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Abstract
Zero-ReferenceDeepCurveEstimation (Zero-DCE) is currently one of themost popular low-
light image enhancement methods. Through extensive experimentation, we observe that: (i)
the excellent performance of Zero-DCE depends on the training data with multiple exposure
levels, (ii) it cannot effectively handle uneven light, extremely low light, or overexposed
images in natural environments. Therefore, we propose an improved zero-reference dual-
illumination deep curve estimation method for low-light image enhancement named Zero-
DiDCE, which can enhance, suppress, or maintain light levels for images. The adaptive
light enhancement curve was designed to handle images with different exposure levels. An
iterator and amplitude controller are designed to control the curve enhancement intensity by
calculating the gap between the input image and the optimal light level. Furthermore, instead
of the DCE-Net in Zero-DCE only taking the input image as network input, our DiDCE-
Net in Zero-DiDCE takes the input image and the inverted input image simultaneously as
network input to ensure that the training set contains samples with multiple exposure levels.
A piecewise non-reference loss function is designed to guide the training of DiDCE-Net
from the perspective of information loss. Qualitative and quantitative experiments show that
our method can handle images with different levels of exposure well and outperforms state-
of-the-art methods. In addition, the proposed curve and iterator can be integrated into other
methods to improve their enhancement effects. The code is available at https://github.com/
Wenhui-Luo/Zero-DiDCE.

Keywords Low-light image enhancement · Zero-reference · Dual-illumination · Curve
estimation.

B Zhanqiang Huo
hzq@hpu.edu.cn

Aizhong Mi
miaizhong@hpu.edu.cn

Wenhui Luo
212109010014@home.hpu.edu.cn

Yingxu Qiao
qiaoyingxu@hpu.edu.cn

1 School of Software, Henan Polytechnic University, Jiaozuo 454003, Henan, China

2 School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, Henan,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11565-5&domain=pdf
https://github.com/Wenhui-Luo/Zero-DiDCE
https://github.com/Wenhui-Luo/Zero-DiDCE


93 Page 2 of 17 A. Mi et al.

1 Introduction

Many low-light images are degraded to varying degrees. Low-light image enhancement
methods were proposed to solve such problems and applied to various fields [1].

Supervised learning methods mostly require a terrific amount of paired training data
much-paired to achieve excellent performance. However, capturing many low-/normal-light
images takes much work, limiting its application. Therefore, some scholars proposed to use
of synthetic data. Nevertheless, synthetic data leads to poor generalization performance when
processing images of natural scenes. To address these problems, some scholars have proposed
unsupervised learning methods, such as GAN-based [2, 3] and zero-shot learning methods
[4, 5], which can be trained without using paired data and have achieved good enhancement
results. GAN-based methods [2, 3] use adversarial learning to achieve low-light enhance-
ment, which requires careful training data selection to achieve better enhancement results.
Zero-shot learning methods, such as Zero-DCE [4] and Zero-DCE++ [5] consider low-light
enhancement as a image-specific curve estimation task with deep networks. These methods
propose several loss functions to guide the model training and achieve image enhancement
after a fixed curve iteration, as shown in Fig. 1.

The fixed iteration scheme results in limited dynamic adjustment ability and cannot han-
dle different exposure images. Most of these methods require carefully selective images
containing multiple exposure levels for training to achieve better enhancement results. This
limitation on datasets reduces the robustness of the model. Many unsupervised methods are
adept at enhancing ordinary low-light images but perform poorly on uneven and extremely
light images. It is challenging to process extremely low light, overexposed, and uneven light
images using one model, as shown in Fig. 2.

We propose a novel Zero-DiDCE algorithm to address the above problems. It not only has
lower restrictions on training data but also can process images with different exposure levels,
which significantly improves the model’s generalization. The adaptive light enhancement
curve evaluates and calculates the input image through amplitude controller, iterator, and
DiDCE-Net and adjusts the curve according to the enhanced results to obtain the final image.

