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Abstract
Event Detection (ED) is a crucial information extraction task that aims to identify the event
triggers and classify them into predefined event types. However, most existing methods did
not performwellwhenprocessing eventswith implicit triggers.Andmostmethods considered
ED as a sentence-level task, lacking effective context for event semantics. Moreover, how
to maintain good performance under low resource conditions still needs further study. To
address these problems, we propose a novel end-to-end ED model called DE3TC, which
Detects Events with Effective Event Type Information and Context. We construct an event
type-specific Clue to capture the interaction between event type name and trigger words,
providing event type information for implicit triggers. For accessing the effective context of
event semantics for sentence-level ED, we consider the correlations between types and select
similar types’ descriptions as context. With contextualized representation from a contextual
encoder, DE3TC learns the event type information for all events including implicit ones. And
it performs sentence-level ED efficiently with effective contexts. The empirical results on
ACE 2005 and MAVEN datasets show that: (i) DE3TC obtains state-of-the-art performance
comparedwith previousmethods. (ii) DE3TC is also excelled under low-resource conditions.

B. Liu and L. Zhang have contributed equally to this work

B Xin Wang
wangx@tju.edu.cn

Boyang Liu
lby_014@tju.edu.cn

Guozheng Rao
rgz@tju.edu.cn

Li Zhang
zhangli2006@tust.edu.cn

Qing Cong
chf@tju.edu.cn

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

2 School of Economics and Management, Tianjin University of Science and Technology, Tianjin
300457, China

3 Tianjin Key Laboratory of Cognitive Computing and Applications, Tianjin 300350, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11570-8&domain=pdf


   89 Page 2 of 20 B. Liu et al.

Keywords Event detection · Event type information · Effective context · Low-resource
learning

1 Introduction

Event Detection (ED) is an essential yet challenging information extraction task in the field
of Natural Language Processing. An event is identified by a word or a phrase called event
trigger which most represents that event. Given an input text, ED aims to identify the event
triggers and classify them into predefined event types. For instance, in the input sentence
“Stewart’s 1979 marriage to Alana Hamilton lasted five years and produced two children.”,
an EDmodel needs to recognize the word “marriage” as an event trigger and predict its event
type as “Life.Marry”.

Early ED methods explored statistical information in the training sets and used pattern-
based methods [1–3]. Due to the excellent performance of neural network in the field of
natural language processing, many ED models used various neural networks to extract con-
textual semantic features of events [4–6], such as Convolutional Neural Networks (CNN)
[4], Recurrent Neural Network (RNN) [5], and Graph Convolutional Network (GCN) [6].
Recently, with the development of the Pre-trained Language Models [7–10] based on the
transformer [11] architecture, many powerful ED models have emerged, which better under-
stand the semantics of events in the context and havemade significant improvements [12–14].
Some of them regarded ED tasks as question answering (QA)/machine reading comprehen-
sion tasks and detected events by finding answers to pre-defined questions [14–16]. For
instance, Du et al. [14] formulated ED as a QA task and designed several queries for event
triggers. Some generation-based methods manually defined templates or output formats to
accomplish event detection [17–19]. They utilized event type information and achieved good
performance. Lu et al. [18] designed a sequence-to-structure network and generated different
structures for different event types. Hsu et al. [19] proposed a generation-based method and
manually designed a prompt containing event type descriptions to guide the process of event
detection. According to Liu et al. [20], to better leverage the capabilities of pre-trained lan-
guagemodels (LM), variousmethods reformulate downstream tasks, making themmore akin
to those solved during the original LM training with the help of a textual prompt. The prompt
is derived from the original input using a designed template and serves as the input for the
LM. Prompt-based methods reformulate the target task into a generative task, attempting to
learn a LM to perform the original task, reducing or obviating the need for large supervised
datasets. This process requires additional labor for both task reformulation and template
design.

There are still three problems as follows that have not been solved:
(1) How to detect event with implicit trigger simply but efficiently?
In real-life situations, events within the text may often be implicit. In these cases, trigger

words do not explicitly convey the semantics of events. For example, as shown in Fig. 1
(Example 1), we can easily tell that the word “marriage” is the trigger for the event type
“Life.Marry”. However, in Example 2, it is challenging to determine that “deployed” is
the trigger word for the event type “Movement.Transport”. Therefore, we need event type
information to identify such trigger words.

Most existing methods were unable to handle this situation satisfactorily. The interaction
between event types and trigger words provides event type information, which greatly aids
in identifying implicit trigger words. Some excellent methods based on QA or machine
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Fig. 1 Two examples of sentence-level event detection from ACE 2005 dataset

reading comprehension only provided a keyword as a query for the event type, for example,
“[EVENT]”. However, these methods failed to obtain event type information. Some prompt-
based methods designed different templates for each event type. They may capture the event
type information to some extent. But they required a significant amount of manual effort,
which is not feasible in real-life applications.

