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Abstract
Clustering algorithm is one of the most widely used and influential analysis techniques.With
the advent of deep learning, deep embedding clustering algorithms have rapidly evolved and
yield promising results. Much of the success of these algorithms depends on the potential
expression captured by the autoencoder network. Therefore, the quality of the potential
expression directly determines the algorithm’s performance. In view of this, researchers
have proposed many improvements. Although the performance has been slightly improved,
they all have one shortcoming, that is, too much emphasis is placed on the original data
reconstruction ability during the process of feature expression,which greatly limits the further
expression of potential features according to specific clustering tasks. Moreover, there is a
large amount of noise in the original data, so blindly emphasizing reconstruction will only
backfire. Hence, we innovatively propose a deep embedding clustering algorithm based on
residual autoencoder (DECRA) after in-depth research. Specifically, a novel autoencoder
network with residual structure is proposed and introduced into deep embedded clustering
tasks. The network introduces an adaptive weight layer in feature representation z, which
can make it have good robustness, generalization for specific tasks, and adaptive learning of
better feature embeddings according to category classification. In this paper, the reasons for
the validity of this structure are explained theoretically, and comprehensive experiments on
six benchmark datasets including various types show that the clustering performance of the
DECRA is very competitive and significantly superior to the most advanced methods.
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1 Introduction

Clustering is an analysis technique that divides data into disjointed subclasses by using the
internal structure of data. It is one of the important means in the field of data mining analysis
and has attracted much attention. For a long time, it as widely used in many fields such
as image segmentation [1], image recognition [2–4], network analysis [5–7] and document
analysis [8, 9]. Especially the workload of data annotation is large and the cost is high in
the era of big data. Cluster analysis highlights its research value because it does not need
supervising information. Many research methods have emerged over the last few decades,
such asK-means clustering [10], Subspace clustering [11], Spectral clustering [12], clustering
based on non-negative matrix decomposition [13], etc., and have achieved important results
in many fields. However, these models are shallow models, and their representation process
relies heavily on hand-designed features and expert knowledge, so the representation ability
of the models is limited, and they cannot represent the deep semantic information between
the data. Secondly, these methods all involve very complex computational processes, such as
kernel matrix calculation in kernel K-means method, decomposition process in non-negative
matrix decomposition, and eigenvalue solving problem in spectral method, etc., leading to
high time complexities, often on the order of O(n3), making them unsuitable for big data
applications.

In response to these challenges, some studies have proposed to first use dimension
reduction technology to map high-dimensional complex original features to relatively low-
dimensional space [14] for the sake of obtaining low-dimensional embedding representation
of the original data, and then carry out clustering. This two-step strategy has disconnected
the correlation between feature representation learning and cluster allocation, and it is mean-
ingless to have feature representation learning without specific clustering tasks. Although
it seems to perfectly solve the fundamental reason why traditional methods are not appli-
cable to big data, in fact, there are huge omission in theory and little effect. Based on this,
later studies [15] Torre and Kanade proposed to combine the two to form a unified training
mechanism, specifically by combining linear discriminant analysis and K-means to complete
specific tasks. This research has far-reaching significance, but the shallow model used does
not perform well in feature representation learning.

In recent years, thanks to deep learning, the above challenges faced by cluster analysis can
be better solved. The reason is that clustering algorithms based on deep learning no longer
rely on manually designed features and expert knowledge, but self-learning is more suitable
for the feature expression of the big data and the current learning task. Second, compared
with the shallow model, the deep network is more conducive to mining the deep semantic
information of data. Finally, with the rapid development of deep learning frameworks such
as Pytorch, Tensorflow, hardware and software platforms (GPUs), the emergence of efficient
algorithms, for instance, random optimization and parallel computing, deep clustering algo-
rithms can be applied to larger datasets. Therefore, a large number of studies have embraced
deep learning, propelling clustering analysis into the era of deep learning. As an important
unsupervised neural network model, autoencoder can effectively extract and express features
of high-dimensional data, and plays an important role in deep clustering. Hence, the quality
of the potential expression captured by the automatic coding network directly determines
the performance of the algorithm. However, some recent studies [16, 17] have adopted the
idea of IDEC [18] adding additional reconstruction loss from autoencoder in training to
preserve the local structure of features. Although this can properly improve the damage to
the embedded space in the learning process of clustering division, it overemphasizes the
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data reconstruction ability of the algorithm, greatly limiting the further expression of poten-
tial features according to specific clustering tasks. Moreover, it does not consider the large
amount of noise information already existing in the original data, and blind reconstruction
will only backfire. In this regard, IDCEC [19] Lu et al. proposed an improved method, which
first assigned pseudo-labels to each sample through clustering division, and then selected
samples with high similarity from each class according to various central points as a reliable
benchmark to train additional convolutional neural networks for classification. The trained
convolutional neural networks can assist the clustering networks to cluster. It is undeniable
that this study reduces the influence of sample noise on clustering to a certain extent through
the auxiliary pseudo-label classification mechanism, but at the same time, it also introduces
new uncertainties, that is, the selection of various center points is often disturbed by noise,
and fails to represent the class well, and cannot achieve good results.

