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Abstract
This paper introduces an efficient real-coded genetic algorithm (RCGA) evolved for con-
strained real-parameter optimization. This novel RCGA incorporates three specially crafted
evolutionary operators: Tournament Selection (RS)with elitism, Simulated Binary Crossover
(SBX), and Polynomial Mutation (PM). The application of this RCGA is directed toward
optimizing the MLPRGA+5 model. This model is designed to configure Multilayer Percep-
tron neural networks by optimizing both their architecture and associated hyperparameters,
including learning rates, activation functions, and regularization hyperparameters. The objec-
tive function employed is the widely recognized learning loss function, commonly used for
training neural networks. The integration of this objective function is supported by the intro-
duction of new variables representing MLP hyperparameter values. Additionally, a set of
constraints is thoughtfully designed to align with the structure of the Multilayer Percep-
tron (MLP) and its corresponding hyperparameters. The practicality and effectiveness of
the MLPRGA+5 approach are demonstrated through extensive experimentation applied to
four datasets from the UCI machine learning repository. The results highlight the remark-
able performance of MLPRGA+5, characterized by both complexity reduction and accuracy
improvement.
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1 Introduction

In recent years, the problem of supervised learning with multilayer perceptron neural
networks (MLPNN) has received a lot of attention in the research community. Various
approaches have been proposed to solve this problem, including classical learning [1], opti-
mization methods [2], and their effectiveness has been widely discussed.

Developing an effective neural network is a complex and essential task inmachine learning
and artificial intelligence [3]. It involves the intricate selection of the network’s architecture
and training configurations to achieve optimal performance. These decisions are guided by
a set of hyperparameters, which are additional parameters that play a crucial role in defining
the network’s behavior but cannot be learned directly from the training data [4]. Hyperparam-
eters encompass a wide range of settings, including the number of hidden layers, learning
rates, batch sizes, regularization parameters, activation functions, and more [5]. Properly
tuning these hyperparameters is vital for achieving superior neural network performance [6].
The impact of hyperparameters on neural network performance is well-documented in the
literature, and optimizing them is essential for achieving top-tier performance [3, 7, 8]. Select-
ing optimal values for hyperparameters is a critical aspect of developing a high-performing
neural network, as it can significantly impact the network’s accuracy, generalization ability,
and training speed [9]. To address the challenge of hyperparameter optimization, several
approaches have been proposed, including grid search [10], random search [11], Bayesian
optimization [12], and genetic algorithms [13]. While some of these approaches have proven
effective in certain cases, they can be computationally expensive and may not be suitable for
optimizing real-valued hyperparameters and large-scale neural networks [11, 14, 15].

Due to its robust capabilities in tackling real-world optimization problems, the real-coded
genetic algorithm (RCGA) has established itself as a highly effective and commonly utilized
evolutionary algorithm (EA). Recent literature has presented numerous successful applica-
tions of RCGAs across diverse fields [16–20], underscoring its prominence and relevance
in contemporary optimization practices. Drawing inspiration from the principles of natural
selection and the survival of the fittest observed in the biological world, real-coded genetic
algorithms (RCGAs) essentially operate as population-based stochastic search schemes. They
incorporate a structured sequence of selection, crossover, and mutation operators to explore
and optimize solutions. Over the past few decades, significant progress has been made to
enhance the solution efficiency of RCGAs. These advancements and dedicated efforts have
led to the categorization of previous developments and attempts based on themechanisms and
techniques employed. In a recent study conducted by Chuang and colleagues [21], a compre-
hensive survey was undertaken to explore the advancements in crossover operators [22–28].
Their research findings revealed that two predominant schemes, namely line segment con-
nection and distribution analysis of parents, have been widely employed in the development
of novel crossover operators. However, it was observed that these crossover operators face
challenges when dealing with highly demanding optimization problems. Specifically, these
operationsmay struggle to generate viable offspring in regions of ambiguity, especially in sce-
narios where the population size is relatively small in comparison to the overall search space
or when the initial population distribution lacks uniformity across the permissible domain
[21]. Furthermore, the designed crossover operators may encounter difficulties in locating
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the global optimum, particularly when the true solution is in close proximity to or situated
along the boundaries of the feasible search space [23]. To address the challenges associ-
ated with crossover operators, particularly in cases where optimization problems are subject
to stringent conditions, this study introduces a novel approach that employs the Simulated
Binary Crossover (SBX) operator [29]. SBX is designed to facilitate efficient exploration
of the search space, even in the presence of complex constraints [30]. Unlike conventional
crossover operators that rely on fixed or random step sizes for recombination, SBX takes an
adaptive approach. It adjusts the step size dynamically based on the relative fitness informa-
tion obtained from the objective function and the prevailing constraint violation status [31].
This adaptability allows SBX to effectively explore the continuous search space for real-
valued parameters, enhancing its ability to efficiently address complex optimization tasks.
In addition to the utilization of the Simulated Binary Crossover (SBX) operator, this paper
also leverages the benefits of the polynomial mutation operator [32] to further enhance the
optimization process. Polynomial mutation serves as a valuable complement to the crossover
operator by introducing additional diversity and exploration capability in the population
[33]. This mutation operator operates by perturbing individual gene values, thus enabling the
algorithm to explore uncharted regions of the solution space.

The application of these genetic operators is tailored to the optimization of the
MLPRGA+5 model, which serves as a comprehensive approach to configuring Multilayer
Perceptron neural networks. By optimizing both the network’s architecture and the associ-
ated hyperparameters, which encompass variables like learning rates, activation functions,
and regularization hyperparameters, this algorithm efficiently explores complex optimiza-
tion landscapes. This multi-faceted approach enhances the algorithm’s capacity to fine-tune
hyperparameters and optimize neural network architectures effectively, resulting in superior
performance when applied to tasks such as classification.

To evaluate the proposed approach, the study uses four datasets from the UCI reposi-
tory of machine learning databases [34]: "Iris," "Hypothyroid," "breast cancer," and "Wine".
The MLPRGA+5 approach showcases its efficiency through numerical and manual analy-
sis, demonstrating its exceptional performance in both complexity reduction and accuracy
enhancement. The main objectives of this paper are given as follows:

• Provide a new optimization model for MLP Hyperparameters tuning.
• solve the proposed model using a real-coded genetic algorithm
• comparison of the proposed approach with existing MLP-based models

The paper is structured as follows: In Sect. 2, we recommended several existing papers that
address the optimization of hyperparameters in neural networks and provided contextual
information on various methods used for trainingMLPNNs after establishing the topic under
research in Sect. 1. We will provide a new optimization Model for MLP Hyperparameters
Tuning in Sect. 3, In addition, we provide a detailed description of the proposed model,
including the argumentation for the objective function and the proposed constraints. Section 4
is dedicated to the Real-Coded Genetic Algorithm (RCGA) solver for MLP, which will be
adapted to fit the proposedmodelMLPRGA+5 in Sect. 3. Finally, Sect. 5 outlines experiments
and results before concluding in Sect. 6.

