
t
<- / u(s)ds — 7/ / u(u)duds
t—{
t

/ u(s)d€—f‘/- /u(u)duds—}— / /fu(v)dvduds
t—¢ t—{ t—{

/ u(s)ds

Ry 0 0 '
x| 0 3Ry O / u(s)ds—f/ /u(u)duds
- 1—t

L0 0 5Ry ¢
f u(s)ds—f/ f u(u)duds—l——/ / / u(v)dvduds
t—{ t—¢ t—t

i e; Ry 0 0 e;
=— e7 — Zeg 0 3R; 0 e7 — Zeg : 31)
L e7 — %eg + %eg 0 0 5R e7 — %eg + %eg

Similarly we can prove that

*

' €0 R, 0 0 7][ €0
—5/ V' ($)Rav(s)ds < — e — 2ey 0 3R, 0 e — 7€y ,
1=t Le20 — Sexr + %622_ L0 0 5Ry| [exn— Sex + %822_
(32)
t i €10 1" R3z 0 01Tl el 7]
—5/ u*(s)Rsu(s)ds < — e — %611 0 3R; O el — 2611
=3 Leio— Serr + %612_ | 0 0 5R3| |ep— 9ell + gz e |
(33)
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f €3 * Rse 0 O €3
) / V¥ (s)Rav(s)ds < — 3 — Zey 0 3R4 0 3 — Zey :
=5 e — Sex + e 0 0 5Ra] |exn— Seu+ {Fes

(34)
Combining from (32)-(34), we get
Vst u(0). v(1). 2) < sz(ﬂa)){s*(r)ms(t)}, (35)

z=1

m +o0 . .
Vit u). v, ) = Y x /0 Ki)h (v(0)hy (v(1))ds
s=1
m —+00 . .
— sz /0 Ki(s)h(v(r — s)hy(v(r — 5))ds
s=1

n +00 R ~
+Y fo Ko (s)h3 (u(r)hy (u(t))ds
r=1

+00
0

~Y / Ka(s)R3ut — )ho(u(r — 5))ds
r=1
A A mn +oo A A
— B} (V) Xy (V) — 3y /0 K1 ()RS (v(t — )y (v(2 — ))ds
s=1

A A n +w A A
+h3 () Yha(u()) - Zyr /o Ka()h3(u(t — s)ha(u(r — s))ds
r=1

t

< V(LY XLa, V(1) — [/ K\ (t —s)ﬁ’f(v(s))ds} X

—0o0

t
x [ / K\t —s)hT(v(s))ds] + ()L, Y Lhyu(r)

—0o0

t * t
- |:/ Ko(t — s)h§(u(s))ds:| J)|:/ Ko(t — s)h%(u(s))dsj|

=y xz(ﬂa)){e*(r)msa)}. (36)

z=1
From Assumption 2, there exist diagonal matrices 0 < G1,0 < G2,0 < G3,0 < G4 such that
0 < u* ()L}, G Lpu(n) — £ (@) Gif (), 37
0 <u*(t — L)Ly, GaLlgyu(t — (1) — B (u(r — L)) Gaga(u(r — £(1)),  (38)
0 < V¥ (L} G Ly v(r) — B (v()Gafi (v(1)), (39)
0<v*(t— 6(t))£§194ﬁg1v(t — L) — g (v — L(1)))Gag1 (v(t — £(1))). (40)

From (37)-(40), we obtain

0= sz(ﬁ(t)){é*(t)ﬂsé(t)}- (41)

z=1
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By combining (28)—(41), we obtain

V@, u(),v(1), 2) < sz(ﬁ(t)){é*(t)(ﬂf + 2 + Q3+ Q4 + Qs)é(t)}- (42)

z=1

It is obvious that for Qf + Q2+ 234+ Q + 25 <0,z=1,2, ..., m, it shows that the NN
(24) is GAS according to the Lyapunov stability theory. This completes the proof. O

In the following, we show how our results can be specialized to different cases.

