
Neural Processing Letters (2024) 56:102
https://doi.org/10.1007/s11063-024-11575-3

PEB-TAXO: Projecting Entities as Boxes for Taxonomy
Expansion

Yuhang Zhang1,2 · Jiwei Qin1,2 · Chongren Feng1,2

Accepted: 15 February 2024 / Published online: 12 March 2024
© The Author(s) 2024

Abstract
As domain knowledge evolves, new concepts (entities) continuously emerge, leading to a
decrease in the coverage of existing taxonomies with hierarchical structures, thus neces-
sitating the continual expansion of these taxonomies to include new concepts. Due to the
relationships (“contain”, “disjoint”, and “intersect”) between the boxes, which can effec-
tively represent asymmetric hierarchies, box embeddings have been successfully applied
in taxonomy expansion. However, existing models that use box embeddings for taxonomy
expansion have the following shortcomings: (1) the size of the boxes is not restricted, and the
model produces meaningless boxes; (2) the model does not fully utilize the geometric infor-
mation of the boxes. To address the above shortcomings, this paper proposes a taxonomy
expansion model based on projecting entities as boxes: PEB-TAXO. Firstly, PEB-TAXO
employs modified L1 regularization to constrain the box sizes in all dimensions, pushing the
box sizes towards the preset minimum, thereby avoiding the generation of meaningless boxes
by the model. Secondly, the model utilizes a box inclusion inference method: it infers the
relationship between two entities through the relationship between two boxes in geometric
space, thus fully exploiting the geometric information of the boxes for more accurate infer-
ences. Finally, we conducted extensive experiments on two public datasets and verified that
PEB-TAXO greatly improves performance over mainstream taxonomy expansion methods.
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1 Introduction

Taxonomy is an essential representation in domain knowledge, which organizes concepts
into a hierarchical taxonomic structure and uses tree diagrams to represent the hierarchical
relationships (also known as parent–child relationships) between concepts [1]. Due to the
efficiency of taxonomies in organizing knowledge concepts, taxonomies have become an
indispensable component in knowledge systems such as knowledge graphs [2] and are widely
used in many downstream applications of knowledge systems such as recommender systems,
Q&Asystems, search systems, andmore [3–6].However,with the continuous development of
domain knowledge and the rapid growth of new concepts, many existing taxonomies face the
issue of reduced coverage. Existing taxonomies are primarily curated by domain experts [7],
but updating and expanding these taxonomies require significant time, effort, and financial
resources. Therefore, researchers have utilized new concepts to automatically extend existing
taxonomies to address the reduced coverage problem, thus avoiding taxonomic obsolescence.

Researchers have proposed the task of Taxonomy Expansion (TE) to achieve automatic
expansion of existing taxonomies. The goal of this task is to find the parent concepts
(“anchors”) [1, 2] for new concepts (“queries”) [1, 2] within the existing taxonomy, to inte-
grate the new concepts into the taxonomy. For example, as shown in Fig. 1, with increasing
attention to environmental topics, many new concepts (“New Concepts” section in Fig. 1)
emerge in the environmental domain. To properly incorporate these concepts into the existing
taxonomy “Environmental Policy” (“Existing Taxonomy” section in Fig. 1), researchers need
to find the parent concepts (“Exploitation of Resources”, “Management of Resources”, etc. in
Fig. 1) for these new additions and establish parent–child relationships to achieve taxonomy
expansion (“Expanded Taxonomy” section in Fig. 1).

Common approaches to taxonomy expansion focus on capturing the parent–child hierar-
chy between queries and taxonomy nodes. In earlier studies, researchers used the semantic
relationship between two entities to learn the hierarchy. The semantics can be represented in
terms of lexical patterns [8, 9] or more powerful distributional word embeddings [10–12]. In
addition to semantic relations, recent researchers have begun to model the tree structure of
taxonomies. They use structural summaries such as local graphs [1, 13, 14] and paths [2, 15,
16] as additional signals to enhance parent–child hierarchy learning and better capture the
parent–child hierarchy between entities.

The core idea of the methods above is to learn vector embeddings for entities in the
taxonomy and then infer the existence of parent–child relationships between them by com-
puting their correlation in geometric space. However, the essence of vector embeddings is to
transform the semantic information of entities in the taxonomy into vector representations,
represented as points in the embedding space. Using vector embeddings to describe the cor-
relation between entities is actually using the Euclidean distance to measure the similarity
between two points, a measure with symmetry. But the parent–child hierarchy in taxonomy
is asymmetric and closer to the form of inclusion. Therefore, the vector embedding-based
approach cannot represent the taxonomy hierarchy well, but somewhat limits the implemen-
tation of the taxonomy expansion task.