2 RelatedWorks

Multilayer Perceptron (MLP) model weight and parameter tuning is a critical machine learn-
ing task as it directly impacts themodel’s performance. The architecture and hyperparameters
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ofMLPs have been proposed to be optimized in recent years utilizing a variety of optimization
techniques, including gradient descent, random search, and Bayesian optimization. However,
due to their effectiveness in handling high-dimensional and non-linear search spaces, genetic
algorithms (GA) have attracted interest. In terms of model accuracy and generalization,
the use of GA in optimizing MLP designs and hyperparameters has produced encouraging
results. In this section of related work, we evaluate the most recent results in MLP model
optimization using genetic algorithms and discuss the advantages and limitations.

The aim of MLPNN training is to get at an optimal objective function that best represents
theweights selection,which can be thought of as an optimization problem.Once the optimiza-
tion model has been created, a number of alternative algorithms can be applied. Traditional
methods like back-propagation (BP) have previously been used for MLPNN training [35].
However, it has been shown that the optimization of MLP parameters and hyperparameters
is effective when utilizing complex optimization methods such as genetic algorithms (GA).
The advantage of GA is that it uses parallel search processes to investigate a large search
space in search of the optimum solution, reducing the possibility of getting stuck at a local
minimum. The use of genetic algorithms to improve the weights of MLP models has been
the subject of numerous studies [36]. Wang et al. [37] use the GA approach to optimize the
initial weights and biases of the back-propagation (BP) neural network in order to anticipate
the bending force in the hot strip. Jasmeen Gill et al. [38] Use back-propagation (BP) and
genetic algorithms (GA), for forecasting the weather the experiment uses daily weather data.
Saremi et al. [39] improved the weights of an MLP model for speech emotion identification
using a hybrid GA and BP, and she did it with greater accuracy than she could have with
BP alone. MLP weight optimization has also been done using other optimization methods,
such as a hybrid GA with simulated annealing (GA-SA) and a hybrid GA with PSO, both of
which performed better than using GA or the other algorithm alone.

Optimizing architecture and hyperparameters of MLP models can also be seen as an opti-
mization problem [3]. Multilayer-perceptron (MLP) neural networks’ performance has been
optimized in several research by changing various architecture parameters and hyperparam-
eters. Architecture parameters, such as the number of hidden layers, the number of neurons
per hidden layer, and the type of activation function, describe the structure of the MLP. Sam
Ansari et. [40] utilized a genetic algorithm to find the best parameter values for a multi-layer
perceptron utilizing different chromosomal coding techniques, while Jenny Domashova et al.
[41] used it to identify the best architecture for precisely classifying situations. Sreedharan et
al. [42]combines a Multi-Layer Perceptron (MLP) neural network with a Genetic Algorithm
(GA) to predict financial distress in businesses. The GA optimizes hyperparameters like
hidden layers, neuron counts, and activation functions, improving the MLP’s performance.
This hybrid approach offers an effective method for early financial distress prediction, aiding
stakeholders in risk assessment decisions. Daviran et al. [43] focuses on landslide suscepti-
bility prediction and employs Artificial Neural Networks (ANN). The unique aspect of the
study is the use of a Genetic Optimization Algorithm to fine-tune the hyperparameters of
these models. This study by Kumar et al. [44] focuses on optimizing the hyperparameters of
Deep Neural Networks (DNN) through a two-step genetic approach. The research introduces
a novel method to fine-tune hyperparameters, aiming to enhance the performance of DNNs.
The twofold genetic approach involves the use of Genetic Algorithms (GA) to explore hyper-
parameter combinations and Genetic Programming (GP) to evolve neural architectures. This
innovative approach provides a comprehensive and effective strategy for optimizing DNNs,
ultimately improving their performance in various applications. Mohan et al. [45] introduces
an innovative automated superlearner that combines multiple machine learning models for
improved predictive accuracy. This superlearner is optimized using a Genetic Algorithm-
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based hyperparameter tuning approach. By leveraging Genetic Algorithms, the study seeks
to find the best hyperparameters for each model within the superlearner, leading to enhanced
predictive performance. This research presents a novelmethod for automatedmodel selection
and hyperparameter optimization, contributing to more accurate predictions in various appli-
cations. Abdollahiet al. [46] focuses on predicting diabetes using a hybrid stacked ensemble
approach. GAs are utilized to optimize the hyperparameters of the ensemble, resulting in a
more accurate diabetes predictionmodel. The study showcases the effectiveness of combining
ensemble methods with GA-based hyperparameter tuning for medical diagnosis tasks, par-
ticularly in the context of diabetes prediction. By optimizing hyperparameters, the research
aims to enhance the accuracy of landslide susceptibility predictions. Hong Wang et al. [47]
improved the architecture of an artificial neural network for computing slope stability safety
factors. Tayebi et al. [48] analyzes the performance of metaheuristic algorithms in optimizing
hyperparameters for fraud transaction detection models. It examines the efficacy of various
metaheuristic techniques for improving the accuracy of fraud detection systems. The study
offers valuable insights into the application ofmetaheuristics for hyperparameter optimization
in the context of fraud prevention. This study employed by Arukonda et al. [49] introduces
a novel ensemble approach for disease diagnosis that emphasizes diversity among models.
It incorporates Genetic Algorithms (GAs) to enhance diversity and optimize the ensemble’s
performance, leading to effective disease diagnosis. The research focuses on improving diag-
nostic accuracy by harnessing the strengths of diverse models and GA-based hyperparameter
tuning, offering a promising strategy for disease diagnosis. In order to assess indoor environ-
mental conditions in real-time,MiguelMartinez-Comesa et al. [50] recommended employing
optimized MLP neural networks. He used the multiobjective genetic algorithm NSGA-II to
determine the architecture with the lowest error and complexity. Furthermore, by adding a
decision variable to each layer, researchers have created a mathematical model to optimize
hidden layers [2, 51]. The MLP model’s learning parameters, such as learning rate, momen-
tum, activation function, and regularization parameters, are referred to as hyperparameters.
To optimize hyperparameters, many conventional methods have been applied, including grid
search and random search. The hyperparameters of MLP models have been optimized using
more sophisticated optimization methods, such as genetic algorithms, PSO, and Bayesian
optimization, which have improved generalization and increased accuracy.