Remark 1 When there is no leakage delay, the NN model (24) becomes:

m t
u@) = sz(ﬁ(f)){ — Diu(t) + At (v(1)) + Bi&1 (v(t — £(1))+Cf / Ki(r —s)hy (V(S))ds},
z=1 —o0

u@) = ¢1(1), 1 €[, 0],
V(1) = szw(z»{ — Div(t) + A3 () + Biga (u(t — £(1))+C5 /

t
Ka(t — s>fnz<u(s>>ds},

—00

v(t) = @), t € [—¢,0].

(43)

The following Corollary (7) gives the GAS criterion for the NN (43). The following notations
are used to simplify:

t
En = [u*(t) ui(t = £(0) ui(t =0 @) g — (1)) f Ku*(S)ds
t_

1 12 1 1 t t 12 t “
f/ / u*(u)duds —2/ / / u*(v)dvduds / Ki(r — s)h3(u(s))ds
l t—0 Js 14 t—Js Ju -0

t
VIO VI — L) v =0 (V@) 1 (v — L) v (s)ds

t—¢

t *
/ / v*(u)duds — / / / v*(v)dvduds / Kg(t—s)h (v(s))dsi| ,
1—t 1— -

€ = [Onx¢—nn Znxn 018><(r bl T =1,2,.
Qj = &Pi[ — Dje; + Ajers + Bies + Cl'elg]
+[ - Di&r + Ajeis + Biew + Cies ] Pre
+&Pa[ — D3€10 + Aes + B3Es + C58]
+[ — D3ei + A8 + Bies + Céég]*Pzél(),
Q= €[[Q1 + Qsler — 59183 + €]5[Q2 + Asleio
—e,Qen — (1 — wesQser — (1 — ey Qseir,
Q3 = EPR1& + &L Rak10

e -

€ Ri 0 O €q
—| & -3¢ 0 3R 0 & — 7&
€ — p€7 + %ég L 0 0 SRy € — ;€7 + %ég
i 515 TR 0 0 €is
— €5 — ze16 0 3R, O €5 — %em ,
(&5 — %@+ 1387 ] L0 0 SRy | &5 — 2€i6+ €17

Q4 = e10£h1X£h|eIO —efgXes + éi‘ﬁ;‘lzyﬂhzél —e5)ey,
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Qs = €L}, G1Lr,€ — €181 + &L, G2 Ly, & — €50285
+éTO[’E G3Lg €10 — éT3g3é13 + éT1£;1 GaLg €11 — €4Gaea.
Corollary 7 If Assumption 1-3 are fulfilled, if there exist Hermitian matrices 0 < Py, 0 < Py,

0<091,0<92,0< 95 0< Qg 0<Ry,0 < Ry, and diagonal matrices 0 < X, 0 < ),
0 <31, 0 < G, 0 < Gs, 0 < Gy such that the following LMI holds forall z = 1,2, ...,m

QA +0+QU+Q+0Q5<0,z=1,2,...,m, (44)
then the equilibrium point of NN model (44) is GAS.

Proof Replacing V) (¢, u(r), v(t), z) = u*(t)Piu(t) + v*(#)Pov(t),and Q3 = Q4 = R3 =
R4 = 0 in LKF (26). The remaining proof is similar to that in Theorem (6), and so it is
omitted.

Remark 2 When there is no distributed delay, the NN model (24) becomes:

u(r) = sz(l?(t)){ Diu(r — 8) + A{fi (v(0)) + Bjgi (v(t — Z(t)))}

z=1

u(?) = ¢1(1), t € [—0,0],

v(t) = sz(ﬁ(l)){ —D3v(t — 8) + Ay (u(r) + Bigo (u(r — 50)))},
z=1

v(t) = ¢a(t), t € [—0,0].