(2) How to access effective context of event semantic for sentence-level ED?
Context is essential for semantic understanding. The sentence-level event detection task

often lacks effective context. It is difficult to identify the trigger words based solely on
the semantics of a single sentence. As shown in Fig. 1 (Example 2), the sentence lacks
effective contextual information of event semantic. If we provide more event semantics for
“Movement.Transport”, the model can identify “deployed” as the trigger word more easily.

Furthermore, most existing methods ignored the correlations between similar event types,
which provide valuable contextual information of event semantic. For example, (“Trans-
fer.Money”, “Transfer.Ownership”), (“Execute”, “Sentence”) are two pairs of similar event
types, and there are prominent correlations between them. The correlations between similar
event types can provide effective context and help the model learn more semantic knowledge
[21].

(3) How to achieve good performance under low resource conditions?
Most existing EDmethods followed the supervised learning paradigm and relied on a large

number of high-quality annotated texts. When training data is insufficient, their performance
becomes suboptimal. In practical applications, it is very expensive to obtain high-quality
annotation data. Therefore, how to design an efficient ED model that can achieve good
performance with only a small amount of annotated texts has become a key challenge.

To address all these problems, we propose a novel model named DE3TC, which Detects
Events with Effective Event Type Information and Context in an end-to-end way, as shown
in Fig. 2. We design a Clue for each event type to capture interaction between event types
and trigger words. Distinguished from prompt, our Clue is constructed automatically and
does not require additional human labor without reformulating the task. These features of
Clue make our approach more practical in real-world applications. DE3TC obtain event type
information simply but efficiently by capturing interaction between event types and trigger
words with Clue. And it accesses effective context of event semantics by considering the
correlations between similar event types.

Specifically, we designed an Event Type Information Constructor to construct Clues. The
effective context of event semantics can be accessed by using a Context Selector consid-
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ering the correlations between event types. The selector finds similar event types and adds
their descriptions to the input sequence as contexts. This process is automated and exhibits
good generalization. Finally, a Clue, the corresponding context and the given sentence form
the event semantic modeling sequence. Such composition enables the sequence to contain
type information and effective context of event semantics. Then we use the the Contextual
Encoder to obtain contextualized representations of the event semantic modeling sequence.
With event type information and effective contexts, DE3TC has powerful event detection
ability and performs well under low-resource conditions. Details will be explained in Sect. 3.
Finally, DE3TC performs ED efficiently in an end-to-end way and achieves state-of-the-art
performance. Our contributions can be summarized as follows:

• We propose DE3TC, an efficient end-to-end ED model obtaining event type information
with Clue by capturing interaction between event types and trigger words simply but
efficiently with an Event Type Information Constructor.

• We design a Context Selector to obtain effective contexts by selecting similar event types
with correlations.

• DE3TC with event type information and effective contexts achieves high performance
under low-resource conditions.

• The experimental results on ACE 2005 and CASIE dataset demonstrate the strong per-
formance (state-of-the-art) of DE3TC.

2 RelatedWork

2.1 Event Detection

Event Detection (ED) is an information extraction task that has been studied for a long time.
The traditional methods collected statistical information from training sets as the knowledge
source of the ED model and used pattern-based methods [1–3]. For example, Li et al. [2]
discovered frequent patterns and aggregated strongly correlated frequent patterns together
to perform ED task. Qin et al. [3] proposed feature-based event filtering to study segment-
based news event detection. These methods were sensitive to variations in the text, making
it difficult to generalize to other datasets with different statistical characteristics.

With the development and introduction of deep learning technology, many ED methods
based on neural networks extracted contextual semantic features from each text via end-to-
end architectures [4–6]. For instance, Chen et al. [4] used a convolutional neural network
(CNN) to automatically extract lexical-level and sentence-level features. Nguyen et al. [5]
proposed to do event extraction in a joint framework with bidirectional recurrent neural net-
works (RNN). Cui et al. [6] proposed a novel architecture named Edge-Enhanced Graph
Convolution Networks (EE-GCN), which simultaneously exploited syntactic structure and
typed dependency label information to perform ED. Najafipour et al. [22] devise a neural
network-based temporal-textual framework for linking authors of short-text contents to over-
come the challenge of temporal skew in textual content. Liu et al. [23] proposed a time-aware
entity alignment (TEA)model to discover the entity evolving behaviour by exploring the time
contexts in knowledge graphs. Feng et al. [24] proposed an interlayer feature fusion-based
heterogeneous graph neural networkmodel to enhance the representation of the original input
features. Lyu et al. [25] proposed a bidirectional lattice graph attention network (BiLGAT)
to fully utilize the advantages of pretrained language model and lexicon features. However,
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all these methods had their own limitations in feature processing, such as CNN cannot learn
long distance dependencies. And they had limited understanding of context.