To overcome the drawbacks of vector embedding, we use boxes to represent the entities in
the taxonomy, i.e., box embedding [17–19]. Unlike the representation of a vector as a single
point in geometric space, a box is represented as a hyper-rectangle with a geometric region,
allowing them to depict complex and asymmetric relationships, such as “contains”, “inter-
sects”, and “disjoint”. The “Management of Resources” inside the “Expanded Taxonomy” in
Fig. 1 and all its subordinate nodes are modeled as boxes, as shown in Fig. 2. We can observe
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Fig. 1 Example of taxonomy expansion

that box embeddings clearly showcase the hierarchical structure of the taxonomy. Although
box embeddings can naturally and intuitively represent the hierarchical structure of the tax-
onomy, there are still two main challenges in applying them to taxonomy expansion tasks:
(1) many models that use box embeddings for taxonomy expansion continuously decrease
the size of the boxes during the training phase to improve training efficiency, making them
infinitely close to zero. However, this practice generates numerousmeaningless boxes, result-
ing in a reduction in the robustness of the models using such embeddings; (2) mainstream
box embedding methods in the inference stage of taxonomy expansion tasks often rely on
probabilistic approaches [20], which do not fully utilize the geometric information of the
boxes. As a result, they are susceptible to data distribution interference, leading to inaccurate
inference results when noise exists in the training data. Therefore, further improvements are
needed in box embeddingmethods to better leverage their advantages in taxonomy expansion
tasks.

To address the above problem, we propose a self-supervised model for extending the
taxonomyusing box embeddings, called PEB-TAXO,which has two crucial components: box
training and box inference. Specifically, whenwe perform box training, we add amodified L1
regularisation to the model, which pushes the box towards sparsity by penalizing the absolute
value of each dimension of the box, so that the box size tends to the set minimum length
greater than zero in each dimension, thus effectively controlling the size of the box to keep
it in a suitable range, as a way of solving the problem of the model generating meaningless
boxes. Then, In the inference stage, we calculate the coordinates of the corner points of
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Fig. 2 Example of box embeddings

the child and parent boxes [21, 22]. By comparing the positions of these corner points, we
determine whether the child box is entirely contained within the parent box. Based on the
containment relationship, we generate corresponding containment indexes (calculated from
the corner point positions, see Sect. 3.3), enabling us to make clear-cut judgments on the
parent–child hierarchical structure using the geometric information of the boxes. Finally, we
conduct extensive experiments on two real-world datasets and validate the effectiveness of
our model. The results clearly show that our model performs significantly better than existing
approaches. In summary, our main contributions to this work are as follows:

(i) During the box training process of PEB-TAXO, we introduce a modified L1 regular-
ization to ensure the existence of the boxes and prevent their sizes from approaching
zero indefinitely. This prevents the generation of meaningless boxes, thus enhancing
the robustness of the model;

(ii) This paper proposes the box inclusion inference method to speculate whether two
entities are parent–child hierarchies, in this way to make full use of the geometric
information of the box, so that the model has richer information for speculation,
which improves the accuracy of the model speculation;

(iii) Numerous experiments are conducted on two real datasets to verify the validity and
stability of PEB-TAXO. And PEB-TAXO has a better performance compared with
mainstream methods.

2 RelatedWork

2.1 Taxonomy Construction

Taxonomy construction aims to create a tree-structured taxonomy from scratch that contains a
set of terms (such as concepts and entities) and integrates contextual relationships.Theprocess
canbe further subdivided into twoaspects. Thefirst aspect focuses on topic-based taxonomies,
where each node clusters several terms sharing the same topic [23, 24]. The second aspect
addresses the construction of a term-based taxonomy, where each node represents a term
itself [25]. Typically, the typical flow of this task is to first extract the “is-a” relations in the
superordinate word detection model using pattern-based models [26, 27] or distributional
models [28, 29]. Then, the mined hierarchical relationships are integrated and pruned into a
directed acyclic graph or tree. In this way, the process of taxonomy construction is achieved.
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2.2 Taxonomy Expansion