The adaptive light enhancement curve (ALE-curve) is designed to handle images with
different exposure levels. ALE-curve performs different levels of enhance, suppress, or

Fig. 1 Comparison of the overall framework of Zero-DCE, Zero-DCE++, and Zero-DiDCE
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Fig. 2 Visual comparisons of Zero-DiDCE, Zero-DCE and Zero-DCE++. The Zero-DCE and Zero-DCE++
enhanced images appear overexposed and underexposed. Zero-DiDCE performs best in terms of image detail,
color, and contrast, especially in terms of color, such as more realistic colors in house tiles, grass, and sky
backgrounds

maintain operations by calculating the difference between the input image and the target
light level. The iterator and amplitude controller can perform different numbers of itera-
tions and enhancement amplitudes depending on the input image. The iterator and amplitude
controller effectively avoid overexposure and underexposure problems in some images. The
piecewise non-reference loss function and DiDCE-Net can enhance the learning ability of the
model. The piecewise non-reference loss function guides the learning of the input image and
inverse input image by DiDCE-Net based on the loss of input image lighting information.
The improved learning capability further reduces the limitations of the training data. The
iterator and ALE-curve can also be used for other algorithms.

Our contributions are summarized as follows:

• We propose a novel low-light enhancement method that is less restrictive for training
data. It does not rely on paired or unpaired multi-exposure data, further avoiding the risk
of overfitting and possessing stronger robustness.

• We propose a new adaptive light enhancement curve. The curve can perform differ-
ent enhancement, suppression, or maintenance operations by determining the difference
between the input image and the target light level.

• We propose an iterator, amplitude controller, and piecewise non-reference loss functions.
The former two can develop appropriate enhancement or suppression amplitudes. The
latter guides DiDCE-Net training based on the loss of light information in the input
image.

• Wehave conducted numerous experiments, resulting inZero-DiDCEoutperformingother
methods.
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2 RelatedWorks

The work in this paper focuses on extremely low light or overexposed images, which have
been rarely covered in previous work. Related work is reviewed below.

2.1 Conventional Methods

Histogram Equalization (HE) performs nonlinear stretching of gray image values by adjust-
ing the input image’s histogram so that the gray level is evenly distributed over the entire
gray range, achieving low-light enhancement by increasing the overall contrast of the image.
However, conventional HE algorithms may result in overexposure of the image. Thus, some
scholars have proposed brightness-maintaining [6] and contrast-limiting [7] schemes. Meth-
ods [8–13] based on Retinex theory have received increasing attention compared to methods
with Histogram equalization. The Retinex model approach usually decomposes the low-
illumination image into reflectance and illumination components by a priori or regularization
methods, and the estimated reflectance component is considered the result of enhancement.
Guo et al. [14] used the maximum intensity of pixels in the RGB channel to estimate the
illumination map, which was then refined by a structural before achieving enhancement.
Fu et al. [15] used a weighted change model to estimate the input image’s reflectance and
illumination. Retinex theory only sometimes holds, leading to color restoration.

2.2 Deep LearningMethods

Most deep learning-based methods have better enhancement effects than conventional meth-
ods. Lore et al. pioneered a deep learning-based LLIE method called LLNet [16]. After that,
many methods have been proposed, including supervised learning methods [17–22], unsu-
pervised learning methods [2], zero-shot learning methods [23–26], and semi-supervised
learning methods [27, 28]. Zhu et al. [29] proposed an EEMEFNmethod to achieve enhance-
ment through multiple exposure fusion and edge enhancement. Yang et al. [27] proposed
a deep recursive band network (DRBN). DRBN obtained an improved representation by
recombining the given bands. DRBN improved performance through long short-term mem-
ory (LSTM) networks [28]. Ma et al. [30] proposed a self-calibrating illumination framework
for low-light image enhancement. Zhang et al. [23] proposed the ExCNetmethod, which used
a network to estimate the S-curve of the input image and a bootstrap filter [31] to separate
the base and detail layers. Weber contrast [32] blended the detail and adjusted the base layers
for low-light enhancement. Zhang et al. [33] constructed a new lightweight architecture that
works better on CPU devices. Peng et al. [34] presented a nonconvex method for denois-
ing hyperspectral images that separates low-rank and sparse components more accurately.
EnlightenGAN [2] used U-Net [35] as a generator and global–local discriminator to ensure
the realism of the enhanced images. Since the training does not use paired training data, it
has better robustness but requires careful training data selection. Chen et al. [36] proposed a
new solution from the perspective of sparse representation by combining global metrics with
traditional local metrics via deep fusion networks.