Recently, many studies applied powerful pre-trained language models based on the trans-
former [11] architecture to better comprehend contexts and achieve great improvements
[12, 13]. For example, Du et al. [14] introduced a new paradigm for event extraction by
formulating it as a question answering (QA) task. Based on BERT (Bidirectional Encoder
Representations for Transformers) [7] model, they designed a variety of queries and achieved
good results on event extraction by finding the corresponding answers to queries. But they
only use simple query which is a single word to perform event detection. Saaki et al. [26]
proposed a method with time-sensitive value-wise transformer to find the most suitable
individual to answer a question, which track user textual-temporal behavioral patterns via
an infinite continuous-time module. Lu et al. [18] designed a generation-based sequence-
to-structure network for unified event extraction. They first converted event records into a
labeled tree and then linearized it into a token sequence via depth-first traversal. They need
to construct a tree structure for each example, which is labor-intensive. Neither of these two
methods captured the interaction between event types and trigger words, resulting in subopti-
mal event detection performance. Hsu et al. [19] proposed a generation-based method called
DEGREE and manually designed a prompt containing event type descriptions and event
keywords. DEGREE got excellent performance on event extraction, especially under low-
resource conditions. But the design process of its prompt costs a lot of manual work, which
is unacceptable in real-world applications. Hosseini et al. [27] propose a probabilistic gener-
ative model called multi-aspect time-related influence (MATI) to consider the fact that time
includes numerous granular slots. Liu et al. [28] proposed a generative template-based event
extraction method with a dynamic prefix (GTEE-DYNPREF). GTEE-DYNPREF learned a
context-specific prefix for each context by integrating context information with type-specific
prefixes. It computed a prefix vector each time, consuming a lot of time, and did not select
context for each event type. Sheng et al. [29] performed ED task by integrating type-level and
instance-level correlations. They learned more informative type representations and lever-
aged co-occurrence events as remarkable evidence in prediction. It took into account the
event type-level dependency, but did not provide an effective context for event semantics.

In this paper, we propose DE3TC that captures event type information in a simple but
efficient way (Clue). And our method considers type-level correlations as the context of
event semantics. Compared with previous methods, our approach is not based on specific
statistical information, demonstrating strong generalization. Specifically, we use Event Type
Information Constructor to construct Clues to capture interaction between event types and
triggerwords simply but efficiently for event type information.OurClues accurately represent
event type information, and they are generated automatically. Unlike existing methods, Clues
are type-specific and constructed without the need for human labor to design them based on
different event types. The Context Selector in our method provides an effective context for
event semantics in sentence-level event detection. Distinguishing from existing methods that
recognize an event based only on a sentence, our method provides more event semantic
information through context.

2.2 Low-Resource Event Detection

Most of the existing methods relied on a large number of annotated data for events. However,
in real-world applications, obtaining high-quality annotated data is very expensive.
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Some previous ED methods performed well in low-resource conditions [18, 19]. Lu et al.
[18] proposed a generation-based sequen-ce-to-structure network that had the ability to learn
in a low-resource condition. Hsu et al. [19] used manually designed templates to achieve
good performance under low-resource conditions. However, different templates should be
specially designed for different event types,which requiresmany human resources.Wedesign
a simple Clue that does not need lots of manual work. We use Clues to capture event type
information and access the context of event semantics so that our model is able to perform
well under low-resource conditions.

3 Methodology

In this section, we present the general framework of DE3TC.We first provide an overview of
the framework (Sect. 3.1). Then we provide detailed descriptions of the three main com-
ponents of the model, Event Type Information Constructor (Sect. 3.2), Context selector
(Sect. 3.3), and Contextual Encoder (Sect. 3.4). We also give some details of the inference
(Sect. 3.5).

3.1 Framework Overview

As illustrated in Fig. 2, we first construct a set of Clues (see Sect. 3.2 for details) from the train
set for all event types to express event semantics by Event Type Information Constructor.
The Clues capture the interaction between the event types and the trigger words simply but
efficiently. This mechanism provides event type information for cases with implicit trigger
words.

Furthermore, we design a Context Selector to access the context of the event semantics.
The selector captures correlations between similar event types and utilizes their descriptions
as context, addressing the deficiency of effective context in sentence-level event detection.

Thenwe concatenate the input sentencewith its Clue and the context of the event semantics
as the event semantic modeling sequence. Finally, we put the sequence into the Contextual
Encoder to obtain the context representation. The format of the event semantic modeling
sequence is as follows:

[CLS] 〈Clue〉 [SEP] 〈Sentence〉 [SEP] 〈Context〉 [SEP],

where [CLS] is special classification token, [SEP] is the special token to denote separation.
〈Clue〉, 〈Sentence〉, and 〈Context〉 are the tokenized sequences. Finally, we accomplish
event detection by calculating the probability of each word as a trigger word for a specific
event type and get the result of event prediction.