Li et al. [52], for example, introduced a hybrid GA and PSO algorithm to optimize the
hyperparameters of MLP models for financial time series forecasting, outperforming grid
search and random search in terms of performance. In comparison to grid search and random
search, Wang et al. [53] use Bayesian optimization to optimize the hyperparameters of MLP
models for breast cancer diagnosis producing greater accuracy. Additionally, Zhang et al.
[54] used an adaptive GA to outperform various cutting-edge optimization strategies in
optimizing the hyperparameters of MLP models for multi-label classification tasks. Particle
swarm optimization (PSO) [55], differential evolution (DE) [56], and simulated annealing
(SA) [57]are further optimization methods that have been used to MLP models.

3 A newOptimizationModel for MLP Hyperparameter Tuning

Hyperparameter tuning task in MLP involves solving optimization problems. When con-
structing an MLP model, the weight parameters are initialized and iteratively optimized
using various optimization methods until the objective function reaches a minimum value or
the accuracy reaches a maximum value [3]. Similarly, hyperparameter optimization methods
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focus on optimizing themodel’s architecture by identifying themost suitable hyperparameter
configurations. In this section, we introduce the core principles of mathematical optimization
and hyperparameter optimization, along with the proposed approach.

3.1 Hyperparameter Tuning in MLPS

In order to develop machine learning models that use hyperparameter optimization, it is
necessary to explore the space of possible hyperparameter values to identify the parameters
that make the model work best. By employing optimization techniques, we may successfully
navigate this search space and find the hyperparameters that lead to the model operating at
its most effective level. The four main components of hyperparameter optimization are an
estimator with an objective function, a search space, an optimization method, and an evalua-
tion function. These components work together to determine the best set of hyperparameters
for the model.

In mathematics, the term "optimization" refers to the process of selecting the best course
of action among a variety of feasible options in order to maximize or reduce the objective
function [58]. The unconstrained optimization problem is indicated by [59]:

min
X∈R f (X) (1)

Contrarily, constrained optimization can be expressed as [59]:
⎧
⎪⎪⎨

⎪⎪⎩

min f (X)

Subject to:
gi (X) ≤ 0, i = 1, . . . ,m
hi(X) = 0, j = 1, . . . , p

(2)

where f (X) is the problem objective function, X is the domain of X , gi(X) ≤ 0, i =
1, . . . ,m, and hi(X) = 0, j = 1, . . . , p, are inequality and equality constrained functions,
respectively. The feasible domain D of X is as follows:

D = {X ∈ X\gi(X) ≤ 0, hi(X) = 0} (3)

The objective of a hyper-parameter optimization task is to get [60]:

X∗ = arg min
X∈R f (X) (4)

The best prediction model f ∗ can be determined by using [61]:

f ∗ = argmin
f ∈F

1

n

n∑

i=1

L ( f (xi) , yi) (5)

where L is the cost function value for each sample, n is the number of training data points,
xi is the feature vector of the i-th instance, yi is the associated output. In supervised learn-
ing algorithms, there are numerous distinct loss functions, such as the square of Euclidean
distance, cross-entropy, information gain, etc. [61].

3.2 Proposed Approach

Machine learningmodels aim to optimize performance by finding the best values for parame-
ters that affect the output. One key type of parameter is weight parameters, which are initially
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set and then adjusted using an optimization technique until the model achieves a high level
of accuracy or reaches a critical point in its objective function.

In order to create an effective machine-learning model, it is important to strike a bal-
ance between accuracy and complexity. This can be achieved by using hyperparameter
optimization to find the optimal values for the model’s hyperparameters. By optimizing
hyperparameters, we can ensure that the model is both accurate and not overly complex,
resulting in a model that performs well on both training and testing data. This work intro-
duces a novel mathematical programming approach for optimizing neural networks, which
can be seen as a mixed-constraint non-linear programming model. This model possesses
a unique capability - it allows us to introduce new variables into the objective function.
These variables serve as a mechanism for optimizing hyperparameters within a Multilayer
Perceptron (MLP). Notably, these variables also act as a pruning technique. Their role is
to systematically identify and eliminate any hidden layers within the MLP that may not be
contributing effectively to the model’s performance. Additionally, they facilitate adjustments
to the model’s hyperparameters, enabling fine-tuning.

The application of this approach holds significant promise. By eliminating unnecessary
hidden layers and optimizing hyperparameters, we effectively reduce themodel’s complexity.
This streamlined structure, in turn, leads to a notable reduction in the number of parameters
(or "weight loss"), resulting in a more efficient and computationally lightweight model. The
approach introduces certain constraints that facilitate communication between different levels
of the neural network, aiding in the optimization process. These constraints are an integral
part of the model, serving to guide the optimization towards achieving excellent results.

This paper presents a new optimization model, in order to:

• To optimize the architecture parameters of the neural network.
• Combining hyperparameter tuning with architecture optimization.

The following parts will provide an explanation of the suggested model.

3.2.1 Notation

In order to model the issue of neural hyperparameters optimization, we had to construct some
notation:

• X : Set of inputs us explicative variable of a model.
• N: Number of hidden layers
• L : Total number of hyperparameters
• n0: Number of neurons in the input layer
• ni : Denotes the number of nodes in the layer i , for i = 1 . . . N .
• no: Number of neurons in output layer.
• nopt: Optimal number of hidden layers
• hi : The output of hidden layer, for i = 1 . . . N .
• f : Activation function
• O: Optimizer
• α : Learning rate
• λ : Regularisation parameter
• Y: The predicted output of the model
• d: The desired output
• F: Transfer function of ANN
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• W: The weights of the network with:

W =
(
wi
k, j

)i
0≤i≤N
1≤k≤ni

1≤ j≤ni+1

, wi
k, j ∈ R

• H: Denotes the search space of hyperparameters (configuration space).

Hi

{
ni if 1 ≤ i ≤ N
{ f , O, α, λ} if N + 1 ≤ i ≤ L

• cni : Binary variable for i = 1 . . . N , as:

cni

⎧
⎨

⎩

1 if the number of randomly generated neurons ni
associated with layer i is greater than 0

0 otherwise

A multilayer perceptron performs a transformation of the input variables:

Y = F(X;W;H) = (
y1, y2, . . . , ynN+1

)
(6)

where H = (H1, . . . ,HL) ∈ R
L+ and C = (

cn1 , . . . , cnN−1

) ∈ {0, 1}N−1 the result of the
hidden layer h1, is calculated by the following term and represented in Fig. 1

h1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h11
...
...

h j
1
...
...

h1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
(∑n0

k=1 w0
k,1xk

)

...

f
(∑n0

k=1 w0
k,jxk

)

...

f
(∑n0

k=1 w0
k,n1

xk
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

where
(
x1, x2 . . . xn0

)
are the inputs of neural networks.

The result of the hidden layer hi , is calculated by the following term and represented in
Fig. 2:

hi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1i
...
...

h j
i
...
...

hnii

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= hi−1

(

1 −
i∏

k=1

cnk

)

+
i∏

k=1

cnk ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
(∑ni−1

k=1 wi−1
k,1 h

k
i−1

)

...