Zero-DiDCE is more capable of learning than Zero-DCE and Zero-DCE++. Firstly,
DiDCE-Net improves the learning ability of Zero-DiDCE by learning images in dual illu-
minations. Secondly, the iterator and amplitude controller estimate the optimal curve, which
improves the processing power of Zero-DiDCEwhile reducing the limitation of training data.
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Fig. 3 Overall framework of Zero-DiDCE. DiDCE-Net, iterator, and amplitude controller estimate the best
enhancement curve

3 Method

Zero-DiDCE has deeper zero-shot learning and can handle different exposure images. Zero-
DiDCE is shown in Fig. 3.

Given the input image I , DiDCE-Net estimates the lighting information from the dual
illuminations of the input image I and obtains the curve parameter maps for the adaptive
light enhancement curve. The iterator and amplitude controller will be designed as a targeted
enhancement scheme based on the light level of I and further adjust the adaptive light
enhancement curve precisely to achieve the best enhancement or suppression effect. Iterate
the ALE-curve according to the enhancement scheme and curve parameter map to obtain an
enhanced image.

3.1 Adaptive Light Enhancement Curve

In order to reduce the model’s dependence on training data and handle images with different
exposure levels, we design an adaptive light enhancement curve. The ALE-curve is highly
flexible and dynamically adjustable, allowing the light level of an image to be enhanced or
suppressed to a specified interval by iteration. ALE-curve is expressed as:

ALEn (x) = ALEn−1 (x)

+A (x)
(
ALEn−1 (x)2 − ALEn−1 (x)

) α − ALEn−1 (x)

β − ALEn−1 (x)
(1)

where ALEn (x) is the result of the enhancement ALEn−1 (x), ALE0 (x) represents the
initial input image. In this paper, n is dynamic, the iterator controls the size of n, and n controls
the number of iterations. A (x) is a curve parameter map, and β controls the enhancement
amplitude. Naturally, we consider the appropriate exposure level for an image to be around
0.6. The algorithm uses α = 0.63 as the target light level of the image.
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Fig. 4 The horizontal axis indicates the light level of the image, while the vertical axis indicates the appropriate
enhancement or suppression amplitude. β-value is a representative amplitude distribution. Considering that it
is impossible to visualize all amplitude values of 1000 images, representative amplitude values are selected to
facilitate the observation of their distribution characteristics. β-curve indicates the amplitude curves

3.2 Amplitude Controller

The amplitude of enhancement or suppression required for images with different exposure
levels is different, andusing the sameamplitudewill affect the quality of the processed images.
The optimal enhancement or suppression amplitude required for different exposure images
was determined through extensive experiments. LOL [37] contains only a large number
of standard and low-light images, and SICE [38] contains a wide range of images with
different exposure levels, so they were chosen for the experiment. One thousand images
from the SICE [38] and LOL [37] datasets with different exposure levels were selected
for the experiment. The enhancement and suppression amplitude values of the images with
suitable different exposure levels were found and recorded by many tests. Considering the
unavoidable differences between image samples, the enhancement or suppression amplitude
of images with the same exposure level has a specific pattern to follow. The amplitude values
of the different distributions are fitted by a simple and effective amplitude curve, as shown
in Fig. 4.

Three different curves were designed according to the distribution of amplitude values.
The best-fit β − curve1 is selected as the fitting curve to calculate the best enhancement
or suppression amplitude required for the input images with different exposure levels. Not
only that, a reasonable enhancement amplitude can effectively avoid amplification noise. The
amplitude curve is expressed as:

β = −0.79x2 + 0.81x + 1.41 (2)

3.3 Iterator

Zero-DCE and Zero-DCE++ use eight iterations to enhance images. They do not consider the
processing of images with different exposures, so the generality of these methods is limited.
The iterator is designed to select the appropriate number of iterations for the input images.
The design of this module is similar to the amplitude controller, fitting the iterative scheme
required for differently exposed images through an iterative curve, which is denoted by Ii ter .
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Fig. 5 The architecture of DiDCE-Net. The convolutional layer consists of 32 convolutional kernels. The size
of the convolution kernel is 3×3, and the stride is 1. ⊕ represents element-wise addition

The Ii ter is defined by the following equation:

Ii ter =

⎧
⎪⎨

⎪⎩

−25x + 10, x < 0.1

17.14x2 − 15.14x + 10, 0.1 ≤ x < 0.45

5.66x2 − 2.93x + 7.2, x ≥ 0.45

(3)

n = �Ii ter� (4)

where x denotes the normalized image pixel mean value, n is the number of iterations. Given
the input image, the iterator extracts the lighting information and develops a suitable iteration
scheme.