3.2 Event Type Information Constructor

In text with implicit events, trigger words do not explicitly express event semantics, which is
common in real-life situations as illustrated in Fig. 1 (Example 2). The semantic information
of event types is crucial for the event detectionmodel. The interaction between event types and
trigger words provides semantic information of event types. The existing methods ignored
such interaction and did not have event-specific information or require a lot of manual work.
To capture the interaction between event types and trigger words for event type information,
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Fig. 2 Overall framework of DE3TC
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wedesign a novel Event Type InformationConstructor. The constructor is utilized to construct
an event “Clue” in a simple but efficient manner.

AClue is a sentence containing the event type name and a keyword list related to the event.
We design a formwork where the model fills in the event type names and the corresponding
common trigger words as the keyword list based on the input samples. By feeding the Clue
into a contextual encoder, which is bidirectional, model captures the interaction between
event types and trigger words.

As shown in Fig. 2, the Event Type Information Constructor constructs a Clue for every
event type. In practice, we collected all the trigger words in the train set for each event type
and selected the three most frequent ones as the keyword list, as shown in Fig. 2. Then we
form a complete Clue:

〈T ype name〉 is an event about 〈K eywords list〉,
where 〈T ype name〉 and 〈K eywords list〉 are special tokens respectively serving as the
placeholders of the event type name contained in the sentence and the keyword list cor-
responding to the event type. In training, we replace 〈T ype name〉 and 〈K eywords list〉
with event type name and corresponding keyword list. For example, the Clue of Move-
ment.Transport event is “Movement.Transport is an event about travel go move”.

Clues have the following advantages: (1) Clues are type-specific and contain event type
names and trigger words. Compared with the questions in QA-basedmethods [14, 15], which
were mostly one-word. Clues capture interaction between event types and trigger words and
contain more accurate event type information. (2) Compared with prompt-based methods
[19], whose prompt requires a lot of manual work, Clues are automatically generated by the
script we wrote ourselves. The script automatically generates the corresponding Clue with
the given formwork. It is simple to implement and easier to apply in practical applications.

Finally, each event type will be represented with a corresponding Clue, which contains
rich event type information. Given an input sentence of length L, {w1, w2, ...wL }, where wi

indicates the i-th token in the sentence, the corresponding Cluee is retrieved from the Clues
which are generated by Event Type Information Constructor. Then we get input sequence
with Clue as shown in Fig. 2, where {c1, c2, ...} indicates token list of Cluee.

3.3 Context Selector

Context plays an essential role in the understanding of event semantics, especially in sentence-
level ED. As shown in Fig. 1 (Example 2), it is difficult to identify the word “deployed” as
the trigger of a “Movement.Transport” event based solely on the semantics of the single
sentence. On the other hand, there are many similar event types in ED tasks. For example,
(“Transfer.Money”, “Transfer.Ownership”), they both mean to transfer things. Semantic cor-
relations exist between such event types and can be used as context to help event detection.
So we select similar event types and regard them as the context of event semantics.

Only event type names cannot accurately express type semantics. So we need to use event
type descriptions when calculating the similarity between event types. The previous section
constructed a set of Clues for all event types. We use the set of Clues as the descriptions of
event types and calculate the type similarity between descriptions to find similar types. As
shown in Fig. 2, after we get Cluee for the input sentence, we input Cluee and all other Clues
to the Context Selector as event descriptions. Context Selector first maps the descriptions
into dense representations using a sentence encoder. Then a similarity calculation module is
used to get the K most similar event descriptions to the Cluee.
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A direct method for obtaining sentence representations is to use contextual encoder, for
example, BERT [7], to obtain the representation of all tokens in a sentence, and then use the
mean-pooled result of all token representations. However, such a method derives sentence
representations from token representations, which may introduce biases in sentence repre-
sentations.We use Sentence-BERT (SBERT) [30] as our sentence encoder to get the sentence
embedding of all event type descriptions. SBERT is a modification of the BERT model that
uses siamese and triplet network structures to obtain semantically meaningful embeddings
for sentences. And it is trained on Semantic Textual Similarity (STS) data, making SBERT
suitable for obtaining sentence representations and their textual similarity.

Thenwe calculate the cosine similarity between each description and all other descriptions
and get a similarity score (range in [−1, 1]). When the score is less than 0, there is no
correlation between the two sentences. Otherwise, the two sentences are positively correlated
when the score is greater than 0. The higher the score, the more significant the correlation
between the two sentences.

Then for each event type, we sort all other types according to the similarity scores from the
largest to the smallest to obtain a list of similar type descriptions. Then we choose the top K
type descriptions as the final result of the Similar Type Selector, whereK is a hyperparameter.

Finally, we have K type descriptions as our effective context of event semantics to make
up event semantic modeling sequence with Clue and contexts as shown in Fig. 2, where
{d1, d2, ...} indicates token list of contexts.