In view of this, we propose an innovative deep embedding clustering algorithm based on
residual autoencoder after in-depth research. This algorithm proposes a novel autoencoder
network,which startswith the potential representation of features and adds an adaptiveweight
layer to enhance robustness, task-specific generalization, and adaptive learning of better
embedded representation of features according to class classification. Without introducing
additional information, the clustering effect is greatly improved. We summarize the main
contributions of this paper as follows:

• Wepropose a novel deep embedding clustering scheme, calledDECRA, and design a novel
autoencoder model with residual structure to enhance the robustness of potential repre-
sentations, task-specific generalization, and adaptive learning of better feature embedding
representations based on category classification.

• Our algorithm considers both clustering loss and reconstruction loss of residual autoen-
coder during clustering optimization, so that the learned feature expression is more
conducive to the clustering task.

• The algorithm in this paper performs comprehensive experiments, and the results show
that the algorithm is universal and competitive for multiple types of datasets. Even for
difficult-to-process text dataset, performance is significantly improved.

The following contents describe related works and our method details respectively corre-
spond to Sects. 2 and 3. Section 4 presents the experimental settings and experimental results
on related datasets. Section 5 gives the conclusion.

2 RelatedWorks

2.1 Autoencoder Network

Autoencoder is a neural network structure for unsupervised learning. The feature expression
of the input sample is learned by the encoder, and then reconstructed by the decoder. After
minimizing the autoencoder reconstruction loss, the feature expression of the input sample
in the embedded space is learned by the intermediate state z. The process can be formalized
as follows: corresponding to a set of samples xi ∈ RD in the input space, the autoencoder
maps f (xi ; θe) learns the encoding zi ∈ RM for x in feature space, and then uses the decoder
g(zi ; θe) reconstructs the original sample using the encoding in the feature space.

Encoder: f : RD → RM . The features of the input xiare condensed by the mapping
function and saved as zi . Most of them use nonlinear mapping functions, the most common
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of which is sigmoid function, whose mapping calculation process is as follows:

zi � f (xi ; θe) � 1

1 + exp(−(Wxi + b))
(1)

where �e � {W , b}, W ∈ RM×D is the encoding weight, and b ∈ RM is the corresponding
deviation vector. The sigmoid function of Eq. (1) has the same input and output dimensions,
so the output zi is also M-dimensional.

Decoder: g : RM → RD . The role of the decoder is to remap the encoding of the feature
space to the original sample. The mapping guses the same nonlinear function as the encoder.
Reconstructing the original input ximapping from hidden representation ziby decoder is
calculated as follows:

x̃zi � f (zi ; θd) � 1

1 + exp(−(W ′zi + b′))
(2)

where �d � {W ′, b′}, W ′ ∈ RD×M is the decoding weight and b′ ∈ RD is the decoding
deviation vector. This architecture can learn potential representations of features. Given the
number of training samples N, the parameters W ,W ′, b, and b′can be solved by minimizing
the following objective function:

min
1

N

N∑

i�1

∥∥xi − x̃zi
∥∥2
2 (3)

2.2 Clustering Algorithm

Cluster analysis is essentially to divide the sample into disjoint subsets by using the similarity
between the data. In recent decades, many classical clustering methods have been proposed,
such as subspace clustering, K-means clustering, spectral clustering, clustering based on
non-negative matrix decomposition, etc., which have had an important influence in the field
of clustering. However, with the changing landscape of data complexity and volume, these
methods are difficult to meet the current needs due to limited representation ability and low
efficiency. Therefore, how to efficiently process large-scale data and obtain good clustering
performance has aroused extensive thinking among researchers. Chang et al. [20], proposed
a straightforward approach that first learns the low-dimensional embedded representation of
the data by applying principal component analysis, and then performs clustering to reduce
the complexity of the data. In addition, Cai et al. [21] use sparse representation method
to deal with high-dimensional data and calculate the embedded representation of the data
through the anchor points. Gu et al. [22] also learn the discriminative features of data based
on sparse representation and improve fuzzyC-means method.With the introduction of a new
fast learning algorithm (extreme learning machine), due to its stochastic nonlinear feature
mapping and general fitting capabilities, [23] the algorithm’s training efficiency and clus-
tering performance have been improved compared with traditional methods. Subsequently,
many researchers followed up, and Zhang et al. combined multi-view and proposed an ELM
clustering framework based on multi-view fusion, called MVEC [24]. Chen et al. [25] used
feature selection to remove irrelevant hidden nodes, and combined with extreme learning
machine to cluster data directly. Chen et al. [26] integrated extreme learning machine into
maximum interval clustering and used approximate empirical kernel mapping instead of ran-
dom feature mapping, which further reduced the training time and memory consumption,
and further improved the clustering accuracy.
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2.3 Deep Clustering Algorithm