...

f
(∑ni−1

k=1 wi−1
k, j h

k
i−1

...

...

f
(∑ni−1

k=1 wi−1
k,ni

hki−1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)
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Fig. 1 Output of the first hidden layer

where i = 2 . . .N − 1 the result of the hidden layer hN , is calculated by the following term
and represented in Fig. 3

hN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1N
...
...

h j
N
...
...

hnNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= hN−1

(

1 −
N∏

k=1

cnk

)

+
N∏

k=1

cnk ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
(∑nN−1

k=1 wN−1
k,1 hkN−1

)

...

...
∑nN−1

k=1 wN−1
k, j hkN−1
...
...

f
(∑nN−1

k=1 wN−1
k,nN

hkN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

yi = f

( nN∑

k=1

wN
ki h

k
N

)

j = 1 . . . nN+1 (10)

With yi as the output of the neural network
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Fig. 2 Output of the i th hidden layer

3.2.2 Objective Function

The objective function utilized in the proposedmodel is themean squared error (MSE), which
is a widely-used error function for training neural networks. The MSE measures the average
squared difference between the predicted output and the actual output. It is computed as the
sum of the squared differences over all training examples in the example set:

Loss = 1

2J

J∑

j=1

(
Fj (X;W ; H) − d j

)2 (11)

In the formula:

• J: represents the size of the example set, indicating the number of training examples.
• Fj (X;W ; H): denotes the predicted output based on the input X, the model weights W,

and the hyperparameters H.
• d j : represents the actual output for the corresponding training example.
• ∑

: denotes the sum over all training examples j = 1 to J .

By calculating the squared differences between the predicted and actual outputs for each
training example and summing them up, we obtain the MSE. This error function quantifies
how well the model approximates the desired output for the given training examples.
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Fig. 3 Output of the ANN

The utilization of the MSE as the objective function allows the model to optimize its
parameters and hyperparameters to minimize the discrepancy between the predicted and
actual outputs. This optimization process aims to enhance the model’s performance and
improve its ability to generalize to unseen data.

3.2.3 Constraints and Proposed Model

To prevent the complete destruction of the hidden layer and ensure that there is at least one
hidden layer, we can ensure that the first parameter is always greater than zero. This latter is
stated as follows:

cn1 = 1 (12)

Setting the lower and upper boundaries of the hyperparameters’ range of values is crucial
to guaranteeing the algorithm produces valid results. This limits the range of numbers the
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algorithm can consider and stops it from coming up with solutions outside of the acceptable
range. We avoid unimportant portions of the search space and set the lower bound to the
smallest value and the upper bound to the highest value.

• Todefine the range of float values for a hidden layer, we start by determining theminimum
and maximum values it can take. Specifically, we assign the interval [ni min, ni max] to the
hidden layer.

nimin ≤ ni ≤ nimax ∀i = 2 . . .N (13)

• For a given hyperparameter, such as ni, we can assign a valid range [0, ni max ] to define
the values that can be optimized.

0 ≤ ni ≤ nimax ∀i = N + 1 . . .L (14)

The concept of optimizing neural architecture can be represented by the following model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
1

2J

J∑

j=1

(
Fj (X;W ; H) − d j

)2

Subject to :
H = (H1, . . . ,HL) ∈ R

L

C = (
cn1 , . . . , cnN−1

) ∈ {0, 1}N−1

cn1 = 1 Or
N∑

i=2

cni ≥ 1

nimin ≤ ni ≤ nimax ∀i = 2 . . .N

0 ≤ ni ≤ nimax ∀i = N + 1 . . .L

W =
(
wi
k,j

) 1 ≤ k ≤ ni
1 ≤ j ≤ ni+1

Where wi
kj ∈ R

(15)

The optimal number of hidden layers:

copt =
N−1∑

i=1

cni (16)

During the training phase, we employ a randomized and sequential data input strategy. This
approach ensures that each data point enters the network without any predetermined order
or bias, contributing to a comprehensive learning experience. However, the true strength of
our approach lies in addressing two critical aspects: the determination of the optimal number
of hidden layers and the configuration of weights. Deciding on the right number of hidden
layers significantly influences the network’s ability to model complex data relationships.
Simultaneously, weight configurations govern the flow of information within the network,
making them pivotal in fine-tuning network responses. Additionally, the choice of an appro-
priate training period is essential, as it dictates how long the neural network learns from data.
The training duration should align with the network’s complexity, enabling weights to adapt
and optimize their responses according to the problem’s intricacies. Our approach, there-
fore, encompasses both architectural considerations and temporal dynamics, with a focus on
optimizing the neural network’s potential.

Over time, various methods and strategies have been proposed to tackle the optimization
of hyperparameters inMultilayer Perceptron (MLP) training. In this context, we advocate for
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the utilization of Real-Parameter Genetic Algorithms (RGAs) to directly manage real-valued
variables, as opposed to an initial conversion to binary strings, within the described model.

4 Real Coded GA for Proposed Approach: MLPRGA+5

Genetic algorithms (GAs) are search algorithms that are inspired by the principles of nat-
ural genetic populations to find solutions to a wide range of problems. Real-coded genetic
algorithms (RCGAs) are a type of optimization algorithm that uses real-valued vectors to
represent individuals in the population. However, in optimization problems involving contin-
uous domain variables, it is more intuitive to represent genes directly as real numbers. This
choice aligns the solutions closely with their natural formulation, effectively eliminating dis-
tinctions between the genotype (coding) and phenotype (search space). The utilization of real
coding was initially introduced in specific applications, such as in the work of Lucasius et al.
[62] for chemometric problems, Davis [63] for the utilization of meta-operators in finding
optimal parameters for standard genetic algorithms, and in [64] for numerical optimization
in continuous domains. For a comprehensive overview of real-coded genetic algorithms, one
can refer to [65–67].

As mentioned earlier, real coding proves to be the most suitable encoding method for
optimization problems involving parameters in continuous domains. Given our specific focus
on optimizing hyperparameters for MLP neural networks, the utilization of real coding and
its associated genetic operators becomes a logical choice. In our study, we have not employed
binary (ordinary) genetic algorithms for this purpose. One of the primary advantages of using
real-value encoding over binary encoding is the enhanced precision it offers. Binary coding,
when applied to real-valued numbers, can lead to a loss of precision, particularly when a
limited number of bits is used to represent each value [68].

Furthermore, real-value encoding results in notably shorter chromosome strings. This
efficiency is particularly significant when optimizing hyperparameters for MLP networks.
Our aim is to find an optimal set of hyperparameters that enables the MLP neural network
to perform with high accuracy and minimal complexity. In this context, a chromosome or
genotype encompasses all the hyperparameters, with each gene representing an individual
hyperparameter value.