3.4 Contextual Encoder

We obtain the event semantic modeling sequence in the format described in Sect. 3.1. Then
we use a pre-trained BERT encoder to encode the event semantic modeling sequence. The
model is trained on the Masked Language Model and Next Sentence Prediction tasks. BERT
is designed to pre-train deep bidirectional representations from the unlabeled text by joint
conditioning on both the left and the right context in all layers. The pre-trained BERT model
can be fine-tuned with just one additional output layer to create advanced models for many
natural language processing tasks.

For the tokenized event semantic modeling sequence with N tokens {wi }N
i=1, we have:

E = {ei }N
i=1, (1)

{ei }N
i=1 = B E RT ({wi }N

i=1), (2)

where E is the sequence of contextualized representations, ei is the contextualized representa-
tion of input tokenwi from the pre-trained languagemodel. The function B E RT () represents
a pre-trained BERT model. The output layer of the model predicts the event type for each
token in the sentence. More specifically, we introduce a new parameter matrix W ∈ R

H×T

where H is the hidden size of the transformer, and T is the number of event types plus one
(for non-trigger tokens). Softmax normalization is applied across the T types to produce the
probability distribution across the event types P:

P = so f tmax(EW ) ∈ R
T × N . (3)

At test time, to obtain the type for each token {ei }N
i=1, we simply apply argmax to P .

During training, we fix the parameters of SBERT, so the similar type selector’s parameters
are not updated during the training. We use cross entropy between the prediction and golden
labels as our training loss to fine-tune a pre-trained BERT model.
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Table 1 Statistics for the ACE
2005 dataset and CASIE dataset

Dataset Split # Document # Sentence # Event

ACE 2005 Train 529 17,172 4202

Dev 30 923 450

Test 40 832 403

CASIE Train 697 11,189 5044

Dev 100 1778 2138

Test 200 3208 1123

3.5 Inference

At test time, the event type information is unavailable to the model, so we calculate the
interaction results between each test sample and all event types. Specifically, for each test
sample, we take Clues of all event types and their corresponding context as input. The trigger
word with the highest probability and the corresponding event type are used as the prediction
result. For example, for input x , we construct M sequences (M is the number of event types
in the dataset):

[CLS] Cluei [SEP] x [SEP] Contexti [SEP],

where Cluei and Contexti are the Clue and context corresponding to the ith event type,
i ∈ (1, M).

4 Experiments

4.1 Dataset and EvaluationMetric

We conduct our experiments on the widely-used ACE 2005 dataset1 and CASIE dataset
[31]. ACE 2005 dataset contains 599 documents with 33 event types. It contains documents
crawled between year 2003 and 2005 from a variety of areas such as newswire, weblogs,
broadcast conversations and broadcast news. CASIE dataset comprises a corpus of 1000
English news articles from 2017 to 2019, annotated with rich, event-based information. The
dataset covers five event types, including cyberattack and vulnerability-related events. For
ACE 2005 dataset, we preprocess the data and split the dataset as training, developing, and
testing sets according to previous works [13]. For CASIE, we first remove three incomplete
annotated documents and split the dataset as training, developing, and testing sets according
to previous works [32]. Statistics of the data splits for ACE 2005 and CASIE are shown in
Table 1.

As for evaluation in ACE 2005 dataset, we compare ourmodel with previous works on two
subtasks: (1) Trigger Identification (Tri-ID): an event trigger is correctly identified if its offsets
match those of a gold-standard trigger; (2) TriggerClassification (Tri-CLS): an event trigger is
correctly classified only if it is correctly identified and classified to the corresponding event
type. Although our model DE3TC is an end-to-end model, which processes trigger word
identification and classification at the same time, we still report the trigger identification
results to compare to prior methods. As for evaluation in CASIE dataset, we report the

1 https://catalog.ldc.upenn.edu/LDC2006T06.
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results for the trigger classification subtask for comparison with the baseline models. We
report the official precision (P), recall (R) and F1 scores (F1) for evaluation and provide a
comprehensive overview of three metrics as follow:

First we define the four fundamental components of evaluation: True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN).

(1) True Positive (TP): The instances that are correctly predicted as positive by the model.
(2) False Positive (FP): The instances that are incorrectly predicted as positive by the model.
(3) True Negative (TN): The instances that are correctly predicted as negative by the model.
(4) False Negative (FN): The instances that are incorrectly predicted as negative by the

model.