Recently, deep learning has made remarkable achievements. Many studies combined deep
learning to gain powerful representation capabilities to acquire good embedding expressions,
and achieved significant improvement in clustering performance. Such as, [27] proposed the
Deep Embedding Network (DEN) in 2014 to realize the deep embedding expression of sam-
ples in the feature space. [28] proposed Deep Embedding Clustering (DEC) in 2016, which
uses deep encoder network to capture the features suitable for classification as well as defines
a clustering loss function to optimize the parameters of neural network and clustering centers.
Although deep learning and clustering tasks are embedded in the same network framework,
the algorithm only uses clustering loss to carry out feature representation learning and cate-
gory classification tasks, neglecting the maintenance of local connection structure between
features during training, resulting in the damage of feature space and thus affecting the clus-
tering performance. Subsequently, [18] proposed an improved algorithm tomaintain the local
structure of features in the process of deep feature learning. DEC is improved by combining
reconstruction losses and clustering losses in autoencoders. Soon after, [16] proposed the
Convolutional Autoencoders version (DCEC) to introduce convolutional autoencoders for
clustering.

3 ProposedMethod

Our proposed algorithm, named deep embedding clustering based on residual autoencoder
(DECRA), will be introduced in details in this section. For the convenience of representation,
the variables are defined as follows: Suppose the dataset X has msamples, each sample
xi ∈ Rn , where n is the dimension. The prior knowledge K represents number of clusters,
and the j-th cluster center is represented byμ j ∈ Rd . With si ∈ {1, 2, . . . , K }represents the
assigned clustering label about xi . Z � {z1, ..., zm}represents their corresponding potential
representation, where zi � f (xi ; θe) ∈ Rd is the output of the encoder after processing. The
residual structure ẑ � H(z, W ) + zis formed by applying an adaptive weight layer to the
potential feature z and with the original z. x̃zi � g(̂zi ; θd ) represents the reconstructed data
of the original sample and the decoder output.

Our research is dedicated to find a model structure that makes the embedding point
{zi }mi�1more suitable for clustering tasks. For this reason, adding residual structure on the
basis of autoencoder can learn the feature representation of samples more robust under unsu-
pervised conditions, and enable the learned feature representation to self-adapt and learn
better feature embedding representation according to class classification. The algorithm is
divided into two parts: pre-training and fine-tuning. The overall network architecture is shown
in Fig. 1.

3.1 Network Pre-Training

Consistent with DEC, IDEC and other deep embedded clustering algorithms, DECRA algo-
rithm also needs to be pre-trained on the network to get the mapping of the samples in the
low-dimensional space. The main purpose is to get a good feature expression, and the second
is to reduce the influence of latitude on the algorithm. However, the traditional autoencoder
learns the abstract representation of each sample through the neural network. When the net-
work is complex to a certain degree or the training blindly emphasizes reconstruction, the
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Fig. 1 The framework of the proposed DECRA

autoencoder will remember all the information of each sample, including the noise, and
there is a serious risk of overfitting. The generated potential expression greatly reduces the
discriminability and generalization for specific clustering tasks.

Therefore, a novel residual autoencoder is proposed in this paper, which is expected to
solve the above problems. The structure is shown in Fig. 2. After encoding, the network
flow direction is divided into two branches: one is activated by the adaptive weight layer
z → H (z, W ), see Eq. (4); The other one does not carry out special processing z → z, and
retains the original data. Combine the results of the two paths and pass them to the decoder,
keeping the original feature dimension unchanged, as shown in Eq. (5). wi is the weight of
the neural network; ẑis the output vector of the residual block. bi is the offset term of the
neural network.