Below, we present the chromosome representations along with the developed selection,
crossover, and mutation operators tailored to this encoding.

4.1 MLPRGA+5:Representation and Initialisation

An individual or chromosome is a vector of genes represented by floating point values.
A choice variable is represented by each gene. From a predetermined bounded solution
space, each chromosome indicates a randomly generated response (feasible region). The
MLPRGA+5 optimization process involves two key sets of decision variables: the model
structure, which is a major determinant of performance and can take on values between nimin

and nimax, and the model hyperparameters, which also influence performance and can range
between n j min and n j min. A typical chromosome structure for optimizing model accuracy
and cost under constraints is illustrated in Fig. 4.

The initial population is generated at random, theweights are given randomvalues between
[0, 1], and it consists entirely of the individuals who will be subjected to the genetic operators
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Fig. 4 Chromosome structure

and evaluated by the fitness function. After the initial population is created, each individual
is evaluated and assigned a fitness value based on the fitness function.

4.2 MLPRGA+5:Fitness and Selection

An individual’s extent of extemal adaptation can be determined using a statistic that is pro-
duced by a fitness function. This statistic aims to concentrate on the search for characteristics
that will make an individual more adaptable or one who performs a position more effectively.
The fitness in our study is indicated by the classification task accuracy rate. The percentage
of all instances that were properly classified is known as accuracy. The fitness calculation
method we propose is as follows:

F(i) = Fitness (i) = Accuracy (i) (17)

Accuracy = NT

Nd
(18)

Where (NT ) and (Nd) stand for, respectively, the number of examples that were successfully
classified and the total number of examples in a dataset.

In this study, we employ the two-individual tournament selection technique, as shown in
Fig. 5. Two individuals are selected at random from the community, and the fitness function
values are then contrasted to determine which of them has the highest value. This procedure
was repeated for a second random pick of two individuals, and a winner was also chosen.
The cross-over operator receives these two selected victors after that. We continue to use
the elitist approach, which ensures that the best individuals are always passed on to the next
generation unchanged.

4.3 MLPRGA+5:Reproduction Operators

Crossover is carried out using simulated binary crossover [29]. The polynomial mutation is
used for mutation [32]. The following is a discussion of both of these procedures:

Simulated binary crossover: a genetic operator that creates two offspring solutions from
two-parent solutions by simulating the binary crossover observed in nature. The procedure
involves three steps:

Step 1:a uniform random number is chosen U ∈ (0.1)
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Fig. 5 Tournament selection

Step 2:a spreading factor βq is calculated using the following equation:

βq =
⎧
⎨

⎩

(2U)
1

η+1 if U ≤ 0.5,
(

1
(2(1−U))

) 1
η+1

othrwise
(19)

The ordinate βq is discovered so that the probability curve’s area below it from 0 to βq equals
the selected random integer U. A single-point crossover in binary-coded GAs is found to
have a similar search power to the probability distribution used to produce a child solution:

p(β) =
{
0.5(η + 1)βn if β ≤ 1,

0.5(η + 1)β
1

η+2 othrwise
(20)

The uniform random number in the simulated binary crossover procedure is denoted by
’ η ’ and serves as the distribution index. This index is a non-negative real number that
influences the probability of creating near-parent solutions. When the value of ’ η ’ is large,
the probability of creating solutions that are similar to the parents is higher. In contrast, when
’ η ’ has smaller values, the probability of creating solutions that are distant from the parents
is higher, resulting in a greater exploration of the search space.

Step 3: from the parent solutions x (1,t)
i , x (2,t)

i , two children’s solutions, x (1,t+1)
i and

x (2,t+1)
i can then be calculated using Equations (25) and (26).

x(1,t+1)
i = 0.5

[(
1 + βq

)
x(1,t)
i + (

1 − βq
)
x(2,t)
i

]

x(1,t+1)
i = 0.5

[(
1 − βq

)
x(1,t)
i + (

1 + βq
)
x(2,t)
i

] (21)

Polynomial Mutation: The objective of the mutation operation is to reestablish unex-
pected genetic individuals in order to prevent finding locally optimal solutions and thereby
improve the population diversity and exploratory potential. What it does is as follows:

p′ =
⎧
⎨

⎩

p + δL

(
p − x (L)

i

)
for U ≤ 0.5

p + δR

(
x (R)
i − p

)
for U > 0.5

(22)
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Fig. 6 Simulated binary crossover

Fig. 7 Polynomial mutation

Where p′ is the child solution, p is the parent solution, x (L)
i and x (R)

i are the upper and lower
limits of the parent component, respectively, the parameters

(
δL , δR

)
are functions of U and

η as shown in the following formula and they are calculated, as follows:

δL = (2U )1/(1+η) − 1 for U ≤ 0.5
δR = 1 − (2(1 −U ))1/(1+η), for U > 0.5

(23)

Here, η is the mutation distribution index andU is a uniform random integer between (0, 1),
U is a uniform random integer between (0, 1). Figures6 and7 illustrate how the Simulated
binary crossover and polynomial mutation functions respectively.

In this research, we harness the power of real-coded genetic algorithms (GAs) to optimize
hyperparameterswithin the context of neural network configuration. The choice of real-coded
GAs is underpinned by their distinct advantages, which make them a compelling choice for
this intricate task. Unlike binary encoding or other discretization methods, real-coded GAs
offer a seamless representation of the real-valued hyperparameters inherent in neural network
architecture.

In conjunction with real-coded GAs, we employ a sophisticated selection method known
as two-individual tournament selection. This technique introduces competition among indi-
viduals, enhancing the evolutionary process. Two individuals are randomly selected from
the population, and their fitness function values are compared to determine the one with
the highest fitness. This selection procedure is repeated for a second pair of randomly cho-
sen individuals, and a winner is again selected. The chosen victors are then passed to the
crossover operator. The utilization of tournament selection adds an element of diversity and
competition to the selection process, allowing the algorithm to efficiently explore the solution
space and maintain genetic diversity. Additionally, we integrate an elitist approach into our
selection process, ensuring that the best individuals are always preserved and carried forward
unchanged, which is critical in preventing the loss of highly fit solutions.

Complementing the power of real-coded GAs and tournament selection, we employ
sophisticated genetic operators such as Simulated Binary Crossover (SBX) and Polynomial
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Fig. 8 The diagram shows the optimization of MLP hyper-parameters using RCGA. The hyper-parameters
for neural architecture and activation function are encoded as a chromosome vector to be optimized by GA.
Additionally, weight solver, regularization, and learning hyper-parameters are also optimized simultaneously

Mutation to further enhance the optimization process. SBX, a powerful crossover operator,
is designed to balance exploration and exploitation. By simulating binary-like crossover for
real-valued variables, SBX effectively maintains diversity in the population, thereby prevent-
ing premature convergence and efficiently exploring the search space.