Then we introduce the key evaluation metrics: Precision, Recall, and F1 Score.
Precision: Precision measures the accuracy of positive predictions made by a model. It is

calculated as the ratio of true positive predictions to the sum of true positive and false positive
predictions. Precision is particularly valuable in scenarios where the cost of false positives
is high. Mathematically, Precision is defined as:

Precision = T P

T P + F P
. (4)

Recall: Recall gauges the ability of a model to capture all instances of the positive class
within the dataset. It is computed as the ratio of true positive predictions to the sum of true
positives and false negatives. Recall is crucial in situations where missing positive instances
is costly. Mathematically, Recall is defined as:

Recall = T P

T P + F N
. (5)

F1 Score: The F1 Score is a harmonic mean of Precision and Recall, providing a balanced
measure that considers both false positives and false negatives. It is particularly useful when
there is an uneven class distribution. The F1 Score reaches itsmaximumat 1 (perfect precision
and recall) and its minimum at 0. Mathematically, F1 Score is defined as:

F1 Score = 2 × (Precision × Recall)

Precision + Recall
. (6)

4.2 Implementation Details

For the BERT encoder in DE3TC, we adopt bert-base-uncased in huggingface,2 which has
768 hidden embedding dimensions and 12 attention layers, and each layer has 12 heads. We
set the hyperparameter K to 2, which means the similar type selector selects the top 2 similar
event type descriptions. The learning rate is 4e−05, the batch size is 8. We train our models
with Adam optimizer [33] and 10%warming-up steps. Our experiments run on one NVIDIA
Geforce RTX 3090.

4.3 Baseline Methods

On ACE 2005, we compare our model with the following methods:

(1) EE-GCN [6], which simultaneously exploited syntactic structure and typed dependency
label information to perform ED;

2 https://github.com/huggingface/transformers.
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(2) OneIE [12], an end-to-end information extraction system which employs global feature;
(3) BERT_QA [14], a QA-based method that viewed event extraction tasks as a sequence

of extractive question answering problems;
(4) RCEE_ER [15], which formulated ED task as a machine reading comprehension prob-

lem;
(5) MQAEE [16], which converted event extraction to a series of question answering prob-

lems;
(6) BART-GEN [17], a template-based conditional generation method;
(7) Text2Event [18], a sequence-to-structure generation model that converted the input pas-

sage to a tree-like event structure;
(8) TANL [34], which treated ED tasks as translation tasks between augmented natural

languages;
(9) S2-JDN [35],which introduced a set of statistical features fromword-event co-occurrence

frequencies to cooperate with the contextual features;
(10) DEGREE [19], a data-efficient model that formulated event extraction as a conditional

generation problem;
(11) GTEE-DYNPREF [28], a generative template-based event extraction method with

dynamic prefix by integrating context information with type-specific prefixes to learn
a context-specific prefix for each context;

(12) CorED-BERT [29],which simultaneously incorporated both the type-level and instance-
level event correlations and reached the current state-of-the-art performance on ED. We
use its BERT encoder version as a comparison.

OnCASIE, we compare ourmodel with Text2Event andUIE [32]. UIE is a unified text-to-
structure generation framework, which can universally model different IE tasks, adaptively
generate targeted structures, and collaboratively learn general IE abilities from different
knowledge sources.

4.4 Main Results

The evaluation results are shown in Tables 2 and 3. We can observe that: (1) Our DE3TC
model outperforms all the baselines and achieves state-of-the-art performance on Tri-ID
and Tri-CLS on ACE 2005. Significantly, DE3TC improves by 1.98% in F1 score of Tri-
CLS over the best performance baselines, CorED-BERT. On the CASIE dataset, our method
significantly outperforms baseline methods, achieving a 10.78% improvement in F1 score
compared to Text2Event.

(2) Compared with DEGREE on ACE 2005, the event extraction method using prompts
with manually designed type descriptions and keywords, our model outperforms it signif-
icantly. It achieves an increase of 10.98% in F1 score of Tri-CLS. Our combination of the
Clue and context is better than the prompt in DEGREE. It can capture event type information
in the text and make the model more sensitive to implicit trigger words.

(3) The recall of our method on Tri-CLS is slightly lower than GTEE-DYNPREF in Table
2, but the precision is far higher than it. It shows that GTEE-DYNPREF integrating context
information with type-specific prefixes captures more events. However, its low precision
shows that it also captures many wrong events. Our method is good at balancing precision
and recall to achieve better comprehensive performance.
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Table 2 Precision (P), Recall (R), and F1 scores (F1) of Trigger Identification (Tri-ID) and Trigger Classifi-
cation (Tri-CLS) on ACE 2005 dataset

Tri-ID Tri-CLS
Model P(%) R(%) F1(%) P(%) R(%) F1(%)

TANL – – 72.90 – – 68.40

OneIE* 73.04 74.76 73.89 70.05 71.70 70.86

BART-Gen 72.69 76.12 74.36 69.53 72.81 71.13

TEXT2EVENT – – – 69.60 74.40 71.90

BERT_QA 74.29 77.42 75.82 71.12 73.70 72.39

DEGREE* 70.40 82.63 76.03 66.46 79.65 72.46

GTEE-DYNPREF – – – 63.70 84.40 72.60

MQAEE – – 77.40 – – 73.80

RCEE_ER – – – 75.60 74.20 74.90

EE-GCN – – – 76.70 78.60 77.60

S2-JDN 78.62 85.60 81.96 76.27 83.04 79.51

CorED-BERT – – – 79.90 81.70 81.20

DE3TC 85.25 84.61 84.93 83.5 82.87 83.18

The best results in each column of the table are shown in bold. *Marks results produced with official imple-
mentation