In terms of taxonomy expansion, several studies have explored it from different perspectives.
Initial approaches focused on extending taxonomies by detecting the parent–child relation-
ships between queries and anchor nodes, mainly relying on their semantic correlations, such
as using lexical patterns [8, 9] or distributional word representations [10–12]. However,
these approaches fail to fully explore the semantics of encoded structures and the catego-
rization level of knowledge. Recent work has attempted to capture these hierarchies using
different structural summaries, one typical summary being paths, which are lists of nodes
connected by categorical edges. The paths state-of-the-art technique STEAM [2] exempli-
fies a set of top-down paths in a taxonomy. STEAM converts the taxonomy expansion task
into a classification task on mini-paths. The model’s classifier accesses the taxonomy hier-
archy through paths when predicting the actual parent node of a query. It further employs
three sub-models to process the taxonomy’s distributional features, contextual features, and
lexical-syntactic features, integrating them for enhanced performance. Another study used a
local ego graph [1] to capture the local structure of an entity, which contains an entity with
all its parents and children. The researchers used graphical neural networks to encode the
local ego-graph to enhance the representation of the central entity. Apart from the abovemen-
tioned perspectives, recent research has started to approach taxonomy from various angles.
For instance, ETF [30] trained a learning-to-rank framework using manually crafted struc-
tural and semantic features. It leveraged domain-specific functional knowledge to enrich the
taxonomy, integrating domain knowledge and concepts to enhance its coverage and seman-
tic relevance. Emaad Manzoor [24] and his colleagues utilized the Arborist tool to analyze
implicit associations between entities, capturing relationships and semantic information that
was not explicitly represented in the taxonomy. This approach expanded the taxonomy’s hier-
archical structure and semantic relationships. However, these methods represent entity nodes
as high-dimensional vectors (i.e., points), which can only measure the symmetric similar-
ity between two entities, contradicting the asymmetric parent–child hierarchy in taxonomy.
Therefore, vector embedding-based methods cannot effectively represent the hierarchical
structure in taxonomy, limiting their capability in representing and extending taxonomies.
Instead, our study employs the projection of entities as boxes (i.e., high-dimensional rectan-
gles), which naturally represent asymmetric hierarchical relationships and are more suitable
for taxonomy expansion tasks.

2.3 Representation Learning with Box

Unlike vector-based embeddingmethods, box embedding uses geometric regions to represent
objects or entities, providing a more natural and intuitive way of modeling asymmetric rela-
tionships. In the early research on box embeddings, researchers learned box embeddings by
continuously optimizing the conditional probabilities of two entities forming a parent–child
relationship, establishing box embeddings from a probabilistic perspective [17]. However,
the existence of exact box-edge optimization conditional probabilities is difficult because gra-
dient missing [31] makes disconnected box pairs challenging to optimize. In a recent study,
BoxTaxo [20] proposed joint geometric and probabilistic views to learn box embeddings,
which solves the gradient missing problem. Therefore the optimization of the box represen-
tation changes to continually optimizing the geometric and probabilistic views. Still, this
continual minimization of the geometric and probabilistic losses results in the size of the
box continuously decreasing until it is close to zero, but this produces meaningless boxes.
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Fig. 3 The overview of PEB-TAXO

In our research, we introduced modified L1 regularization during the training process. This
regularization penalizes the absolute values of the dimensions of the boxes, encouraging the
boxes to move towards sparsity and have smaller values in each dimension while ensuring
that they remain more significant than zero, thus preserving the existence of the boxes. As a
result, the box embeddings possess a more stable and powerful representation ability. In this
paper, we applied box embeddings to the taxonomy expansion task and achieved excellent
results.

3 Methodology

This section will provide a detailed overview of the self-supervised model: PEB-TAXO,
whose overall framework is illustrated in Fig. 3. The framework consists of three main com-
ponents: (1) preliminary, where training samples are created from existing taxonomies, and
entities from the samples are projected from natural language into the box embeddings
through a two-stage projection process. (2) Training, where the model optimizes the boxes
through joint views (geometric view, probabilistic view, and box regularisation) so that the
boxes can represent the hierarchy more accurately. (3) Inference, PEB-TAXO projects the
query encoding inside the box. Then, it finds suitable anchors for the queries by determining
the inclusion relationship between the query box and candidate anchor boxes.

3.1 Preliminary

In the existing taxonomy, nodes represent concepts (entities). We treat each< child, parent
> pair as a positive sample and collect entities that are not ancestors of the child entity to
formnegative sample entity pairs, thus creating our training sampleswithout annotated labels.
Hence PEB-TAXO is a self-supervised model. In order to use the entities in the positive and
negative samples to optimize the boxes in the training part, we need to first project these
entities as boxes in the geometric space. For this purpose, PEB-TAXO uses a two-stage
projection process. Specifically, entities are first encoded into numeric embeddings using an
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Fig. 4 Box formation

entity encoder, and then the numeric embeddings are converted into boxes by a box projector.
We describe this two-stage projection in detail below.

3.1.1 Entity Encoder

Thepre-trained languagemodels (PT Ms) have shown impressive performance across various
natural language tasks [32]. Inspired by their success, we use PT Ms as the entity encoder to
project entities into numerical embeddings. In this paper, we adopt BERT [33] as the entity
encoder, and its representation is as follows:

ni = Bert(ei ), ni∈Rk (1)

The meaning is: For the i th entity, it is transformed into an k-dimensional numerical embed-
ding using BERT. Entities in taxonomy are typically curated by domain experts and have
definition sentences,which can be converted into the input format of theBERTmodel: “[CLS]
entity sentence [SEP]”. We embed the “[CLS]” output in the last layer of the Bert model
as the entity representation ni . This representation encodes the contextual semantics of the
entity.