In addition to SBX, we utilize Polynomial Mutation to introduce random perturbations to
variable values. This mutation operator adds essential diversity to the population, mitigating
the risk of falling into local optima and ensuring a comprehensive exploration of the solu-
tion space. The selection of real-coded GAs, SBX, and Polynomial Mutation is underpinned
by their unique qualities, making them an ideal choice for classification tasks. Their adapt-
ability and flexibility empower the simultaneous optimization of multiple hyperparameters
within a unified framework, offering a comprehensive approach to hyperparameter tuning.
This adaptability is vital in addressing the intricate interdependencies between hyperparam-
eters in neural network configurations. Furthermore, the ability to strike a balance between
exploration and exploitation efficiently guides the search process through the hyperparameter
space, yielding optimized configurations tailored to classification tasks. Figure8 presents the
general flowchart methodology for the proposed process.

5 Experiments

The results of the model put out in section 4 will be reported in this part. Google Colab and
TensorFlow 2.0+, which includes the Keras deep learning framework; themost recent version
of sci-kit-learn, Numpy, and Deap were used to implement the model. The k-fold cross-
validation is technic is utilized for the experiments that present the suggested hyperparameters
optimization model. The provided results for each fold were generated using various test sets
for each fold, which were not used for classifier training. The standard RCGA Algorithm 1
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Fig. 9 The crucial steps in optimizing hyperparameters

used to optimize the hyperparameters of MLP neural network is as follows using the flow
chart shown in Fig. 9.

Algorithm 1 Hyperparameter Optimization using Real-Coded Genetic Algorithm
Require:
1: P[0] : Initial population of hyperparameters generated randomly within defined bounds
2: pMLP: Original Multilayer Perceptron Neural Network
3: Number of generations
4: Termination condition
Ensure: Optimized model MLPGA+5 with tuned hyperparameters
5: Initialize P[0] with a random population of hyperparameters within defined bounds;
6: Initialize a new MLP with the same architecture as pMLP;
7: Initialize Generation i = 1;
8: for i from 1 to Number of Generation do
9: Set hyperparameters of the MLP in P[ iGeneration ] with those from pMLP;
10: Calculate Fitness [i] = Accuracy [i] in classification tasks based on the performance of MLP with

hyperparameters in P[i];
11: Perform Tournament Selection, Simulated Binary Crossover, and Polynomial Mutation to generate

NewP;
12: Increment Generation i by 1 ;
13: Set P[ iGeneration ] = NewP;
14: end for
15: Compute the MLP with the optimal hyperparameters found in the last generation.

123



A New Optimization Model For MLP Hyperparameter Tuning... Page 19 of 31   105 

Table 1 Description of the used
databases

Database Features Instances Classes

Wine 13 178 3

Hypothyroid 24 3163 2

Iris 4 150 3

Cancer 9 699 2

5.1 Data Description and Preprocecing

A series of tests were carried out utilizing well-known benchmark datasets from the Uni-
versity of California Irvine (UCI) machine learning repository [69] in order to assess the
performance of our suggested methodology. We specifically used four classification prob-
lems: the hypothyroid dataset, the iris dataset, the Wisconsin Breast Cancer dataset, and the
wine dataset created by Fisher.

Table1. below provides a summary of the datasets utilized in this work, including details
on each dataset’s number of samples, properties, and target classes.

Wine The dataset includes 178 examples with three target classes and 13 real-valued
characteristics. The outcomes of chemical examinations of wines produced in the same
Italian region but from three different cultivars correlate to these classes, which correspond
to 59, 71, and 48 examples, respectively. 13 distinct compounds found in each type of wine
were quantified using chemical analysis.

Hypothyroid The Gravel Institute in Sydney, Australia provided the dataset for this study,
which was then submitted to UC Irvine’s Discovery in Databases. This dataset is a portion
of a broader collection of datasets; however, the “hypothyroidism” dataset, which includes
3163 occurrences and 24 hypothyroidism-related variables, is the subject of this study. There
are numerous missing values in the dataset.

Iris 50 samples of each of the three target classes-Iris Setosa, Iris Virginica, and Iris
Versicolor-make up the 150 iris flower samples in the collection. Sepal length, sepal width,
petal length, and petal width are the four real-valued properties present in each sample, and
they offer information on the morphological traits of each iris species.

Breast CancerWisconsin dataset consists of 699 cases, 458 of which have been classified
as benign and 241 as malignant. The goal is to categorize the breast tumor as benign or
malignant, and the dataset has no missing variables. The issue is a two-class classification
task, and it is based on several properties of the cells that make up the nuclei. While the
remaining 350 patterns serve as a test set, the first 349 serve as a training set for optimizing
the neural network weights.

We used hypothyroid and breast cancer data preparation approaches to ensure the cor-
rectness and dependability of our findings. Data preprocessing includes converting raw data
into a practical format as well as carrying out cleaning and formatting procedures to get rid
of any discrepancies or flaws that can influence our results. We handled unbalanced data,
where there were significantly more negative samples than positive samples, by filling in an
attribute means, converting non-numerical labels to numerical ones, reducing noisy data, and
handling missing data (as indicated in the table). To maintain uniformity in the data across all
datasets, we also standardized the data using a similar formula for each attribute individually.

Scaled Value = X−ū
S

where X: a sample, ū: mean of training samples for a single feature, S: a standard deviation
of training samples for a single feature.
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Table 2 Hyper-parameters to be optimized by GA, the default parameters of the MLP classifier, and the range
of permitted values

Hyperparameter Default value Range of permitted values gene

No of hidden layers – [1, 4] –

No of neurons in hidden layer 1 – [10, 15] 1

No of neurons in hidden layer 2 – [−5, 10] 2

No of neurons in hidden layer 3 – [−10, 10] 3

No of neurons in hidden layer 4 – [−20, 10] 4

Activation 1-relu 1-tanh

2-relu 5

3-logistic

solver 2-adam 1-sgd

2-adam 6

3-lbfgs

Lambda 0.0001 [0.0001,2.0] 7

Alpha 1-constant 1 -constant

2-invscaling 8

3-adaptive

5.2 Parameters Setting of MLP and RCGAs

For classification tasks in our work, we used a Multilayer Perceptron (MLP) classifier. We
used evolutionary algorithms to find the best design that could attain the highest accuracy
in order to enhance its performance. Backpropagation was used in the training of the MLP
classifier. A homogeneous distribution of random weights between 0 and 1 was used to
initialize the network.