(45)

The following Corollary (8) gives the GAS criterion for the NNs (45). For simplicity, we
define the notations as follows:

En = [u*(t) ut(t — £(0) w(t — 0wt —8) Fu) g — L))

t 1t I
/ u*(s)ds f/ / u*(u)duds —2/ / / u*(v)dvduds
t—¢ 4 t—L Js £ t—CJs Ju

t l t t l t t 1
/ u*(s)ds f/ f u*(u)duds —2/ / / u*(v)dvduds
t—§ ) t—8§ Js s t—8Js Ju

VE(E) VI = L) VR —0) v = 8) BT V() BT (v(e — L))

t 1 t t 1 t 1 t
/ v¥(s)ds f/ / v¥*(u)duds —2/ / / v¥(v)dvduds
t—0 t—0 t—L

t
/ v¥(s)ds f/ f v*(u)duds — / / / \4 (v)dvduds] ,
=8 =8 =8

€ = [0nxo—tn Znxn O2ax—nnl, r=1,2,.
Qf =[&1 — D& Pi[ — D&y + Aleyr + B;elg]
+ [ — Diey + Alé17 + Bieis] " Pi[ér — Diéro]
+ [813 — D3en] P2 — D3é13 + ASes + B3]
+ [ — D3&13 + A58s + B5és | “Pa[613 — D5én ).
Q=& [Ql + 3+ Qs]el —€50:63 +e13[Qz + Q4 + 96]613 — €585
—€;Q384 — &g Q6 — (1 — )& Qs€ — (1 — )€y, 614,
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Q3 = é]k [£2R1 + 527?,3]6] + 5T3 [Zsz + 52R4]é13

& (R 0 0 €7

- é76~— %é812~ 0 3R; O i é76~— %é8]2~

[ &7 — 783+ 7€ | 0 0 SRy €7 — 783+ 7€

i €19 TR, 0 o €19 ]
- €19 — %ézo 0 3R, O €19 — %ézg

| &0 — S8y + %521_ | 0 0 SRy | |&o9— %80+ %521_

i €10 1 Rs 0 07 €10 7]
- 810 — &1 0 3R3 0 810 — 781

| &0 — S8 + %612_ | 0 0 5R3||&0— &+ %élz_

i €2 TTRse 0 07T €2 ]
- & — 283 03R4 O & — 283 ,

| €22 — %523 + %524_ | 0 0 SRy | |€2— %523 + %524_

Q4 = & LF, 01 L1, & — €5G185 + &Ly Go Ly, & — €G08

+ éT3£E g3£f1é13 - é>1k7g3él7 + éT4£;1 g4£g|él4 — 67894618.

Corollary 8 If Assumption 1-2 are fulfilled, if there exist Hermitian matrices 0 < P1, 0 < Py,
0<91,0<92,0<93,0<940<0950<950<R;,0< Ry 0<R30< Ry,
and diagonal matrices 0 < G1, 0 < Go, 0 < G3, 0 < Gy such that the following LMI holds
forallz =1,2,....m

S~2§+S~22+§23+S~24<0,z:1,2,...,m, (46)
then the equilibrium point of NN model (46) is GAS.

Proof Take V) (¢, u(t), v(t), z), Vo(t, u(t), v(¢), z), V3(t, u(t), v(¢), z) same as in LKF (26)
and Vs (¢, u(z), v(¢), z), = 0 in LKF (26). The remaining proof is similar to that in Theorem
(6), and so it is omitted.

Remark 3 Tt is a special case of the NNs (24) when m = 1. For simplicity, we deleted the
superscript 1.

t

W) = =Dt —8) + Afi(v() + Big1 (vt — £(1) +C / Ki(t — $)hy (v(s))ds.

—0o0

u(t) = ¢i1(t), t € [-0,0],
V()= —Dyv(t — 8) + Acfr(u(r)) + Bago(u(r — £(1))) + sz