3.4 Dual-Illumination Deep Curve Estimation Network

Most current deep-learning methods tend to extract the lighting information of the input
image. However, the reversed input image also contains much lighting information. In the
input image after reversal, underexposed regions are represented as overexposed, and over-
exposed regions will be represented as underexposed. Therefore, this method uses the input
image and the inverted input image together to represent the light estimation problem of the
image. In thisway, themodel can acquire information on different light intensities in one input
image, reducing the model’s limitation on the training data and improving the model’s gen-
erality. DiDCE-Net can extract the lighting information of the input image and the inverted
input image separately, thus allowing the model to learn richer lighting information. The
architecture of the DiDCE-Net is shown in Fig. 5.

Firstly, after image I input, the inverted image (I ′) is calculated by I ′ = 1− I . Secondly, a
4-layer side-by-side ordered ordinary CNN convolution is executed on the input and inverted
input images. The first 3 convolution layers consist of 32 convolution kernels of size 3 × 3
with a step size of 1, where a ReLU activation function follows each layer. The last layer
is a Skip-Connection convolutional layer with a Tanh activation function. Finally, the two
output three-channel (RGB) curve parameter maps are combined to obtain each iteration’s
final parameter map A (x). The 4-layer convolutional structure is very lightweight, which is
a significant advantage on devices with limited computational resources.
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3.5 Piecewise Non-reference Loss Function

Low-light images have a certain degree of information loss, especially those with extremely
light. The piecewise non-reference loss function can distinguish between extremely light
images with more information loss and general low-light images with less information loss
and perform different losses separately.

The piecewise non-reference loss function (L) contains two parts of loss with different
weights (W1,2 for weights), determined by the regional light quality of the input image to
perform different losses as a function. L is expressed as:

L =
{
W1L1, Yi ≤ Q1orYi ≥ Q2

W2L2, Yi ∈ (Q1, Q2)
(5)

In the first part, when the local area of the input image is extremely low light or overexposed,
the difference between the light quality of its local area and good light is evaluated, i.e., L1.
(Yi indicates the area light quality of the input image. Q1,2 is the threshold value (Q1,2 ∈
(0.2, 0.8)) that distinguishes between extremely low light or overexposed images. When
Yi ≤ Q1 or Yi ≥ Q2, it indicates an extremely low light or overexposure and performs L1

loss. Otherwise, it indicates an area of general light and performs L2). L1 is expressed as:

L1 = 1

K

∑K
e=1 (Ye − E)2 (6)

where K is the number of local areas of size 16× 16, and Ye denotes the regional light quality
of the enhanced image. E is the well-lighted value, set to the gray level in RGB color space.

In the second part, when the input image is in the general light interval (Yi ∈ (Q1, Q2)),
the difference between the light quality of the local area of the image and thewell-light quality
is evaluated, i.e., L2. m here is responsible for controlling L2 the weights. L2 is expressed
as:

L2 = 1

K

∑K
i=1,e=1 (Ye − E)2

1

1 + mYi
(7)

4 Experiments

4.1 Implementation Details

Firstly, to demonstrate that Zero-DiDCE is less limited to data. This experiment uses two
datasets with different exposure levels, and the following conditions must be satisfied:

1. The number of identical scene images is the same between the two datasets.
2. There are no images other than the images of the same scene between the datasets.
3. There is only variation in the exposure level of the images.

Two datasets with the same scene but different exposures are designed on the LOL dataset
[37] for the experiments, with an image size of 400 × 600 and jpg format. In the first one,
the normal light image of the LOL dataset is selected twice for training to verify the learning
ability of the model in the absence of low-light images, called Lack-Low. In the second one,
the 485 low-light images are selected twice as the dataset to verify the learning ability of the
model when using a dataset lacking exposure information, called Lack-Exposure.

Secondly, the LOL dataset [37] is selected for quantitative experiments. The algorithm is
also visually compared on the SICE [38] and DICM datasets. SICE [38] and DICM contain
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Fig. 6 Zero-DiDCE applies a visual comparison of different curves. Zero-DiDCE-LE indicates Zero-DiDCE
with the LE-curve. Zero-DiDCE-ALE indicates Zero-DiDCE with the ALE-curve

images with multiple exposure levels and can visualize the enhancement effect of Zero-
DiDCE on images with different exposures.