3.1.2 Box Projector

After obtaining each entity’s representation ni , we project it into a box. A box embedding is
a pair of vector embeddings that form a valid axis-aligned hyper-rectangle in k-dimensional
space. A box can be defined by two points (vectors) [21], as shown in Fig. 4. Thus we use the
center point ceni∈Rk as well as the offset of fi∈Rk to determine the box bi∈Rk , which is:
bi∈(ceni , of fi ), where k is the dimension of the box embedding. It is worth noting that ceni
and of fi are vector embeddings obtained by projecting the entity representation ni using two
multi-layer perceptrons (MLPs). The projections are of the form:

ceni = MLPcen(ni ), of fi = MLPof f (ni ) (2)

Here, MLPcen and MLPof f as the projectors for the center point ceni and the offset
of fi , respectively. After obtaining ceni and of fi , we can derive the maximum corner point
(cornermax ) of the box: li = ceni +of fi , li∈Rk and the minimum corner point (cornermin):
si = ceni − of fi , si∈Rk . It is worth mentioning that cornermax and cornermin pairs can
also define the box [34].
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3.2 Training

After completing the preliminary step, we obtain the boxes for all entities in the training
samples. However, these boxes are relatively basic and may not accurately capture the rela-
tionships between entities. Therefore, in this section, we optimize the box embeddings to
represent the parent–child hierarchy accurately. In the following, we will show how to opti-
mize the box embedding from three aspects: geometric view, probabilistic view, and box
regularisation.

3.2.1 Geometric View

In this view, we first use boxes in geometric language to represent parent–child relationships.
In geometric space, a k-dimensional box consisting of a center point and an offset is a k-
dimensional hyper-rectangle. A < child, parent > pair can be semantically interpreted as
“the child is a part of the parent”. Therefore, inside a geometric space, a child hyper-rectangle
is fully contained by the parent hyper-rectangle and is part of the parent hyper-rectangle, i.e.,
a child entity is a kind of parent entity. Formally, the child box can be denoted as bc =
(cenc, of fc), one whose maximum and minimum corner points are: lc = cenc + of fc, sc =
cenc − of fc. The parent box can be denoted as bp = (cen p, of f p), whose maximum and
minimum corner points are: l p = cen p + of f p, sp = cen p − of f p. Then, the inclusion
relationship between the parent and child entities for < ec, ep > can be expressed as:

lic ≤ lip, s
i
c ≥ sip,∀i∈{1, 2, 3, . . . , k} (3)

Here i is the i th dimension denoting the embedding. Based on this, we can derive a loss
function L+

g to ensure that the boxes satisfy the geometric inclusion relationship between the
parent–child pair:

L+
g = 1

k

[
k∑

i=1

max(0, lic − lip + ξ) +
k∑

i=1

max(0, sip − sic + ξ)

]
(4)

where ξ is a hyperparameter that controls the geometric margin between the child and parent
boxes and can span all k dimensions.

In contrast to the above, the < child, negative parent > pairs in the negative sam-
ples, denoted as entity pair < ec, ep′ >, are represented in the geometric space as child
hyper-rectangles separated from their parent hyper-rectangles. To achieve this “disjoint” rela-
tionship, we force the intersection between the child box and the negative parent box to be
empty. Specifically, for a box pair < bc, bp′ > to have an empty intersection by = bc

⋂
bp′ ,

the maximum and minimum corners of by are represented as:

ly = min(lc, l p′ ), sy = max(sc, sp′ ) (5)

An empty intersection means that the size of the intersection is less than or equal to zero
in all k dimensions. Consequently, we formulate a loss function L−

g that minimizes the offset
of fy of the intersection set:

L−
g = 1

k

k∑
i=1

(of f iy − η)2 (6)

Here η is the hyperparameter used to adjust the intersection margins. When we control
this hyperparameter η to be less than zero, we force the separation of the child box from
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the negative parent box. The intersection offset in the loss function can be found like this:
of fy = 1

2 (ly − sy).

3.2.2 Probabilistic View

Next, we will introduce how to represent parent–child relationships using box embeddings
from a probabilistic perspective. We begin by defining a concept: Immediate family proba-
bility.

Definition 3.1 (Immediate family probability) The Immediate family probability P(eb|ea) is
the probability of the event: “For a given entity ea , another entity eb can be reached along an
edge of a given length.”

For a parent–child entity pair < ec, ep > in the taxonomy, the Immediate family proba-
bility is P(ep|ec) = 1. This probability represents the likelihood that, given a child entity,
we can find the corresponding parent entity by traversing along the edge connecting them.
When a child entity hasmultiple parent entities, the Immediate family probability for all these
parent entities is 1. On the other hand, for the entity pair< ec, ep′ > in the negative samples,
the Immediate family probability is P(ep′ |ec) = 0 because there is no direct connection from
the given child node to the negative parent node. To accurately represent the parent–child
hierarchy in the taxonomy using box embeddings, it is essential to satisfy these Immediate
family probability conditions for both positive and negative entity pairs.