t

Ka(t — s)ho(u(s))ds,

vit) = @(t), t € [—0,0].
47

Remark 4 In [16-29], the authors used several methods to study the dynamics of delayed
QVNNSs. As an example, (i) The real-valued decomposition method [20]; (ii) The complex-
valued decomposition method [25]; (iii) The direct quaternion method [19]. In general, real-
valued and complex-valued decomposition methods have two problems. The decomposition
method increases the size of the systems and which makes mathematical challenges, and
also the decomposition method leads to the complexity of theoretical analysis. Therefore,
this paper uses the non-separation method to resolve this issue.
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Remark 5 In recent years, there have been several notable studies have been conducted on
the stability issues of various QVNNSs. For example, in [17], the authors examined fractional-
order QVNN’s with impulses and derived some sufficient conditions for global Mittag-Leffler
stability by using direct quaternion method. In [26], the authors considered QVNNs with
uncertain time-delayed impulses, and stability and stabilization analysis was conducted based
on direct quaternion method. In [27], the authors examined QVNNs with inertial term and
time-varying delay, and derived some sufficient conditions for global exponential and asymp-
totic synchronization direct quaternion method. In [28], the authors considered QVNNs with
time-varying delays and studied their global p-stability and power stability issues. It is
important to note that there have been no studies conducted on T-S fuzzy QVBAMNNSs with
discrete, distributed and leakage delays by using non-separation method. Therefore, this
paper aims to fill such gap by considering T-S fuzzy QVBAMNNSs with discrete, distributed
and leakage delays.

Remark 6 The authors of [44] used WBII to investigate the global p-stability of neutral-
type impulsive complex-valued BAMNNSs with leakage delay and unbounded time delays by
non-separation method. In comparison to [44], we extended the AFBII into the quaternion
domain and its proof has been presented for the first time. Furthermore, the GAS criteria
for T-S fuzzy QVBAMNN:S are established by using new quaternion-valued AFBII and non-
separation method.

4 Numerical Evaluations

This section provides two numerical evaluations to emphasize the applicability of the theo-
retical analysis.
Example 1: Consider the following two neuron QVBAMNNSs

t

p(t) = —Dip(t —3) + Aifi(q(®) + Bigi(q(r — £(1))+C, / K1t — s)hi(q(s))ds + T,

—00

pit) = ¢1(t), t € [—0,0],
t
q@t) = —Drq(t — ) + A2 (p(1)) + Baga (p(t — £(1)))+C2 f K> (t — s)ha(p(s))ds + T2,

—00

qt) = ¢2(t), t € [—-0,0],

(48)
where
(12 0 10 0
Pr=lo 12]’ Dz_[o 10]’
A _ [0.4—-0.1i +0.3j + 0.5k 0.5+ 0.1i +0.2j + 0.3k |
P01 -0.2i +0.2j +0.2k 0.2+ 0.3i +0.1/ + 0.1k |°
A = [0.240.3i +0.2j + 0.1k 0.2 — 0.2i + 0.3 4 0.5k |
27034+ 0.4i +0.1j +0.7k 0.3 +0.3i +0.2j + 0.1k |’
B — [0.340.2i +0.4j + 0.1k 0.3 +0.3i + 0.2/ + 0.1k |
71024 0.1 0.2/ + 0.5k 0.4 +0.3i + 0.1/ + 0.7k |
B — [0.3-0.2i +0.4j + 0.2k 0.3 4+0.3i + 0.4/ + 0.1k |
2702 40.1i +0.4j + 0.5k 0.2 +0.1i +0.2j + 0.1k |’
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oo — [ 024000 —0.1j +0.1k 0.1—0.1i = 0.1 0.1k

P -0240.1i — 0.1 + 0.1k 0.1 +0.1i — 0.2 — 0.2k "

0 [03+0.1i —0.1j — 0.1k 0.1+ 0.2i +0.3] — 0.1kk
27103 -04i —02j — 0.1k 0.4+0.1i —0.1j — 0.2k |

7 _[02+0.0i-02j-0.1k] __ [02+02i 0.1 - 0.2k
P01 4020 —0.1j — 0.1k > YT |0.340.1i —0.1j — 0.2k |

The activation functions are taken as fi;(qs(-)) = gi1,(qs(-)) = hi(qs() =
0.5 tanh(qs(-)) + 0.5 tanh(qs(-))i + 0.5 tanh(qs(-))j + 0.5 tanh(qs(:)k, £, (p,(-)) =
2,(Pr()) = ha,(p,()) = 0.5 tanh(p,()) + 0.5 tanh(p,(-))i + 0.5 tanh(p,(-))j +
0.5 tanh(p,(-))k (s,r = 1,2). Obviously, they satisfy Assumption 2 with lfl = lfz =
B =82 = M = M = 025 (s,r = 1,2). The discrete delay £(¢) is regarded as
£(t) = 0.1 4+ 0.2 sin(t), implying that the maximum permissible upper bound is £ = 0.3.
It is observable that 0 < é(t) < pu =0 <02 cos(t) < 0.2, and distributed delays
Ki(t) = Ka(1) = e™".