H(z, W ) � wi × zi + b (4)

ẑ � H(z, W ) + z (5)

Finally, the decoder processes ẑto reconstruct x. An autoencoder with a residual structure
introduces an adaptive weight layer on the latent feature z and forms a residual structure with
the previous z. In the reconstruction training, it has the following two advantages: (1) the
weight layer is equivalent to the "noise" added on z, preventing overfitting; (2) The residual
structure makes the potential representation of the network tend to be between z and the

Fig. 2 The framework of the residual autoencoder
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noise version of z in the gradient backpropagation, so that the applied weight does not worry
about destroying the original feature information, but also ensures the great flexibility of the
network, so that it can be optimized according to specific clustering tasks.

A basic network is trained by the reconstruction loss of the residual autoencoder as shown
in Eq. (6). The initial cluster center

{
μ j

}K
j�1 of z is obtained by K-means clustering.

Lr
(
x̃ẑi , xi

) � ∥∥xi − x̃ẑi
∥∥2
2 (6)

3.2 Network Fine-Tuning

In the network fine-tuning phase, we also borrowed the idea of the t-SNE algorithm [29],
but no longer focused on measuring the similarity between data points in the initial space of
data. As with DEC, the similarity is measured using the student t-SNE distribution function
between the embedding point zi in the pre-trained potential space and the cluster center μ j :

qi j �
(
1 +

∥∥zi − μ j
∥∥2
2

)−1

∑
j ′ ��i

(
1 +

∥∥zi − μ j ′
∥∥2
2

)−1 (7)

where zi � fθ (xi ) corresponds to xiafter embedding, and μ j represents the j-th cluster
center in the embedding space. qi jcan be understood as the probability of classifying the i-th
feature zi into class j , and qi � [qi1, qi2, . . . , qiK ]T is the soft assignment probability of the
data point xi .

Consistent with the general deep embedding clustering algorithm, the objective allocation
function P is used to learn the clustering division with higher certainty in the clustering soft
distribution function Q. In the distribution function Q, the meaning of the probability value
is the similarity between ziand μ j . The more similar the two are, the higher the probability
that the data point xiwill be assigned to j-th category. Therefore, the distribution with high
confidence in the distribution function usually has higher clustering accuracy and can better
reflect the real clustering results. The objective allocation function P is defined as follows:

pi j � q2i j/�i qi j
∑
j ′ ��i

(
q2i j ′/�i qi j ′

) (8)

Using the above two distribution functions, we construct the loss function of the cluster
by the KL divergence of them:

Lc � K L(P‖Q) �
∑

i

∑

j

pi j log
pi j
qi j

(9)

Combined with Eqs. (6) and (9), the autoencoder with residual structure and clustering
module are jointly optimized. We use the fully connected layer to implement the encoder
and decoder modules. The overall loss function is defined as:

L � Lr + γ Lc (10)

where Lrmeans reconstruction loss and Lcis clustering loss, γ > 0 is the proportional
coefficient controlling reconstruction and clustering. Through fine-tuning training of the
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model, the final clustering result is a label that assigns potential feature point zi to cluster
center μ j with the maximum probability qi j :

si � argmax
j

qi j (11)

3.3 Network Optimization

We analyze the optimization part of the network more details in this section. We use small-
batch optimization algorithm combined with backpropagation algorithm for Eq. (10), and
iteratively optimize cluster center μ j , residual autoencoder parameters θe, θd , and adaptive
weight layer parameters W . It mainly includes two parts: reconstruction loss optimization
and clustering loss optimization. For a complete description of the DECRA algorithm in this
paper, see Algorithm 1.

Algorithm 1 Deep embedding clustering based on residual autoencoder Algorithm

3.3.1 Reconstruction Loss Optimization

The residual autoencoder proposed in this paper can be divided into two steps for the back-
propagation process of reconstruction loss:

(1) The fist branch gradient backpropagation without adaptive weight layer, that is, the
traditional autoencoder derivation process:

∂L r

∂θd
� 2

m∑

i�1

(
xi − x̃ẑi

) × ∂ x̃ẑi
∂θd

(12)

∂L r

∂θe
� 2

m∑

i�1

(
xi − x̃ẑi

) × ∂ x̃ẑi
∂zi

× ∂zi
∂θe

(13)
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(2) The novel branch gradient backpropagation with adaptive weight layer proposed in
this paper is derived for θe, θd and W respectively as follows:

∂L r

∂θd
� 2

m∑

i�1

(
xi − x̃ẑi

) × ∂ x̃ẑi
∂θd

(14)

∂L r

∂W
� 2

m∑

i�1

(
xi − x̃ẑi

) × ∂ x̃ẑi
∂H(z, W )

