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Abstract
Voice conversion (VC) is a task for changing the speech of a source speaker to the target
voice while preserving linguistic information of the source speech. The existing VCmethods
typically use mel-spectrogram as both input and output, so a separate vocoder is required to
transformmel-spectrogram into waveform. Therefore, the VC performance varies depending
on the vocoder performance, and noisy speech can be generated due to problems such as train-
test mismatch. In this paper, we propose a speech and fundamental frequency consistent raw
audio voice conversion method called WaveVC. Unlike other methods, WaveVC does not
require a separate vocoder and can perform VC directly on raw audio waveform using 1D
convolution. This eliminates the issue of performance degradation caused by the train-test
mismatch of the vocoder. In the training phase, WaveVC employs speech loss and F0 loss to
preserve the content of the source speech and generate F0 consistent speech using the pre-
trained networks. WaveVC is capable of converting voices while maintaining consistency in
speech and fundamental frequency. In the test phase, the F0 feature of the source speech is
concatenated with a content embedding vector to ensure the converted speech follows the
fundamental frequency flow of the source speech. WaveVC achieves higher performances
than baseline methods in both many-to-many VC and any-to-any VC. The converted samples
are available online.

Keywords Voice conversion · Adversarial training · Deep learning

1 Introduction

Style transfer is applied in various fields, including vision tasks [1]. Especially in the field of
speech signal processing [2, 3], voice conversion (VC) is a task for changing the speech of
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a source speaker to the target speaker’s voice while preserving linguistic information of the
source speech The application of VC has the potential for utilization in various fields such
as movie dubbing, singing conversion [4], and speaking aids [5]. Typically, conventional VC
methods require parallel data, which are recordings of different speakers saying the same
sentence. However, obtaining such parallel data is an obvious limitation as it is very difficult
in practice. For this reason, various methods using non-parallel data for VC have recently
been explored.

Autoencoder-based VC methods [6–8] utilize zero-shot learning to enable the use of
unparallel data for training. These methods typically consist of a content encoder, a speaker
encoder, and a decoder. While these methods are relatively easy to train, they must be care-
fully designed to disentangle the content and the style well with a bottleneck structure. To
compensate for these shortcomings, vector quantization (VQ) is applied to VC. In the VQ-
based VC methods [9–11], the discrete content embedding vector is generated by the VQ
of the continuous content embedding vector. Then, the speaker embedding vector is defined
by the difference between the continuous content embedding vector and the discrete content
embedding vector. However, VQ causes a lot of information loss, such as time relationships
and fundamental frequency, which leads to performance degradation. Generative adversarial
network (GAN) [12, 13] is applied toVC for the quality improvement of the converted speech.
For example, StarGAN [14]-based VC methods [15–17] generate high-quality speech using
adversarial training and perceptual loss.

However, these StarGAN-basedmethods have crucial limitations in that they can’t respond
to unseen target speakers. Also, in the existing VC methods, including autoencoder-based
VC and GAN-based methods, vocoders such as MelGAN [18], Parallel WaveGAN [19],
and HiFi-GAN [20] are required to transform the converted mel-spectrogram into the raw
audio waveform. Using vocoders can cause problems such as noisy speech generation for
reasons such as train-test mismatch [21]. When training voices for a new domain using
the VC method, a vocoder must be additionally trained. When using a pre-trained vocoder,
the input mel-spectrogram hyperparameters of the VC method depend on the pre-trained
vocoder. In addition, the existing VC methods focus on disentangling the content and the
speech information and generating realistic sounds. Therefore, they don’t consider detailed
source speech information, such as fundamental frequency and pronunciation. Meanwhile,
since only the identity of the speaker is changed to the target speaker, it is not only crucial to
keep the fundamental frequency of the source speech consistent, but it is also important to
pronounce the speech with high accuracy from an application perspective.

In this paper, we propose a speech and fundamental frequency consistent raw audio wave-
formVCmethod calledWaveVC. BecauseWaveVC is composed of 1D-convolutional layers
and performs VC directly on the raw audio waveform, it is not affected by vocoder perfor-
mance. In the training phase, WaveVC employs speech loss and F0 loss to preserve the
content of the source speech and generate F0 consistent speech using the pre-trained net-
works. In the test phase, the F0 feature of the source speech is concatenated with a content
embedding vector to ensure the converted speech follows the fundamental frequency flow of
the source speech. Our main contributions are summarized as follows: (1)WaveVC performs
VC directly from the raw audio waveform. An additional vocoder is not required to convert
the mel-spectrogram to the raw audio waveform. (2) In the training phase, WaveVC employs
two additional losses: one is speech consistency loss, and the other is F0 consistency loss.
The consistency losses preserve content information and guarantee fundamental frequency
consistency. (3) WaveVC shows higher objective and subjective performance than other VC
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methods in many-to-many and any-to-any VC. The converted samples are available on the
web demo page.1