Table 3 Precision (P), Recall
(R), and F1 scores (F1) of Trigger
Classification (Tri-CLS) on
CASIE dataset

Model P (%) R (%) F1 (%)

TEXT2EVENT – – 67.51

UIE* 68.32 70.05 69.17

DE3TC 78.97 80.96 79.95

The best results in each column of the table are shown in bold. *Marks
results produced with official implementation

4.5 Low-Resource Experiments Results

Most existing supervised ED methods relied on a large number of annotated texts. However,
in practice, it is very expensive to obtain a large number of high-quality event annotations.
Therefore, it is particularly crucial to study the ED capability of models under low data
resources.

In order to study the quick learning ability of DE3TC under low-resource conditions, we
conduct experiments on ACE 2005 dataset under three different low-resource settings so
that the model only learns 10/20/30% of the training data. We split the data according to
the DEGREE [19]. We compare our model with OneIE [12], BERT_QA [14], Text2Event
[18], TANL [34] and DEGREE [19] as mentioned in the previous section, and report the F1
scores of Tri-CLS. The experimental results are shown in Table 4.

From Table 4, we observe that DE3TC performs best, significantly outperforms other
baselines on 20% and 30% of training data, and gets a competitive result on 10%. With
only 10% of the training data, DE3TC performs poorly. This indicates that our method
needs to capture the interactions of trigger words and event types well with minimal training
samples, resulting in poorer performance. However, results on 20% and 30% of training
data demonstrate that our model has a strong ability to learn under relatively low resource
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Table 4 F1 scores(%) of Tri-CLS
with different proportions of
training data

Model 10% 20% 30%

Text2Event 47.00 55.60 60.70

BERT_QA 50.10 61.50 61.30

TANL 54.80 61.80 61.60

OneIE 61.50 67.60 67.40

DEGREE 65.80 68.30 68.20

DE3TC 48.90 70.44 73.18

The results of the baseline models are all from the DEGREE [19]. The
best results in each column of the table are shown in bold

Table 5 Experimental results of ablation study on ACE 2005 dataset

Tri-ID Tri-CLS
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DE3TC 85.25 84.61 84.93 83.5 82.87 83.18

DE3TC w/o Clue 81.52 82.13 81.82 72.41 72.95 72.68

DE3TC w/o Context 82.54 86.84 84.64 79.48 83.62 81.49

The best results in each column of the table are shown in bold

Table 6 Experimental results of
ablation study on CASIE dataset

Model P (%) R (%) F1 (%)

DE3TC 78.97 80.96 79.95

DE3TC w/o Clue 69.49 70.75 70.11

DE3TC w/o Context 83.10 72.21 77.27

The best results in each column of the table are shown in bold

conditions. Clues and contexts contain awealth of information andworkwell when themodel
has a certain amount of training data to help the model correctly identify and classify trigger
words.

5 Further Analysis

5.1 Ablation Study

To investigate the impact of eachmodel component, we conduct ablation experiments onACE
2005 and CASIE for the two main components of the model, the Event Type Information
Constructor and Context Selector. When studying the impact of Event Type Information
Constructor, we replace the Clue in the event semantic modeling sequence with a query
for trigger (DE3TC w/o Clue). When studying the impact of Context Selector, we remove
the context of event semantics in the event semantic modeling sequence, leaving only Clue
and input sentence (DE3TC w/o Context). As in the previous section, we also report the
performance of the two subtasks, Tri-ID and Tri-CLS, using precision (P), recall (R), and F1
scores (F1) for evaluation. The experimental results are shown in Tables 5 and 6.

From Table 5, we observe that: (1) The DE3TC w/o Clue has a significant decline in
Trig-ID (−3.11%) and Trig-CLS (−10.5%) in F1 score. It shows that the Clue plays a crucial
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Table 7 F1 scores (%) of
Tri-CLS with different
proportions of training data

Model 10% 20% 30%

DE3TC 48.90 70.44 73.18

DE3TC w/o Clue 49.52 68.12 71.56

DE3TC w/o Context 59.83 74.15 78.28

The best results in each column of the table are shown in bold

role in both subtasks, especially in trigger classification. The model can learn more accurate
semantic information of event type with the Clue. (2) Without descriptions of similar types
as context, the performance of DE3TC has a prominent decline in F1 score of the Tri-CLS,
indicating that context provides more type-level semantic references for the sentence-level
ED, thus helping the model to achieve better performance on trigger classification.