This experiment uses NVIDIA A100 GPU. The batch size is set to 8, and the network is
optimized by training 100 cycles from zero, using an ADAM optimizer with a learning rate
of 1e−4. We used three metrics Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM) [39], andNeural ImageAssessment (NIMA), for quantitative comparison. The higher
the PSNR value, the less distortion in the image; the higher the NIMA score, the better the
image. SSIM is a measure of the similarity between two images, and the higher the value,
the smaller the degree of loss of the image.

4.2 Ablation Studies

We design ablation experiments to prove the validity of each part of the model by replacing
or removing ALE-curve, iterator, and amplitude controller. Some of the methods are applied
to other networks to see if they can improve the performance of similar networks.

Advantage of adaptive light enhancement curve. The LE-curve replaces the ALE-curve in
Zero-DiDCE, and Fig. 6 shows the results of both visualizations. The LE-curve is expressed
as:

LEn (x) = LEn−1 (x) + A (x)
(
LEn−1 (x) − LEn−1 (x)2

)
(8)

Zero-DiDCE-ALE performs well, and its enhanced images are naturally exposed with
clear details. Zero-DiDCE-LE image overexposure. ALE-curve is irreplaceable in the model.

ALE-curve can enhance the performance of other models. The ALE-curve is used instead
of the LE-curve in Zero-DCE++ [5]. Since the remaining parameters of Zero-DCE++ cannot
be changed, we plan to use the ALE-curve instead of the LE-curve of Zero-DCE++ when the
light level of the enhanced image is higher than 0.7 (α = 0.65, β = 1.95). The experiment
is shown in Fig. 7.

Zero-DCE++-ALE has the best enhancement results with more natural lighting. ALE-
curve greatly enhances Zero-DCE++’s ability to handle different exposure levels of images
and improves the model’s generality.

Effect of target light level (α).We evaluated the effect of the target light level. Three sets of
significantly different α values (0.43, 0.63, and 0.83) were used in this experiment to facilitate
the observation of the differences among them. Figure8 illustrates a visual comparison of
different α values.

The algorithm allows flexible adjustment of the image exposure level by setting different
α. Thus, Zero-DiDCE can synthesize low-light datasets with different exposure levels using
the ability of α to adjust the images. The potential of Zero-DiDCE for synthesizing low-light
datasets will be explored in the future.
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Fig. 7 Visual comparison of Zero-DCE++ [5] before and after using ALE-curve. Zero-DCE++-ALE indicates
the visible result of Zero-DCE++ after using the ALE-curve

Fig. 8 Comparison results using different values of α. Zero-DiDCE-α indicates the results of the runs using
different values of α

Fig. 9 Visual comparison of different α values

In addition, three sets of α values (0.53, 0.63, and 0.73) were designed for this experiment
to illustrate the excellence of α selection values, as shown in Fig. 9.

The grass is slightly overexposed when α = 0.73 and the grass color is slightly whitish.
When α = 0.53, the grass is underexposed. When α = 0.63, the visual effect is the best.
Grass exposure is most natural.

Advantage of the iterator. The algorithm uses a fixed number (3, 5, 7, and 20) of iterations
instead of an iterator. Figure10 shows the visualization of the different iteration schemes.

Zero-DCE++ increases the image’s brightness as the number of iterations increases. Zero-
DiDCE does not increase the light level of the image infinitely with the number of iterations,
and even using 20 iterations cannot cause overexposure of the enhanced image. As a result,
the ALE-curve has a strong dynamic adjustment capability. The ALE-curve can gradually
converge the input image illumination to α by successive iterations. However, this does
not mean that the more iterations, the better the enhancement effect. Firstly, the optimal
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Fig. 10 Visual comparison of the two methods using the same number of iterations. I ter − i denotes the result
of running with a fixed number of i iterations

Table 1 Comparison of different
iterative schemes

Method PSNR↑ SSIM ↑ NIMA↑
Zero-DiDCE-3 10.15 0.45 3.87

Zero-DiDCE-5 13.36 0.63 4.03

Zero-DiDCE-7 17.15 0.71 4.34

Zero-DiDCE-20 15.56 0.61 4.57

Zero-DiDCE-iter 18.23 0.72 4.52

Zero-DiDCE-i means use i iterations, and iter means iterator. The best
results are highlighted in bold

Fig. 11 Visual comparison of Zero-DCE++ [5] before and after using the iterator. Zero-DCE++-iter indicates
the running result of Zero-DCE++ after using the iterator

iteration scheme varies for each input image, and using a fixed iteration schemewill affect the
network’s computational complexity and reduce the model’s efficiency. Secondly, too many
iterations do notmake the enhanced image brightness infinitely close toα butwill make it stay
near α and cannot continue to improve. Therefore, Zero-DiDCE’s iterator is designed with
targeted iteration schemes for different images to reduce the computational complexity of the
network while improving computational efficiency. The results of quantitative comparison
of different iterative schemes are shown in Table 1.