By employing MATLAB YALMIP toolbox, the LMIs (2) and (3) in Theorem (5) are
verified and the feasible solutions are

_— 1.1742 —0.0124 — 0.2270i + 0.0452 — 0.2277k
"7 | -0.0124 +0.2270i — 0.0452 + 0.2277k 1.3084 ’
_— 1.0972 0.0266 + 0.0320i + 0.1040; + 0.0126k
7 10.0266 — 0.0320i — 0.1040 — 0.0126k 1.1269 ’
[4.6913 0 2359 0 2.5674 0
“r=1"9 4.1476]’ 02 = [ 0 2.5704]’ Os = [ 0 2.9031]’
[1.3350 0 25683 0 3.6453 0
©=1 "0 1.9042]’ Os = [ 0 2.9961]’ O6 = [ 0 3.6224]'

Based on this example, we conclude that all the conditions associated with Theorem (5) are
fulfilled and the NN model (48) has a unique equilibrium point.
Example 2: Consider the following two neuron T-S fuzzy QVBAMNNS with z =1, 2

2

un = szw(t)){ — Dju(r — §) + AT (v(1) + Bigi (v(t — £(1)))

z=1

t

+Cff Ki(t — s)ﬁl(v(s))ds},
ut) = @;(t), t € [—o0,0], 49)
Vo) = szw(r)){ — Div(t — 8) + Ashr (u(t)) + Biga(u(t — £(1)))

z=1

t
+C5 / Kot — s)ﬁz(u(s))ds},
v(it) = @), t € [—0,0].
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Plant Rule 1: If 9 (#) is n{, Then

t

u(t) = —Diu(t —8) + Alfi (v(1)) + Bl g1 (v(t — £()))+C] / Ki(t — s)hy (v(s))ds,

—0o0

u() = ¢1(t), t € [—0,0],
t
V()= —Div(r —8) + Ab () + Biga(u(r — £(1)))+C) / Ka(t — s)ha(u(s))ds,

—00

v(t) = ¢a(), t € [—0,0].

Plant Rule 2: If 9 (#) is 7, Then

t
() = —Diu(t —8) + A (v(1) + B2 g (v(t — £(1)))+C3 / Ki(t — s)hy (v(s))ds,

—00

u(t) = ¢1(t), t € [—0,0],
t
V() = —Div(t —8) + A (u() + Biga(u(r — £(1)))+C3 / Ka(t — s)ho (u(s))ds,

—o0

v(t) = ¢a(), t € [—0,0].

v [707 i _[80] .o [90] .» [90
Dl__07]’D2_[08 +Pi=g9|" P2= |0o]
p_[12+i—15j-08k 1+12i+13j—15k

[1.4—-2.7i —2j — 1.3k 0.5+ 0.8i — 1.4 — 1.7k |

[Tl 140 = 13) — 12k 2.1 4130 = 0.9] — L1k
27134120 = 1.2j + 11k —154i+1.2j + 1.4k |

o[ 1240 = 15j —08k 1+1.2i + 1.3 — 1.5k
P14 -27i —2j — 1.3k 0.5+ 0.8i — L.4j — 1.7k |

2 [1l = 14i = 13j — 12k 2.1+ 1.30 =09 — l.lk]
2 = s

where

|13+1.2i = 1.2j + 1.1k —1.54+i+1.2j + 1.4k

Bl — [ 1+08 —12j—-06k 09+i+15j—12k
P 15-25—1.8j — 1.2k 0.7+ 0.5i — 1.2 — 1.4k |’

Bl — [ 1—-13i—12j— 1.1k 2+1.2i —08j —k
27124 01— 11 + 1.2k —1.340.9 + 1.1/ + 1.2k |

82— [1.34+1.1i —1.4j —0.9k 1.2+ 1.1i + 1.4/ — 1.3k|
1= s

[1.2-2.5{ =22/ — 1.3k 0.9+0.7i — 1.2j — 1.5k |
s [12—i—14j—k22+14i—-12j—13k
[124+i—11j4+k 1.5+12i+j+13k |’