Box embeddings offer a natural way [35] to compute the Immediate family probability
using geometric relations.We use the volume of the intersection of the parent and child boxes
divided by the volume of the child box to represent the probability:

P(ep|ec) = P(ec, ep)

P(ec)
= Vol(bc

⋂
bp)

Vol(bc)
(7)

Here Vol() denotes the box’s volume, and the volume of a box is the product of the segments
of this box in each dimension:Vol(b) = ∏k

i=1(l
i − si ), where i is the dimension’s index.

Based on this, we can derive the probability loss function L+
p for each < child, parent >

pair:

L+
p = (P(ep|ec) − 1)2 (8)

Similarly, we can derive the probability loss function L−
p for each< child, negative parent

> pair:

L−
p = (P(ep′ |ec) − 0)2 (9)

3.2.3 Box Regularization

Our negative loss functions are designed from both geometric and probabilistic perspectives,
aiming to minimize the intersection between the child box and the negative parent box, i.e.,
negative geometric loss L−

g and negative probabilistic loss L−
p . However, if all the embedding

dimensions of a box are close to zero, or if its volume approaches zero, minimizing these two
losses may not be meaningful. In such cases, the learned box may not be well represented in
the geometric space, leading to an ineffective representation of the parent–child hierarchy.
To avoid this situation, we apply regularization to the boxes to restrict them from being too
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small in all dimensions. Specifically, for boxes be that are projections of entities e, we limit
the size of the box by using modified L1 regularisation for its offset of fe:

Lr = 1

k

k∑
i=1

(min|0, of f ie − γ | + c),∀i∈{1, 2, 3, . . . , k} (10)

Here γ is the minimum length of the box that controls the box in each dimension, and c is
a small positive constant that maintains the stability of the value. We penalize the absolute
value of the box in all dimensions by this loss function, which drives the box towards sparsity,
making the offset of the box even closer to the minimum length of the box. This restricts the
box size from being too small in all dimensions while minimizing our negative loss function
as much as possible.

3.2.4 Joint Loss

Finally, we combine a positive and negative geometric loss function, a positive and negative
probabilistic loss function, and a modified L1 regularised loss function to train the boxes
jointly. The final loss function is:

L = ω(L+
g + L−

g ) + ρ(L+
p + L−

p ) + κLr (11)

Here ω, ρ, and κ are hyperparameters controlling the contribution of the geometric loss
function, the probabilistic loss function, and the regularised loss function.

3.3 Inference

During the inference phase, we aim to find suitable parent entities (anchors) from the existing
taxonomy for a given query. Box embedding is more intuitive and natural in determining
anchors than vector embedding, which uses the Euclidean distance measure when comparing
entity relationships. We achieve this by examining the extent to which the query box is
contained within the anchor boxes. We adopt the containment check method shown in Fig. 3c
to implement the idea of finding anchors. Specifically, for a query eq , we first project it into a
box bq , and then compare it with box ba of all anchors ea in turn. To determine whether the
boxes bq and ba have a containment relationship, we define a containment index Score based
on the positions of their maximum and minimum corner points. If the following conditions
are met: lq ≤ la, sq ≥ sa, Score = 1, the anchor box contains the query box. Conversely,
Score = 0, the anchor box is separated from the query box. The candidate anchor boxes that
satisfy Score = 1 are the appropriate anchor boxes. We rank these candidate anchors based
on the containment index, and the candidate anchors with containment indexes Score = 1
were all ranked higher than those with Score = 0. However, when the query box is contained
by an anchor box that has a parent node and a grandfather node, it will also be contained by
the boxes of all the ancestor nodes of this anchor. This means there will be more than one
candidate anchor box with a containment index of 1. In this case, we select the lowest-level
entity box among all the entity boxes containing the query box as the genuine anchor box.
This box represents the finest granularity and provides amore precise description of the query
box. Additionally, because all ancestor boxes contain this box, it has the smallest volume.
Therefore, for candidate anchors with the same containment index, we perform a second
ranking based on the volume of their boxes, to ensure that anchors with finer granularity are
given higher priority.
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Table 1 The statistics of the
datasets for evaluation

Dataset Terms Edges Layers

Environment 261 261 6

Science 429 452 8

Food 1486 1576 8

3.4 Logical Consistency Assurance

PBE-TAXO can effectively cope with logical inconsistencies. PBE-TAXO determines the
parent–child relationship between entities by checking the containment relationship between
boxes, i.e., A is a child of B when bA is contained in bB , in which case Vol(A)<Vol(B).
When dealing with certain logical errors, such as A being predicted as a child of B while
C is a parent of B, but A turns out to be a parent of C, Or when a child of an entity is
predicted to be the parent of that entity, the model identifies these logical inconsistencies
by comparing the relative positions and volume sizes of the boxes. It then corrects these
logical inconsistencies, finds the true parent of each query, and ensures that the generated
classification system remains logically correct.