× ∂H(z, W )

∂W
(15)

∂L r

∂θe
� 2

m∑

i�1

(
xi − x̃ẑi

) × ∂ x̃ẑi
∂H(z, W )

× ∂H(z, W )

∂zi
× ∂zi

∂θe
(16)

Then, the corresponding parameters are updated. It can be seen that branch (1) constantly
adjusts the network parameters according to the original sample to make the reconstructed
data approximate to it. In this process, the potential features can be learned and the feature
transformation of the input rawdata can be realized.Branch (2) is introduced in this paperwith
an adaptive weight layer, which is equivalent to introducing a “noise” term and selectively
controlling the expression of z, so as to prevent the network from fully characterizing the
sample in the reconstruction training, and enhance the network generalization ability. The
combination of the two can make the potential representation of the network tend to be
between z and the noise version of z, so that the network does not have to worry about
the applied weight destroying the original feature information, but also ensures the great
flexibility of the network, so that it can be optimized for specific clustering tasks.

3.3.2 Clustering Loss Optimization

In the process of clustering loss optimization, for the sake of avoiding the numerical instability
caused by the simultaneous updating of P and Q, we adopt the strategy of alternate updating.
When P is fixed, the gradient of Lcwith respect to zi , μ j and θe can be calculated as:

∂Lc

∂zi
� ∂KL(P||Q)

∂zi
�

∂
m∑
i�1

K∑
j�1

(
pi j log pi j − pi j log qi j

)

∂zi
� −

K∑

j�1

pi j
∂
(
log qi j

)

∂zi

�
K∑

j�1

pi j

⎡

⎣−∂

(
log

(
1 +

∥∥zi − μ j
∥∥2

)−1
)

× 1

∂zi
+ ∂

⎛

⎝log
∑

j ′

(
1 +

∥∥zi − μ j ′
∥∥2

)−1

⎞

⎠ × 1

∂zi

⎤

⎦

�
K∑

j�1

pi j
2
(
zi −μ j

)

1+
∥∥zi −μ j

∥∥2
−

K∑

j�1

pi j×2

⎛

⎝
∑

j ′

(
zi −μ j ′

)(
1+

∥∥zi −μ j ′
∥∥2

)−2

⎞

⎠ × 1
∑
j ′

(
1 +

∥∥zi − μ j ′
∥∥2

)−1

�
K∑

j�1

pi j
2
(
zi − μ j

)

1 +
∥∥zi − μ j

∥∥2
− 2

⎛

⎝
∑

j ′

(
zi − μ j ′

)(
1 +

∥∥zi − μ j ′
∥∥2

)−2

⎞

⎠ × 1
∑
j ′

(
1 +

∥∥zi − μ j ′
∥∥2

)−1

�
K∑

j�1

pi j
2
(
zi − μ j

)

1 +
∥∥zi − μ j

∥∥2
− 2

∑

j ′

(
zi − μ j ′

)(
1 +

∥∥zi − μ j ′
∥∥2

)−2 × 1
∑
j ′

(
1 +

∥∥zi − μ j ′
∥∥2

)−1
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�
K∑

j�1

pi j
2
(
zi − μ j

)

1 +
∥∥zi − μ j

∥∥2
− 2

∑

j ′

(
zi − μ j ′

)(
1 +

∥∥zi − μ j ′
∥∥2

)−1 × qi j ′

� 2 ×
K∑

j�1

(
zi − μ j

)
(pi j − qi j )

1 +
∥∥zi − μ j

∥∥2
(17)

By the same token, we can get:

∂Lc

∂μ j
� −2 ×

K∑

j�1

(
zi − μ j

)
(pi j − qi j )

1 +
∥∥zi − μ j

∥∥2
(18)

Finally, the gradient for the encoder parameter θe is obtained:

∂Lc

∂θe
� ∂Lc

∂zi
× ∂zi

∂θe
(19)

3.3.3 Update Target Distribution P

The update of P is different from the above process. The distribution of cluster labels is
determined by the soft label distribution Q, but the definition of P itself is also related to Q.
Therefore, in order to prevent excessive fluctuation in the iteration process, this paper updates
the target distribution P with all data points in the potential space in every T iteration. The
update rules are shown in Eqs. (7) and (8). When P is updated, the label assigned to xi is
calculated according to Eq. (11). If the label allocation change (percentage) is less than the
threshold ε between two consecutive updates, the training terminates.