As shown in Table 1, the scheme using the iterator performs the best. The iterator plays
an important role.

Iterator can be applied to Zero-DCE++ [5] to improve its performance. Using an iterator
instead of the fixed number of 8 iterations scheme in Zero-DCE++, keeping the remaining
parameters unchanged, the run results are shown in Fig. 11. Since the two methods are
entirely different regarding network structures, enhancement curves, and loss functions, their
enhancement strengths are not the same. So the dynamic range of the iterator needs to be
controlled between 2 and 10 iterations.
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Fig. 12 Visual comparison of the model using fixed amplitude values with the amplitude controller. β=1/β=2
indicates the results of the run using fixed amplitude values

Table 2 The algorithm compares
the results separately after using
the amplitude controller and fixed
amplitude values. The best results
are highlighted in bold

Method PSNR↑ SSIM ↑ NIMA↑
β=1 17.56 0.64 4.61

β=2 14.98 0.69 4.17

Zero-DiDCE 18.23 0.72 4.52

Table 3 Comparison of different
networks. The best results are
highlighted in bold

Method PSNR↑ SSIM ↑ NIMA↑
CNN-3 18.00 0.72 4.50

CNN-4 18.23 0.72 4.52

CNN-5 18.23 0.72 4.52

Zero-DCE++-iter has the best enhancement, with sharper image details and more natural
lighting. Zero-DCE++ images show underexposure and overexposure.

Advantage of amplitude controller. The experiment compares the effect of the amplitude
controller and the fixed amplitude value on the algorithm, as shown in Fig. 12.

When β = 1, the enhanced image appears overexposed. When β = 2, local areas of the
image appeared underexposed, such as dark walls. Zero-DiDCE had the best enhancement
with an image. The walls did not appear overexposed or underexposed.

Additionally, the amplitude controller and the fixed amplitude values were compared
quantitatively, as shown in Table 2.

Zero-DiDCE performs optimally in evaluationmetrics. It is necessary to use the amplitude
controller to design various degrees of enhancement or suppression for different images.

Effect of DiDCE-Net. The input image and the inverted input image perform side-by-
side ordered ordinary CNN convolution of different layers (3, 4, and 5) denoted as CNN-3,
CNN-4, and CNN-5. Skip connection in a network connects only the first and last layers of
the network.

Observation of Table 3 shows that CNN-3 performs lower than CNN-4 and CNN-5. CNN-
4 has the same enhancement effect as CNN-5, but the network complexity of CNN-5 is higher
than that of CNN-4. The algorithm chooses CNN-4 as the network structure.
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Fig. 13 Effect of different enhancement or suppression schemes on image noise. n − β indicates the scheme
of Zero-DiDCE using n iterations and β amplitude values

4.3 Benchmark Evaluations

The performance of Zero-DiDCE is tested through comparative experiments with other algo-
rithms.

Analysis and effects of image noise. Low-light images are usually accompanied by some
degree of noise. Most current low-light enhancement methods choose to deal with their noise
problem after image enhancement, which poses a problem. This model requires an additional
denoising module, which increases the complexity of the model and reduces computational
efficiency. This is unacceptable, especially on devices with limited computing resources,
such as mobile devices. Zhang et al. [40] proposed a self-supervised method to reduce noise
while improving image contrast, avoiding image blur caused by pre- or post-enhancement
denoising. Inspired by this, we have conducted many experiments and found that many noise
problems of enhanced images are due to unreasonable enhancement methods that amplify
the noise. The noise of the images themselves is not severe. Zero-DiDCE precisely controls
the enhancement or suppression intensity of each input image through ALE-curve, iterator,
and amplitude controller to avoid amplifying image noise, resulting in noise attenuation, as
shown in Fig. 13.