4 Experiments

4.1 Datasets and EvaluationMetrics

In order to evaluate the effectiveness of PEB-TAXO in the taxonomy expansion task, we
chose two commonly used English public datasets for our experiments, which are derived
from the shared task of taxonomy construction in SemEval-2016 [36]. These two datasets
correspond to the conceptual categorization of the domains Environment and Science, respec-
tively, curated by domain experts, and their preset structure is a hierarchical structure about
the parent–child relationships between terms (entities) of a given domain, where each entity
is accurately categorized into the corresponding category, making these two datasets well
suited for evaluating the performance of the taxonomy expansion model. Both datasets pro-
vide their definitions in addition to the taxonomic entities, the definitions are explanatory
descriptions of these entities by domain experts, and we combine the entity names with their
definitions as model inputs. In Table 1, we summarize their statistics. In addition, in both
datasets, we randomly select the bottom 20% of the nodes in the taxonomy as a test set and
keep the rest of such nodes in the training set. The model code can be found at: https://github.
com/lizaozhou/PEB-TAXO.

It’s worth noting that we opted not to utilize the Food dataset from SemEval-2016, and
this decision is attributed to two key reasons: (1) PEB-TAXO is excessively complex, and due
to limited experimental resources, the model can only be executed on the Environment and
Science datasets. The extensive scale of the Food dataset, as detailed in Table 1, surpasses
that of the Environment and Science datasets, rendering our experimental environment inca-
pable of meeting the requirements for conducting experiments on the Food dataset. (2) The
structural features of the Food dataset closely resemble those of the Environment and Science
datasets, particularly the Science dataset, sharing the same number of layers and a similar
ratio of nodes to edges. Consequently, we have chosen to exclusively conduct experiments
on these two datasets to ensure reliable results within our constrained resources.
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For all experiments, the following threemetrics are used in this paper to evaluate ourmodel
and baseline: accuracy (ACC), mean reciprocal rank (MRR), and Wu & Palmer similarity
(Wu&P).

• Accuracy (ACC) The precision of locating anchors for queries is defined as follows:

ACC = 1

k

k∑
i=1

I(zi = ẑi ) (12)

• MRR (Mean Reciprocal Rank) The metric to measure the position of the actual anchors
for queries in the ranked output is defined as follows:

MRR = 1

k

k∑
i=1

1

rank(zi )
(13)

• Wu& Palmer similarity (Wu&P) The semantic similarity between predicted anchors and
real anchors is calculated and defined as follows:

Wu&P = 1

k

k∑
i=1

2 × depth(LC A(zi , ẑi ))

depth(zi ) + depth(ẑi )
(14)

Here “depth(.)” is the depth of the entity in the taxonomy, “LCA(.,.)” is the least common
ancestor of the two inputs.

4.2 Baseline Algorithms and Parameter Settings

We use the above three evaluation metrics to measure the performance of PEB-TAXO and
compare it to the following baseline:

• TAXI [32] This model is the best taxonomic induction method for the SemEval-16 task. It
uses substring matching techniques to find significant strings in the text, then uses lexical
patterns learned through extensive corpus data to establish hyponym–hypernym term
pairs for the significant strings, and finally integrates these term pairs into a taxonomy.

• HypeNet [37] This method combines path analysis with distributed representation tech-
niques, jointly modeling the distributional information and relation paths between term
pairs using an LSTM-CNN model, thereby contributing to hypernym–hyponym relation
detection.

• Bert+MLP [2] A pre-trained model-based hypernym detection method, which generates
entity embeddings using the pre-trained language model Bert, and then feeds them into
a multi-layer perceptron to predict the presence of hypernym relations between entities.

• TaxoExpan [1] TaxoExpan is an advanced self-supervised method that uses graph neu-
ral networks to encode the positional information in the taxonomy, and then identifies
whether candidate terms are hypernyms of the query term through linear layers.

• STEAM [2] Thismodel is a self-supervisedmethod based onmini-paths, usingmini-paths
to model relationships between concepts in the taxonomy, and continuously optimizing
the model through multi-view joint training to find suitable anchors for queries better.