[0.84+0.9i —1.1j — 1.3k 1.4+ 1.3i +1.2j — 1.2k]|
[1.2—1.7i = 1.5j — 1.4k 0.9+ 0.6i — 1.1j — 1.5k |
Cl_—1—1.2i—1.1j—1.3k 24+1.2i —0.8j — 1.2k
2712411 — 11+ 1.2k =17+ 1.2i + 1.3/ + 1.5k |
cz—- 1+1.1i —12j —0.8k 1.2+ 1.3i +1.4j — 1.5k
P 15-25i—2.1j — 1.4k 0.8+ 0.9i — 1.1j — 1.3k |
Cz__1.4—1.2i—1.1j—1.2k 24i—12j—1.2k
27144121 — 13+ 1.2k —1.5+ 1.2i + 1.4/ + 1.4k |
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Table 1 Calculated upper bound of ¢ for different values of x and § in Example 2

s
% n=0.1 n=0.3 n=0.5 n=0.7 n=0.9
§=0 1.2418 1.1814 1.1036 0.9862 0.8253
8§ =0.08 0.8540 0.8057 0.7801 0.6941 0.5712
§=0.13 0.5831 0.4625 0.4072 0.3826 0.3065
§>0.14 Infeasible Infeasible Infeasible Infeasible Infeasible
; — R
DB ey uR) [
....................................................... S — R
: — 0
05 SRR R E R R RRR TR PRRRRS .
® :
° :
= :
3 :
S :
< -
=05 S SRR RIS .
_1 | SRS SRS U SRRy TP ST i
_1 5 ---------------------------------------------------- ------------------------------ -
-2 I I I I I I
2 3 4 5 6 7 8
Time(Sec)
Fig. 1 Transient behaviors of the states u(t)R, V(t)R of NNs (49) with§ =0
Let us consider the activation functions fls vs()) = &1,(vs(1) = lAllx (vs(+)) =

0.5 tanh(vs(-)) 4+ 0.5 tanh(vs(-))i + 0.5 tanh(vs(-))j + 0.5 tanh(vs(-))k, f'zr (u,(+)
2, () = hy, (u()) = 0.5 tanh(u,()) + 0.5 tanh(u,(-))i + 0.5 tanh(u.(-))j +
0.5 tanh(u,(-))k (s, = 1,2). Obviously, they satisfy Assumption 2 with /Il = /2 =
B o= B = M = ™ — 025 (,r = 1,2). The discrete delay £(¢) is regarded
as £(t) = 0.1625 4+ 0.3 sin(t), which implies that £ = 0.4625. It is observable that
0< é(t) <u=0<0.3cos(t) <0.3,and distributed delays K (1) = K»(t) = e~". Further-
more, the membership functions are considered as x1 (¢ (¢)) = 14_;772, , 20 (1) =1— 1_‘_:7,2,

By solving the LMI condition (25) in Theorem (6) with the above parameter values by using
the MATLAB YALMIP toolbox, we obtain the maximum permissible upper bounds of ¢ for
different values of © and §, which are listed in Table 1. Under the randomly selected 5 initial
values, the time responses and phase diagrams of states uf(t), uf (1), ulj (1), u{< (1), u§ (1),
(@), w) (1), uk (1), vR(@), vi(0), v{ (1), vE (1), vE (1), vA(2), v§ (1), vK (1) of QVBAMNNS
(49) are illustrated in Figs. 1, 2,3,4,5,6,7, 8,9, 10, 11, 12, 13, 14 and 15 with various levels
of leakage delay and fixed discrete delay. From this example, we can conclude that all the
conditions associated with Theorem (6) are satisfied and the equilibrium point of NN (24)
is GAS.
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Fig.2 Transient behaviors of the states u(t)l,v(t)l of NNs (49) with § =0
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Fig.3 Transient behaviors of the states u(t)] R v(t)] of NNs (49) with§ =0