A fivefold cross-validation method was used to assess how well the MLP will perform on
new data. This was important because there weren’t enough cases in the dataset, and training
with 90% of them might have resulted in overfitting. As a result, utilizing a threefold cross-
validation strategy helped to reduce the risk of overfitting while allowing for a more accurate
evaluation of the model’s generalization skills. The default MLP classifier parameters are
shown in Table 2 along with the hyper-parameters that will be optimized by GA, the range
of acceptable values, and gene locations.

The suggested parameter settings for the RCGAs when used with various datasets are
presented in Table 3. To get the best results for each dataset, particular parameter settings
might be necessary.

5.3 Results and Discussion

The performance of the genetic algorithm used to analyze the wine dataset across the first six
generations is shown in Table 4. With a population size of 30, a simulated binary crossover
probability of 0.9, and a polynomial mutation of 0.3, the algorithm performed fivefold cross-
validation. The population’s maximum and average fitness levels were seen to rise during the
course of these generations. The minimum fitness value also demonstrated overall improve-
ment. The fitness values’ standard deviation dropped, pointing to a closer grouping around
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Table 3 Suggested parameter
settings for the RCGAs

Pc Pm Ps MG η

0.7 0.3 20 6 10

0.9 0.5 20 12 10

0.8 0.4 20 15 10

0.6 0.2 20 18 10

Pc: is cross-over probability, Pm: is mutation probability, Ps: is the
population size, MG: is the maximum number of generations, η: index
parameter of mutation

Table 4 Performance of the
genetic algorithm applied to the
wine datase

Generation Max Mean Min Std

0 0.949365 0.481011 0.331429 0.154401

1 0.949365 0.558561 0.269841 0.19579

2 0.949365 0.67091 0.331429 0.219346

3 0.96619 0.81737 0.315079 0.176233

4 0.96619 0.875741 0.315079 0.122659

5 0.96619 0.88163 0.315079 0.13712

6 0.96619 0.933667 0.836508 0.026062

the mean. These results point to the efficiency of the genetic algorithm in progressively
improving population fitness and avoiding subpar solutions.

Wemay now look at Table5 to see the results of the genetic algorithm used on the hypothy-
roid dataset. The algorithm performed fivefold cross-validation using the same parameters
as the wine dataset: a population size of 30, a simulated binary crossover probability of
0.8, and a polynomial mutation of 0.4. The maximum and average fitness values showed a
substantial improvement across the generations, proving that the algorithm was successful
in coming up with improved answers for this dataset. The fitness values’ standard deviation
dropped, indicating a decline in fitness variety among the population. These findings show
how effectively the genetic algorithm improves population fitness and converges on the best
answers for the hypothyroid dataset.

The results of the genetic algorithm used on the iris dataset are shown in Table 6.With
a population size of 30, a simulated binary crossover probability of 0.9, and a polynomial
mutation of 0.5, the algorithm conducted three cross-validations. Through the generations,
the population’s maximum and average fitness levels have increased. This shows how the
genetic algorithm improved population fitness and converged to the best answers for the iris
dataset.

Similar to this, Table 7 illustrates how the genetic algorithm used to analyze the cancer
dataset improved after the first 16 generations.With a population size of 30, a simulated binary
crossover probability of 0.9, and a polynomial mutation of 0.5, the algorithm conducted three
cross-validations. The population’smaximum and average fitness values grew, indicating that
the genetic algorithm was successful in enhancing population fitness and convergent toward
the best answers for the cancer dataset. Overall, our findings demonstrate the value of the
genetic algorithm as an optimization tool for improving population fitness and achieving
optimal results across a range of datasets.

Overall, the four datasets’ neural network model outcomes were inconsistent. For the
Wine dataset, a neural network model with six hidden layers, the relu activation function, the
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Table 5 Performance of the genetic algorithm applied to the hypothyroid dataset

Generation Max Mean Min Std

0 0.98514 0.975034 0.952256 0.0123317

1 0.98514 0.949384 0.0233947 0.172049

2 0.98514 0.982412 0.972492 0.00236255

3 0.985458 0.983234 0.979451 0.00136439

4 0.985458 0.983602 0.981347 0.00117347

5 0.985458 0.982643 0.952256 0.0057651

6 0.985458 0.984087 0.981031 0.00122796

7 0.98609 0.983392 0.952256 0.00588725

8 0.98609 0.983993 0.979767 0.00150641

9 0.986405 0.98473 0.98198 0.00120309

10 0.986721 0.985226 0.982612 0.00104534

11 0.986721 0.985942 0.983877 0.000724213

12 0.986722 0.986089 0.982612 0.000848196

Table 6 Performance of the
genetic algorithm applied to the
iris dataset

Generation Max Mean Min Std

0 0.973333 0.701778 0.286667 0.248688

1 0.973333 0.840444 0.286667 0.189338

2 0.973333 0.913778 0.62 0.104505

3 0.973333 0.937556 0.666667 0.0879812

4 0.98 0.913556 0.286667 0.174216

5 0.98 0.927778 0.286667 0.140792

6 0.98 0.971333 0.953333 0.00624203

Table 7 Performance of the
genetic algorithm applied to the
cancer dataset

Generation Max Mean Min Std

0 0.936687 0.737209 0.372644 0.194603

1 0.936687 0.797649 0.372644 0.183507

2 0.943704 0.852265 0.530741 0.126529

3 0.943704 0.90183 0.572644 0.0820399

4 0.956047 0.916775 0.695777 0.0464411

5 0.956047 0.922997 0.850722 0.0273979

6 0.956047 0.930776 0.871728 0.0200354

7 0.957786 0.9265 0.808539 0.0390964

8 0.964819 0.933627 0.755426 0.0428287

9 0.964819 0.942896 0.746654 0.037727

10 0.964819 0.936345 0.789334 0.0429743

11 0.964819 0.939916 0.755426 0.039927

16 0.964819 0.964233 0.952507 0.00237335
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Table 8 Optimal configuration of hyperparameters applied to each dataset

Dataset Architecture A.function Solver L.rate R.parameter Accuracy

Wine (6, ) relu lbfgs 0.30 Constant 0.96

Hypothyroide (9, ) relu lbfgs 1.87 Constant 0.9867

Iris (11, ) tanh lbfgs 0.48 Invscaling 0.98

Breast cancer (10, ) relu lbfgs 1.58 Invscaling 0.96

lbfgs solver, an alpha value of 0.30, and an adaptive learning rate produced the best results.
This model had a 96.62% accuracy rate. Overall, it can be said that neural networkmodels are
capable of performing classification tasks; however, the best hyperparameters may change
based on the particular dataset.

The neural network model with the best result for the Hypothyroid dataset featured 9
hidden layers, employed the relu activation function, the lbfgs solver, had an alpha value of
1.87, and had a constant learning rate. This model had a 98.67% accuracy rate.