4 Experiment

4.1 Datasets

For verifying the effectiveness of our DECRA algorithm, we experimentally evaluated it on
six high-dimensional datasets covering the domains of handwritten digits, objects, and text
as follows:

• MNIST [30]: This dataset consists of a total of 70,000 images of size 28 × 28 pixels
handwritten digits.

• Fashion-MNIST [31]: This dataset contains 60,000 training images and 10,000 testing
images, each of which is displayed in grayscale with a size of 28 × 28 pixels

• REUTERS-10 K [32]: REUTERS dataset has about 810,000 English news stories anno-
tated with classification trees. The REUTERS-10 k dataset used in this paper, derived from
DEC, consists of 10,000 samples.

• MNIST-test [30]: REUTERS dataset consists of a total of 10,000 images of size 28 × 28
pixels handwritten digits.

• USPS [33]: This dataset consists of 9298 grayscale images of size 16 × 16 pixels hand-
written digits.

• COIL20 [34]: The dataset consists of 1440 pieces of data from 20 different objects (K �
20) 32 × 32 image composition, 72 images per object, taken at 5-degree pose intervals.

The detail information about those datasets is presented in Table 1.
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Table 1 Statistics of benchmark
Datasets Dataset Examples Dimension Classes

MNIST 70,000 784 10

Fashion-MNIST 70,000 784 10

REUTERS-10 K 10,000 2000 4

MNIST-test 10,000 784 10

USPS 9298 256 10

COIL20 1440 1024 20

4.2 Clustering Index

In order to evaluate the clustering results, we adopt three evaluation indexes that are widely
used in cluster analysis: Accuracy (ACC), Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI).

The ACC evaluation indicator is defined as follow:

ACC � max
m

n∑
i�1

1{li � m(ci )}
n

(20)

where liand ciare the true labels and predictive clustering of data points xi , respectively. For
unsupervised clustering algorithms, the Hungarian algorithm represented by m(.) is used to
compute the best mapping between the cluster assignment and the real label.

The NMI normalization metric measures the similarity between the true label and the
predicted label of data, defined as:

NMI � I (l; c)

max{H (l), H (c)} (21)

where I (l, c)represents the mutual information between l and c, where l is the true label of
the data, c is the label predicted by the clustering algorithm, and H represents their entropy.
The results of the NMI are not changed by the arrangement of clusters (classes), they are
normalized to a range of [0,1], where ‘0’ means that there is no correlation between the real
label and the predicted label, and ‘1’ means that there is a complete correlation between
them.

The ARI evaluation indicator is defined as:

ARI � RI − E(RI)

max(RI) − E(RI)
(22)

where E(RI)represents the expectation of the Rand Index (RI). Each three indicators measure
the effectiveness of the algorithm fromdifferent angles.Combining the above three indicators,
we can fully understand the performance of all aspects of the algorithm.

4.3 Experimental Settings

In this paper, Our DECRA algorithm is based on the deep learning framework Tensorflow-
1.15 and the operating system is ubuntu-20.04. NVIDIA Graphics processing Units (GPUs)
are used to accelerate deep learning calculations. we use the fully connected layer to imple-
ment the encoder and decoder modules, and set the encoder nodes in every layer are

123



127 Page 12 of 19 M. Li et al.

d-500-500-1000-10, where d is the feature dimension. The decoder nodes are symmetri-
cal with the encoder, that is, 10-1000-500-500-d . Except the input, output and embedding
layers, the activation functions used in all hidden layers of the encoder are ReLu functions
[35]. In the experiments, for pre-training on all datasets, the batch size is set to be 256. We
adopt Adam [36] as the optimization algorithm, and set the two parameters of Adam to be β1
� 0.9 and β2 � 0.999. The learning rate of the REUTERS-10K dataset is set to λ � 0.0001,
while on other four datasets is set to be λ � 0.001. And the convergence threshold is set to be
ε � 0.01%. For more code details, see the Availability of data and materials section, where
we share the complete, executable code.

We select two traditional algorithms and several typical deep clustering algorithms to
compare the clustering performance with our DECRA algorithm. That includes K-means
[37], SC [12], AE + K-means [38], DEC [28], SDEC [39], IDEC [18], DCEC [16] and
IDCEC [19] algorithms.

4.4 Experimental Results

The performance comparison of each algorithm on the six benchmark datasets are shown in
Tables 2, 3 and 4. The table values are derived from the results reported in the corresponding
paper or by running their code. If an algorithm is not suitable for a specific dataset, its
corresponding result is “N/A”. We highlight the best results in bold. From these results, we
can draw the following points.