Remark 7 In general, leakage delay has a significant impact on the stability performance of
the systems. For example, if we consider QVBAMNNSs (49) with 6 = 0, then it becomes
the well-known case which has been extensively studied by many authors over the years.
In this case, the trajectories of the states of QVBAMNNSs (49) converges to the equilibrium
point (0, 0)” within a short period of time, as shown in Figs. 1, 2, 3, 4 and 5. When we take
leakage delay § = 0.13, the trajectories of the states of QVBAMNNS (49) also converges to
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Fig.4 Transient behaviors of the states u(®)X, v(t)X of NNs (49) with § = 0
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Time(Sec)
Time(Sec)
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Fig.5 Phase trajectories of the states u(¢)%, v(1)*, z = R, I, J, K of NNs (49) with § =0

the equilibrium point (0, 0)7 within a long period of time, as shown in Figs. 6, 7, 8, 9 and
10. In the above cases 0 < § < 0.13, one can check that the LMI condition in Theorem (6)
have feasible solutions via MATLAB YALMIP toolbox, which is listed in Table 1. However,
in the case of leakage delay 6 > 0.14, one can check that the LMI condition in Theorem
(6) does not have feasible solutions via MATLAB YALMIP toolbox, since the maximum
permissible value of leakage delay is § = 0.13. In this case, the trajectories of the states of
QVBAMNNS (49) does not converges to the equilibrium point (0, 0)7, as shown in Figs.
11, 12, 13, 14 and 15. These simulation Figs. 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14 and
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Fig.6 Transient behaviors of the states u(r)®, v(1)® of NNs (49) with § = 0.13
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Fig.7 Transient behaviors of the states u(t)!, v(r)! of NNs (49) with § = 0.13

15 illustrate how leakage delay has a significant influence on the stability of QVBAMNNS
(49) and it is evident that leakage delays always impact the stability of NNs. Therefore, it is
essential that time delays should be taken into account when studying NN models.
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Fig.8 Transient behaviors of the states u(r)’ , v(r)’ of NNs (49) with § = 0.13
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Fig.9 Transient behaviors of the states u(t)K s v(t)K of NNs (49) with § = 0.13

5 Conclusion

This paper studied the GAS problem for a class of T-S fuzzy QVBAMNNS with discrete,
distributed and leakage delays using non-separation method. By applying T-S fuzzy model,
we first considered a general form of T-S fuzzy QVBAMNNSs with time delays. Then, by
constructing appropriate LKFs and employing quaternion-valued integral inequalities and
homeomorphism theory, several delay-dependent sufficient conditions are obtained to guar-
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Fig. 10 Phase trajectories of the states u(¢)*, v(¢)*, z = R, I, J, K of NNs (49) with § = 0.13
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Fig. 11 Transient behaviors of the states u(®)® v(t)R of NNs (49) with § = 0.18
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Fig. 14 Transient behaviors of the states u(r)X, v(r)X of NNs (49) with § = 0.18
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Fig. 15 Phase trajectories of the states u(#)*, v(¢)%, z = R, I, J, K of NNs (49) with § = 0.18

antee the existence and GAS of the considered NNs. In addition, these theoretical results are
presented in the form of quaternion-valued LMIs, which can be verified numerically using the
effective YALMIP toolbox in MATLAB. Finally, two numerical illustrations are presented
along with their simulations to demonstrate the validity of the theoretical analysis.

By using the results of this paper, we can analyze various dynamics of T-S fuzzy
QVBAMNNS including finite-time stability, synchronization, and others. There are cer-
tain advancements worth investigating further in this research area. Therefore, we will
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study finite-time stability for the following T-S fuzzy QVBAMNNS with time delays and
impulses.

u (1) = Z] Xz (D)) — diju (1) + Zlalfsgl.v(vs(l —tO) ¢, t # i,
= s=

Aup () = o (), t =1, r=1,2,...,n, k=1,2, ..,
u-(t) =¢1,@), t €[-£,0],

Vs (1) = ilxz(ﬁ(t)) — dagvs (1) + i a5, 8, (0 (t — (1)) 1, 1 # 1,

r=1

Avs(ty) = B (v (tr), t =1, s =1,2,...,m, k=1,2, ...,
ve(t) = @a,(t), t € [—¢£,0].
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