• BoxTaxo [20] BoxTaxo uses box embeddings instead of traditional vector embeddings
for entity representation, inferring relationships between entities by the degree of overlap
between the intersection of boxes and the query box, and achieves excellent results in
taxonomy expansion tasks.
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We selected the same dataset for all baselines and the same evaluation metrics for model
evaluation, and for all baseline models, we used the authors’ published source code. For a
fair comparison, we replaced the traditional word embedding approach in the TaxoExpan
model with Bert embedding to perform better. For the other baseline models, we adjusted
the parameters according to the original papers’ specifications, aiming to achieve the best
performance on the two datasets as reported in their respective papers, to participate in our
comparison. Regarding the PEB-TAXOmodel, we set the learning rate to 0.00002, batch size
to 100, dropout to 0.05, hidden layer size to 64, and MLP learning rate to 0.003, the small
positive constant c that maintains the stability of the values to 0.000001, and the weighting of
each individual loss to: ω = 1, ρ = 0.1, κ = 1. The dimensionality of the box embeddings
was adjusted within the range of 2 to 128, as the optimal dimensionality varied for different
datasets. Additionally, for hyperparameters ξ , η, and γ , we tune them in a particular range,
as described in Section 4.6. We typically set the training epoch to 100, and the model was
implemented on PyTorch, utilizing an NVIDIA 3090Ti server.

4.3 Performance Comparison

Table 2 presents the comparison results of ACC, MRR, and Wu & Palmer for PEB-TAXO
against all the baselines. We divided the baselines into three groups, and through observation
and analysis, we drew the following conclusions:

(1) The first group includes TAXI, HypeNet, and Bert+MLP. Since the PEB-TAXOmodel is
modeling simple hypernym–hyponym pairs as boxes, we compare with these baselines
that use vector embeddings to represent pairs of hypernym–hyponym relationships. As
shown in the table, PEB-TAXO significantly improves compared to all three methods,
indicating that projecting entities as boxes performs well in taxonomy expansion tasks.

(2) The second part consists of TaxoExpan and STEAM. These two baselines use advanced
structural summaries (local graph and mini-paths), obtaining better results than vector
embeddings alone. Although PEB-TAXO does not model these complex structures, our
results are still significantly more potent than these two baselines. However, PEB-TAXO
no longer has a great advantage in MRR and Wu&P metrics compared to STEAM.
This result suggests that advanced structures have a solid driving effect on taxonomy
expansion, and thus using advanced structures to model boxes has excellent potential in
taxonomy expansion tasks.

(3) The third part is only BoxTaxo. This baseline also uses box embeddings to model the
hypernym–hyponym relations and performs better thanmost of the other baselines, so we
compare PEB-TAXO with it separately. As shown in Table 2, our model demonstrates
stronger capabilities. This result indicates that, using box embeddings with the incor-
poration of modified L1 regularization to constrain the size of boxes, and adopting the
inference of inclusion relationship for reasoning about the hypernym–hyponym relations
yields better performance in the taxonomy expansion task.

(4) Across all datasets, PEB-TAXO shows significant improvements. For instance, on the
Environment dataset, PEB-TAXO outperforms the best baseline with increases of 10.0%
in ACC, 5.8% in MRR, and 1.7% in Wu&P.
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Table 2 Results on the three
datasets

Dataset Environment Science

Metric ACC MRR Wu&P ACC MRR Wu&P

TAXI 16.7 – 44.7 13.0 – 32.9

HypeNet 16.7 23.7 55.8 15.4 22.6 50.7

Bert+MLP 11.1 21.5 47.9 11.5 15.7 43.6

TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6

STEAM 36.1 46.9 69.6 36.5 48.3 68.2

BoxTaxo 38.1 47.1 75.4 31.8 45.3 64.7

PEB-TAXO 48.1 52.9 77.1 42.4 50.4 73.1

Table 3 Ablation results

Datasets Metrics PT-R PT-L PT-I PT-A PEB-TAXO

Environment ACC 23.5 42.3 44.2 38.5 48.1

MRR 35.8 49.7 50.7 45.7 52.9

Wu&P 63.2 73.8 76.2 73.3 77.1

Science ACC 14.1 35.3 36.5 31.8 38.8

MRR 25.8 46.0 48.9 43.7 49.2

Wu&P 50.3 67.1 69.0 66.8 70.2

4.4 Ablation Tests

Tovalidate the effectiveness of the components of thePEB-TAXOmodel,we conduct ablation
tests.We investigated the impact of removing two components: themodifiedL1 regularisation
that restricts the size of the boxes and the box inclusion inference method used for inferring
anchors. Specifically, We designed four simplified models:

• PT-R Remove regularisation completely.
• PT-L Use the Mean Squared Error Loss Function (MSE) instead of the modified L1

regularisation.
• PT-I Use probabilistic perspective inference instead of box inclusion inference.
• PT-A Use MSE to limit box sizes and probabilistic perspective inference to find anchors

for queries.

Table 3 gives the experimental results of PEB-TAXOonboth datasetswhen the dimensions
of the boxes are both 12.