1. Generally, all deep clustering algorithms, including AE + k-means, DEC, SDEC, IDEC,
DCEC, IDCEC andDECRA, outperform the two traditional clusteringmethods, k-means
and spectral clustering (SC) algorithm, which reveals that deep clustering algorithms has
more application prospects than traditional.

2. When the strategies of feature learning are basically the same, the clustering performance
of the deep clustering algorithms using the unified optimization framework, including
DEC, SDEC, IDEC, DCEC, IDCEC and DECRA, are generally better than that of the
methods which carry out feature learning and clustering analysis in separated steps,
such as AE + k-means method. In AE + k-means, the features Learning and clustering
analysis are carried out separately, so that the feature learning process cannot be guided
by clustering analysis, and thus the learned features may not be optimal for subsequent
clustering tasks.

3. Since IDEC proposed to add reconstruction loss in training to maintain the local structure
of data, deep-embedded clustering algorithms have followed this line, such as DCEC,
IDCEC and so on. Of course, it plays a positive role in preventing the inherent structural
damage of data caused by clustering partitioning learning. However, it also leads to a new
problem, that is, overemphasis on data reconstruction may hinder the generalization of
potential expressions. As there are often a large amount of noise in the data, blind pursuit
of reconstructionwill greatly limit the further expression of potential features according to
specific clustering tasks. The comparison results fully reflect that our algorithm achieves
the best performance on all datasets, and achieves a substantial improvement on some
datasets, such as USPS increasement of about 14%. These results demonstrate that the
residual autoencoder proposed in this paper can learn high-quality latent expressions,
which are more flexible and conducive to generalization compared to previous methods.

4. It is worth mentioning that our algorithm not only works well on image datasets, but also
achieves remarkable results on text dataset that is difficult to process. The text dataset
Reuters-10K uses a simple tf-idf feature extraction method, resulting in a very sparse
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Table 2 ACC of compared algorithms on six benchmark datasets

METHODS MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

K-means 0.532 N/A N/A 0.542 0.668 N/A

SC 0.680 0.551 N/A 0.667 0.656 0.488

AE + k-means 0.741 N/A 0.749 N/A 0.710 N/A

DEC 0.847 0.536 0.711 0.776 0.733 0.576

SDEC 0.861 0.569 0.723 N/A 0.764 0.592

IDEC 0.881 0.552 0.729 0.791 0.762 0.599

DCEC 0.874 0.508 N/A 0.852 0.739 0.683

IDCEC 0.948 0.579 N/A 0.883 0.812 0.695

DECRA 0.964 0.663 0.825 0.890 0.951 0.735

The bold text represent our algorithm’s results

Table 3 NMI of compared algorithms on six benchmark datasets

METHODS MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

K-means 0.499 N/A N/A 0.5 0.626 N/A

SC 0.759 0.63 N/A 0.712 0.796 0.772

AE + k-means 0.723 N/A 0.498 N/A 0.675 N/A

DEC 0.791 0.591 0.501 0.724 0.706 0.765

SDEC 0.829 0.628 0.586 N/A 0.777 0.772

IDEC 0.867 0.604 0.469 0.736 0.756 0.770

DCEC 0.851 0.600 N/A 0.809 0.739 0.798

IDCEC 0.906 0.641 N/A 0.877 0.858 0.810

DECRA 0.917 0.656 0.592 0.879 0.885 0.829

The bold text represent our algorithm’s results

Table 4 ARI of compared algorithms on six benchmark datasets

METHODS MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

K-means 0.365 N/A N/A 0.378 0.545 N/A

SC 0.625 0.422 N/A 0.563 0.650 0.407

AE + k-means 0.647 N/A 0.496 N/A 0.588 N/A

DEC 0.749 0.420 0.498 0.66 0.637 0.556

SDEC 0.792 0.451 0.556 N/A 0.699 0.565

IDEC 0.850 0.442 0.538 0.666 0.679 0.575

DCEC 0.819 0.418 N/A 0.773 0.655 0.613

IDCEC 0.889 0.468 N/A 0.841 0.772 0.652

DECRA 0.924 0.530 0.642 0.846 0.907 0.681

The bold text represent our algorithm’s results
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feature matrix with most elements being zero and only a few elements containing simple
word frequency information. Some of the previous algorithms could not handle text
features or did not achieve very good performance. Even so, our algorithm achieved a
significant improvement of 10%. It shows that the proposed algorithm is universal to all
kinds of datasets.

In Fig. 3, a more intuitive comparison is shown. It can also be seen that the DECRA
algorithm obtains impressive effects in the same type of algorithm, and acquires a large gap
with other algorithms. In summary, the experimental results show the superiority of DECRA
compared with the most advanced deep clustering algorithm.