As shown in Fig. 13, the amplitude controller and iterator play a massive role in avoiding
amplified image noise. When the enhancement intensity of the input image is low, the image
has an underexposed problem, such as n8/9 − β2. When the enhancement intensity is too
large, it inevitably amplifies the noise of the image, such as n8/9/20 − β1 with n20 −
β2. Zero-DiDCE achieves good exposure and low noise, which shows that a well-designed
enhancement intensity for each image can significantly enhance low-light images and avoid
noise problems.

Deeper zero-shot learning. Compared to existing zero-shot learning methods [4, 5],
Zero-DiDCE has lower limitations on training data and does not require a dataset containing
multiple exposure images. The experimental result is shown in Fig. 14.

When using Lack-Exposure, the training dataset lacks exposure information. Zero-DCE
[4] and Zero-DCE++ [5] are slightly overexposed, resulting in unrealistic colors.When using
the dataset Lack-Low, which lacks low-lighting information, the images of Zero-DCE [4]
and Zero-DCE++ [5] show significant underexposure. The mainstream zero-shot learning
methods still have some limitations in the training dataset selection. They cannot learn the
correct exposure information when the training dataset lacks exposure information, resulting
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Fig. 14 Visual comparison on the Lack-Exposure and Lack-Low datasets

in the overexposure of their enhanced images. If low-lighting information is lacking in the
dataset, the model cannot learn the accurate low-lighting information, resulting in underex-
posed images after restoration. Thanks to the specially designed piecewise non-reference loss
function, DiDCE-Net, and ALE-curve, Zero-DiDCE has a more robust learning capability.
The model learns critical information despite the lack of lighting information in the training
dataset. Zero-DiDCE images performed the best. Compared with existing zero-shot learning
methods, Zero-DiDCE has fewer restrictions on the dataset and more learning capability.

Visual comparisons. Comparedwith othermethods, Zero-DiDCEcan process imageswith
different exposure levels better. The visual comparison of Zero-DiDCE with other methods
is shown in Fig. 15.

Zero-DiDCE performs best when processing input images with different exposure levels.
The model increases exposure levels in underexposed areas, maintains well-exposed areas,
and suppresses overexposed areas.

Zero-DiDCE images perform best when the input images are low-light ones (Fig. 15a/b/c).
MBLLEN [41] contrast is too high, and shadow areas cannot be corrected. RetinexNet’s [37]
images suffer from color bias. EnlightenGAN [2] and Zero-DCE++ [5] suffer from a slight
underexposure (Fig. 15a). Zero-DCE++ [5] and Zero-DCE [4] are gradually overexposed as
the exposure level increases.

When the input image is a normal light image (Fig. 15d), RetinexNet [37], EnlightenGAN
[2], Zero-DCE++ [5], and Zero-DCE [4] images are overexposed. MBLLEN [41] contrast is
too high, and the exposure of shadowed areas cannot be corrected.

The overexposure phenomenon of RetinexNet [37], EnlightenGAN [2], Zero-DCE++ [5],
and Zero-DCE [4] images is more severe when the input image is overexposed (Fig. 15e).
The Zero-DiDCE image is closest to the Reference image.

Quantitative comparisons. Experiments were performed on the LOL [37] for quantitative
comparison with other methods. As shown in Table 4, Zero-DiDCE performs best even
without using paired or unpaired multiple exposure data as the training dataset.

5 Conclusion and FutureWork

We propose a zero-reference dual-illumination deep curve estimation method for low-light
image enhancement. Zero-DiDCE is less restrictive on training data than current zero-shot
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Fig. 15 Visual comparison with other methods on differently exposed images

Table 4 Quantitative comparison
of results. The best results are
highlighted in bold

Method PSNR↑ SSIM ↑ NIMA↑
MBLLEN [41] 17.90 0.71 4.37

RetinexNet [37] 16.77 0.42 3.37

EnlightenGAN [2] 17.48 0.71 4.36

Zero-DCE++ [5] 14.11 0.50 4.60

Zero-DCE [4] 14.86 0.58 4.09

Zero-DiDCE 18.23 0.72 4.52

learning methods. It also handles images with different exposure levels well and outperforms
various advanced algorithms in subjective and objective metrics. These are achieved through
the powerful adjustment capabilities of the adaptive light enhancement curve. The curve
ensures accurate and targeted adjustment through DiDCE-Net, piecewise non-reference loss
function, amplitude controller, and iterator. The algorithm still has room for improvement in
suppressing image noise. In the future, we will further explore the image noise problem to
improve the image enhancement effect.
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