From Table 6, we observe that: (1) On the CASIE dataset, the role of Clue becomes more
pronounced. In the absence of Clue, there is a remarkable decrease in F1 score for both
subtasks (−9.51% on Tri-ID and−9.84% on Tri-CLS). This indicates the significance of our
Clues, especially when dealing with events in certain specific domains. (2) Without descrip-
tions of similar types as context, our method shows a noticeable decrease in performance on
the CASIE dataset. This indicates that descriptions of similar types as context can provide
substantial assistance on sentence-level ED, including events in specific domains.

5.2 Ablation Under Low-Resource

Wealso conducted ablation experiments under low-resource conditions onACE2005 dataset.
The experimental results are shown in Table 7.

From Table 7, it shows that: (1) DE3TC w/o Context performs best, outperforms other
baselines on 20%and 30%of training data, and is competitive on 10%.However, the complete
DE3TC achieved sub-optimal performance on 20% and 30%, still significantly better than
other baselines. An interesting phenomenon is that DE3TCw/o Context performs better than
DE3TC. When only a small amount of data is available for training, the Clue captures the
event information in the sentence. Under low-resource conditions, the model does not have
enough samples to learn the semantic information of event types, and context containing other
events’ semantics becomes noise. (2) DE3TC w/o Clue performs similarly to DEGREE in
Table 4 and is superior to BERT_QA broadly. It shows that our context is of great help when
the query does not contain type-specific information under low-resource conditions.

5.3 Research on Hyperparameters

We conduct a series of experiments on the effect of hyperparameters. We extend the length
of the keyword list to {1,2,3,4,5} and study its effect on the performance of the model. At
the same time, we also studied the impact of the number of event descriptions K in context
on the model performance. In the experiment in Chapter 4, we set K to 2. In this section, we
set K to 1 as a comparative experiment. Because of the length limit of BERT input, when K
= 3 or greater, our input will be truncated in most cases, so that context cannot complete the
input into BERT.

We show the results in Fig. 3. We observed that: (1) Increasing or decreasing the length
of the keyword list negatively impacts the model’s performance. When the length is 3, the
model achieves the best performance. (2)WhenK=1, the performance of themodel decreases
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Fig. 3 Performance with different hyperparameters

significantly, with an average decrease of 2.38. This phenomenon indicates that the model
cannot fully learn event semantics when the context has only one description of similar event
types.

5.4 Research on theMethods of Sentence Encoding

In Sect. 3.3, we use SBERT [30] as our sentence encoder. In this section, we do comparison
experiments to investigate the difference in performance between SBERT and the direct
method. The directmethod for obtaining sentence representations is to use contextual encoder
to obtain the representation of all tokens in a sentence, and then use the mean-pooled result
of all token representations as mentioned in Sect. 3.3.

When using SBERT, we employed the model with the parameter “roberta-large-nli-stsb-
mean-tokens”. The meanings of the parameter are as follows: (1) “roberta-large” denotes
using RoBERTa-large [8] as the pre-trainedmodel, (2) “nli-stsb" indicates training onNatural
Language Inference (NLI) and Semantic Textual Similarity Benchmark (STS-B) task (a
task to evaluate the semantic similarity of sentences), and (3) “mean-tokens" indicates the
utilization of the mean of representations from all tokens as the representation for the entire
sentence.

For the comparisonmethod of sentence encoding,we employedRoBERTa-large as the pre-
trained model and utilized the mean of representations from all tokens as the representation
for the entire sentence. We use DE3TC w/o SBERT to represent the comparison method.
Experimental results on ACE 2005 dataset are presented in Table 8.

Table 8 Experimental results with different sentence encoding methods

Tri-ID Tri-CLS
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DE3TC 85.25 84.61 84.93 83.5 82.87 83.18

DE3TC w/o SBERT 83.74 85.61 84.66 81.06 82.67 81.85

The best results in each column of the table are shown in bold
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From Table 8, we can observe that SBERT’s special network structures and training on
the Semantic Textual Similarity task provide significant help in the sentence encoding and
the similarity computation. Thereby SBERT provides accurate descriptions of similar events
for our method to get the optimal performance.

6 Conclusion and FutureWork

In this paper, we propose a novel end-to-end event detection model, DE3TC, capturing event
type information by a Clue and accessing the context of event semantics by selecting similar
event types.

We propose Clue, which is a sentence capturing interactions between event types and
trigger words, thereby containing event type information. Furthermore, we design an Event
Type Information Constructor to obtain a simple Clue without the demand of much manual
work. In order to access the effective context of event semantics, we design a Context Selector
and find similar event typeswith correlations as context.With type-specificClue and effective
context, the model identifies trigger words and classify them efficiently. The experimental
results show that DE3TC has achieved state-of-the-art performance on the ED task. At the
same time, DE3TC also performs well under low-resource conditions. In the future, we will
study the application of our model in other information extraction tasks and explore the
generalization of our approach.
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