Fig. 3 Visualization of algorithm performance on different datasets
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Fig. 4 ACC curves of IDEC and DECRA on MNIST

We show the evolution process of both clustering performances on MNIST in Fig. 4
so as to further compare the performance improvement of our improved DECRA algorithm
with IDEC algorithm. It can be seen that the final accuracy is the same as Table 2, that is,
DECRA is better than IDEC, and after about 20 iterations, the accuracy of IDEC algorithm
is no longer improved, indicating that the potential expression at this time can no longer
learn discriminant features for clustering. The reasons are as follows: (1) It may be that the
autoencoder reconstructs the noise of the sample into z without distinction, resulting in poor
clustering due to the influence of noise. (2) It may be that the reconstruction is too strong,
limiting the further expression of z according to specific clustering. In contrast, due to its
unique and flexible structure, DECRA algorithm has robustness to noise and generalization
to clustering tasks, and its accuracy has been improved until the 150th iteration, and finally
converges stably to 0.964.

Figure 5 shows the visualization effect of evolution process of the learned latent represen-
tation on training. Taking the MNIST dataset for example, we randomly select 1000 sample
and map the latent representation z to a two-dimensional space by t-SNE. From the trend of
evolution, we can see that with the increase of training epochs, data points belong to different
clusters are separated away and easier to distinguish, while the distribution of data points
from same cluster are more compact. This suggests that the learned feature space is more
suitable for clustering tasks.

Fig. 5 Visualization of MNIST during training process with t-SNE
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Table 5 Comparison of ACC in ablation experiment

Method Lr Res MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

Benchmark × × 0.847 0.536 0.711 0.776 0.733 0.576

–
√ × 0.881 0.552 0.729 0.791 0.762 0.599

DECRA
√ √

0.964 0.663 0.825 0.890 0.951 0.735

The bold text represent our algorithm’s results

Table 6 Comparison of NMI in ablation experiment

Method Lr Res MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

Benchmark × × 0.791 0.591 0.501 0.724 0.706 0.765

–
√ × 0.867 0.604 0.469 0.736 0.756 0.770

DECRA
√ √

0.917 0.656 0.592 0.879 0.885 0.829

The bold text represent our algorithm’s results

Table 7 Comparison of ARI in ablation experiments

Method Lr Res MNIST Fashion-mnist Reuters-10 k MNIST-test USPS COIL20

Benchmark × × 0.749 0.420 0.498 0.66 0.637 0.556

–
√ × 0.850 0.442 0.538 0.666 0.679 0.575

DECRA
√ √

0.924 0.530 0.642 0.846 0.907 0.681

The bold text represent our algorithm’s results

4.5 Ablation Experiment

In order to further analyze and demonstrate the validity of the residual structure proposed in
this paper, an ablation experiment is carried out in this section. As shown in Tables 5, 6, 7,
we showed the comparison results of clustering performance after ablation of key structures
on three quantitative indicators for the 6 datasets used. Where "Lr" and "Res" respectively
indicate that the training maintains reconstruction constraints and residual structures, and
whether there is a corresponding structure is marked with " × " or "

√
". It can be intuitively

seen that maintaining reconstruction constraints in training is conducive to maintaining the
local intrinsic structure of the original data to a certain extent, avoiding damage during
clustering partitioning learning, and improving performance to a certain extent. However, we
have also noticed that there is insufficient performance improvement or even retrogressive
phenomenon in some indicators, such as Reuters-10k retrogressive 4% in NMI indicators.
This is most likely due to the original characterization of the data (including noise) during
auto-encoder reconstruction, which makes the model not robust enough. In contrast, our
autoencoder with residual structure has achieved optimal performance on all datasets and
indicators in the table, which reflects that the autoencoder with residual structure in this
paper has good robustness and generalization for specific clustering tasks.
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5 Conclusion

In this paper, we propose a novel residual autoencoder framework for deep clustering task,
named deep embedding clustering algorithm based on residual autoencoder (DECRA). This
model can effectively address the problem that the feature generalization ability is insuffi-
cient due to overemphasis on reconstruction loss training, and the clustering effect is not
good due to the existence noise. At the same time, we introduce an adaptive weight layer
that enables adaptive learning based on category classification, resulting in higher-quality
feature representations. Feature learning and cluster analysis are carried out under a unified
framework, so that they promote each other to achieve the overall optimal clustering result.
The effectiveness of the proposed method is verified by comprehensive experiments on 6
public benchmark datasets.
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