For the Iris dataset, the best solution was achieved with a neural network model that had
13 hidden layers with 3 output neurons, using the ’tanh’ activation function, ’lbfgs’ solver,
an alpha value of 0.48, and an invscaling learning rate. This model achieved an accuracy of
98%.

Finaly, for the Breast Cancer dataset, the best solution was achieved with a neural network
model that had 10 hidden layers, used the ’relu’ activation function, ’lbfgs’ solver, an alpha
value of 1.59, and an invscaling learning rate. This model achieved an accuracy of 96.48%.

The most accurate hyperparameters identified for each dataset are listed in Table 8, along
with the MLP classifier’s related accuracies.

We contrast the performance of our suggestedmodelwith that of numerous earlier research
that made use of various categorization algorithms andmethods. Table 9 presents the findings
of this research. For all four datasets-wine, thyroid, iris, and breast cancer-our suggested
approach outperformed earlier studies in terms of accuracy rates. These outcomes show how
well our suggested model performs in precisely classifying various sorts of data.

In summary, the suggested strategy performs better than other methods on a variety of
datasets, starting with the Wine dataset:

The accuracy of the Wine BP model, which uses a backpropagation neural network with
one hidden layermade up of 10 neurons,was 95.0%.This shows that themodelwas successful
in learning fromand accurately classifying thewine data.With the identical design of 1 hidden
layer and 10 neurons, the GA Weights model, which uses a genetic algorithm, achieved an
accuracy of 96.00%,which is just a little bit higher. This implies that using a genetic algorithm
optimization strategy helped the model perform better on the Wine dataset. With the same
1 hidden layer and 10 neurons architecture, the GABP model, which combines the genetic
algorithm with backpropagation approaches, also managed to reach an accuracy of 96.00%.
This suggests that when compared to using backpropagation alone, the combined strategy
produced better outcomes. The MLP-GA model, which included 2 hidden layers with 13
neurons and a genetic algorithm for weight optimization, had a lower accuracy of 77.45%.
This outcome shows that the optimization strategy and architecture used might not have
been appropriate for this particular dataset. The accuracy of the P.method model, which had
hyper-parameters of 1 hidden layer and 6 neurons, was 96.00%, which is comparable to that
of the GA Weights and GABP models. This shows that the selected configuration of the
hyper-parameters was successful in achieving high accuracy for the Wine dataset.
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Fig. 10 Accuracy of different methods applied to wine dataset

The outstanding accuracy of 98.80% was attained by the Hypothyroid MMLP model,
which makes use of a multi-layer perceptron with a feature scaling configuration of 1 high
layer and 10 normal layers. This shows that the model effectively ingested and accurately
identified the hypothyroid data. Comparatively, the accuracy of the MLNN-LMmodels with
50 neurons and 3 and 10 completely connected layers was 92.96% and 93.19%, respectively.
Thesemodels show that addingmore layers did not significantly increase accuracy, indicating
that the added complexity did not significantly improve the dataset in question. A strong accu-
racy of 95%was attained by theMLP-GAmodel, which used genetic algorithm optimization
with a range of 4 to 20 neurons. This shows that the weights of the model were successfully
tuned by the genetic algorithm approach, leading to enhanced classification performance.
The accuracy was 85.5% for the MLP-PSO model, which used particle swarm optimization
with the same range of 4–20 neurons. This suggests that the genetic algorithm may have per-
formed better than particle swarm optimization for this particular task. The P.method model
had an accuracy of 98.67% with hyper-parameters set at 1 high layer and 9 normal layers.
This outcome illustrates that the model’s performance was successfully maximized by the
selected hyper-parameter configuration, yielding high accuracy for the Hypothyroid dataset.

The Iris GE-BP model had a 96.6% accuracy and a 6.14% standard deviation for the
Iris dataset. This shows that generally speaking, the model was successful in categorizing
the many species of iris flowers. The relatively high standard deviation, however, points to
some performance variation between various runs. The accuracy of the MLPGA+4 Hyper-
parameters model, on the other hand, was remarkable, coming in at 98.87% with a standard
deviation of 11.30%. This model consistently produced good accuracy on the Iris dataset
by combining Multi-Layer Perceptron with Genetic Algorithm optimization and four chosen
hyperparameters.With three hidden layers and four normal layers, theMLP-GAArchitecture
model had an accuracy of 97.30%. This shows that a highly accurate classifier for the Iris
dataset was produced using the selected architecture in combination with weight-tweaking
genetic algorithm optimization.

The reported results for various methods in breast cancer classification are as follows:
The ANN method’s outstanding accuracy of 99.4% was attained using a 15-neuron ANN. A
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Fig. 11 Accuracy of different methods applied to hypothyroid dataset

Fig. 12 Accuracy of different methods applied to iris dataset

97.51% accuracy was achieved using SBS-BPPSO (10 CV). SBS-BPLM (10 CV) attained
a 98.83% accuracy. The accuracy of GONN1 was 98.24%. The accuracy of GONN2 was
99.63%. The accuracy of MLP hyper-parameters utilizing 1 hidden layer and 8 neurons was
97.70%. Last but not least, an accuracy of 97.00% was attained utilizing P.method hyper-
parameters with 1 hidden layer and 10 neurons.

The results show that MLPRGA+5 performs differently on various datasets compared to
the other approaches the authors have suggested, Figs. 10, 11, 12, and13 depicts a summary
of the results that were attained. Although it shows promise in some datasets, it might not
work well in others. Further research and experimentation are advised to improve the results
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Fig. 13 Accuracy of different methods applied breast cancer dataset

in this particular dataset. This will aid in the method’s improvement and optimization, maybe
producing better results.

6 Conclusion

this study introduces a novel and highly effective approach MLPRGA+5 to optimize hyper-
parameters for Multilayer Perceptron (MLP) neural networks leveraging the Real-coded
Genetic Algorithm (RCGA). Our work focuses on achieving an optimal balance between
MLP accuracy and complexity. RCGA, along with specific operators like Simulated Binary
Crossover (SBX) and Polynomial Mutation, offers a robust framework for navigating the
intricate landscape of hyperparameters. The selection of RCGA is rooted in its ability to
directlymanage real-valued hyperparameters, aligning seamlesslywith the continuous nature
of these parameters. The synergy with SBX and Polynomial Mutation further empowers the
algorithm to efficiently explore complex optimization spaces. This research extends the fron-
tiers of hyperparameter tuning inMLPnetworks, emphasizing the broader utility ofRCGAs in
tackling intricate optimization challenges. By concurrently optimizing neural network archi-
tecture and hyperparameters, we provide a more efficient approach to classification tasks.
Ultimately, our study underscores the potential of RCGAs as a valuable tool for machine
learning and artificial intelligence, promoting advancements in deep learning and effective
solutions to real-world problems.
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