By observing the experimental results of PT-R in Table 3, it is evident that completely
removing the regularization leads to a significant decline in model performance. This discov-
ery fully demonstrates the necessity of limiting the size of the box. However, the results of
the PT-R model experiments are too poor to reflect the effect of modified L1 regularisation.
To showcase this aspect, in other ablation experiments we regularized the box with MSE.

The experimental results of PT-L, PT-I, and PT-A models revealed the following: Firstly,
the modified L1 regularization during the PEB-TAXO training phase and the box inclu-
sion inference during the inference phase contribute differently to the model’s performance.
Although both components improve the performance of the model, it is clear that the mod-
ified L1 regularisation contributes more to the model. Secondly, we found that removing
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Fig. 5 Model performance metrics for different spatial dimensions

the box inclusion inference does not significantly affect PEB-TAXO. Whereas, after delet-
ing the modified L1 regularisation, the performance of the model noticeably declines, and
the three metrics show considerable fluctuations during the 100 epochs. This phenomenon
indicates that using modified L1 regularization effectively constrains the box size within an
ideal range, thus enhancing the model’s performance. Finally, the performance of the model
is significantly reduced when both box inclusion inference and modified L1 regularisation
are removed. Therefore, our ablation experiments validated the effectiveness of these two
components in PEB-TAXO.

4.5 Dimensional Experiment

In the high-dimensional geometric space, boxes are represented as hyper-rectangles, whose
edge in each dimension is a line segment. In order to understand the effect of boxes trained
from different dimensions on PEB-TAXO,we adjusted the number of box embedding dimen-
sions between 2, 4, 6, 8, 12, 16, 32, 64, 128, and show the taxonomyexpansionmetrics for each
dimension in Fig. 5. In both datasets, as the dimension increases, the metrics initially improve
and gradually decline. We speculate that PEB-TAXO needs enough space to accommodate
entities, so the dimensions cannot be too small. However, excessively large dimensions can
lead to optimization difficulties, thereby increasing the challenge of taxonomy expansion. In
our experiments, we observed that the model achieves its best performance for the environ-
ment dataset when the dimension is set to 12. On the other hand, for the science dataset, the
optimal dimension is 6. These experimental results confirm our hypothesis.

4.6 Hyper-Parameter Studies

To investigate the impact of hyperparameters ξ , η, and γ on the performance of PEB-TAXO,
we conducted experiments on both datasets with various values for these three hyperpa-
rameters. The results are shown in Fig. 6, and from observations and analysis, we draw the
following conclusions:

(1) For parameter ξ , we experimented with nine values in the range of [0, 0.23]. As ξ

increases, the metrics show an overall decreasing trend and a continuous downward pat-
tern. In practice, ξ should not be too large, because training box embeddings involves
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Fig. 6 Model performance metrics for different hyperparameters

continuously shrinking the intersection between parent and child boxes. When the geo-
metric margin between the child and the parent boxes is too large, the process becomes
more difficult, leading to insufficient model training and decreased performance.

(2) For hyperparameter η, we select nine values between [0,−0.24] for the experiment. From
the observation in Fig. 6, it can be seen that η is sensitive to the edges, and the performance
of the model declines as η decreases. η ensures the separation of the parent box from
the child box in this value space. But when η is too small, the size of this nonexistent
intersection becomes larger, which makes it difficult to minimize the negative geometric
loss, and ultimately affects the model effect.

(3) Finally, for hyperparameter γ , nine values between [0,0.24] are taken for the experiment.
In both datasets, as γ increases, themetrics generally increase and then decrease. Because
the size of the box is limited as the minimum length of the box increases, thus avoiding
many meaningless boxes, the performance of the model is naturally improved. This also
proves the necessity of volume regularisation. However, when the length of the box is
large, the difficulty of optimizing the box also increases, and the model effect is slightly
reduced.

In conclusion, we selected hyperparameters ξ = 0.05, η = −0.03, and γ = 0.03. Under
these settings, the model achieved excellent performance on both datasets.

5 Conclusion

This paper proposes a novel taxonomy expansion model PEB-TAXO that projects entities as
boxes. Firstly, we use modified L1 regularisation to limit the size of boxes while optimizing
the box embedding using geometric and probabilistic views, thus preventing the model from
generating meaningless boxes, hence the robustness of the model is improved; Secondly,
we introduce the box inclusion inference method, which uses the containment index to
determine the existence of a containment relationship between two boxes, enabling us to
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infer the anchor for a query in the taxonomy; Finally, we conduct extensive experiments on
two public datasets, demonstrating the significant superiority of our model over all baseline
models. Additionally, our ablation experiments confirm the effectiveness of each component.
In the future, we plan to integrate mini-paths and local ego-graph graphs into the modeling
of boxes, to further enhance the performance of extended models for taxonomy based on
entities projecting boxes.
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