2 RelatedWorks

2.1 Speech Synthesis

Speech synthesis with a desired target speaker has been studied. WaveNet [22] uses the
linguistic features as the input to generate speech. WaveNet employs dilated casual convolu-
tion to cover long-rage temporal dependencies. WaveNet can generate various characteristic
voices using global conditioning and local conditioning. DeepVoice1 [23] follows the three
components of statistical parametric synthesis, and Tacotron [24] proposes an attention-based
seq-to-seqmodel for end-to-end speech synthesis. DeepVoice2 [25] trains speaker embedding
and applies it to not only DeepVoice1 but also Tacotron1. Also, DeepVoice1 and DeepVoice2
employ WaveNet as the vocoder and perform better than the Griffin-Lim algorithm. VAE-
Tacotron2 [26] employs variational autoencoder [27] for learning latent representation for
style control. However, these methods require the vocoder, and as seen from DeepVoice2,
they are greatly influenced by the vocoder. ClariNet [28], FastSpeech2s [29], and EATS [30]
propose fully end-to-end speech synthesis without the need for the vocoder. The existing
speech synthesis methods have limitations in that text information is entered as input, and
the desired style cannot be perfectly generated.

2.2 Voice Conversion

Unlike speech synthesis, VC resynthesizes speech using only the source and target speech.
The purpose of VC is to convert the speech to the target speaker’s voice while preserving
the linguistic information. Most VC methods are composed of a content encoder, a speaker
encoder, and a decoder to accomplish this purpose. Zero-shot learning-based VCmethods are
trained to reconstruct the input data. The content encoder erases the style of the source speaker
while keeping linguistic information in the utterance. In contrast, the speaker encoder extracts
only the style of the target speaker regardless of the utterance. AutoVC [6] applied zero-shot
learning to VC for the first time and can respond to unseen speakers not used for training.
AdaIN-VC [7] does not simply concatenate the style of the target speaker extracted from
the speaker encoder but reflects the style through adaptive instance normalization [31, 32].
AutoVC-F0 [8] uses the F0 information of the source speaker to generate a natural-sounding
F0. Again-VC [33] uses only one encoder without the separate speaker encoder, unlike
other autoencoder-based methods. Meanwhile, these zero-shot learning-based methods have
limitations in that they must be carefully designed to disentangle the content and the style
well with a bottleneck structure.

Recently, GAN-based methods such as StarGANv2-VC [17] show high-quality VC per-
formance using adversarial training and perceptual loss. However, StarGANv2-VC has a
crucial limitation: it cannot respond to unseen target speakers. Therefore, many efforts are
being made on GAN-based any-to-any VC [34–36] to respond to unseen source speak-
ers and unseen target speakers. Since the aforementioned autoencoder-based methods and
GAN-based methods both output the acoustic feature like mel-spectrogram, vocoders such
as MelGAN [18], Parallel WaveGAN [19], and HiFi-GAN [20] are needed to convert the

1 https://kyungdeuk.github.io/wavevc-demo/.
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Fig. 1 The overall architecture of WaveVC. The solid lines are the paths used in training and inference, and
the dotted lines are used only in training

mel-spectrogram into the rawwave. Using vocoders can cause problems such as noisy speech
generation for reasons such as train-test mismatch [21]. As a result, the quality of the gen-
erated speech depends on the vocoder. In the VC task, NVC-Net [37] solves the problem of
using the vocoder by directly generating raw audio waveform. However, NVC-Net doesn’t
guarantee that high-quality speech is generated while maintaining the source speech’s fun-
damental frequency.

3 Method

3.1 WaveVC

WaveVC mainly consists of a content encoder Ec, a decoder G, a speaker encoder Es , three
discriminators Di for i = 1, 2, 3 that are used for different temporal resolutions, and an F0
extraction network F . The overall architecture of WaveVC is shown in Fig. 1.

Content encoder Since the input of the content encoder Ec is a raw audio waveform, the
content encoder Ec consists of one input 1D convolutional layer, four downsampling blocks,
and two following 1D convolutional layer, where kernel size is 7 and padding size is 3, with
GELU activation [38]. Each downsampling block consists of four residual blocks and a 1D
convolutional layer. Each residual block has a 1D dilated convolutional layer with a gated-
tanh nonlinear function and residual skip connection. Figure2a illustrates the residual block
of the content encoder. Each downsampling block makes the input of the block four times the
lower temporal resolution. Finally, the source waveform x has a temporal resolution that is
256 times lower by the content encoder Ec, and L2 norm is applied to the content embedding
vector.

Speaker encoder Unlike the content encoder Ec, the speaker encoder Es uses mel-
spectrogram as the input. The speaker encoder Es consists of five residual blocks and a
global average pooling layer, and a 512-dimensional vector is generated regardless of the
input length by removing temporal dimensions. Mean vector μ and covariance vector σ
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Fig. 2 The detailed architectures. a The residual block of the content encoder and the decoder, and b the
residual block of the speaker encoder

are generated by each fully connected layer. Figure2 illustrates the residual block of the
speaker encoder. The channel size is doubled after each residual block until it reaches 512.
Finally, the speaker embedding vector z is produced by reparameterization trick [27] such as
z ∼ μ + σ � ε, where ε ∼ (0, I).

F0 extraction network A pre-trained JDC network [39] composed of the convolutional lay-
ers, and bidirectional LSTM is used as the F0 extraction network F to extract the fundamental
frequency information. The JDC network is pre-trined jointly with fundamental frequency
prediction and voice activity detection. The JDC network uses the mel-spectrogram as the
input and outputs the fundamental frequency. Then, the only convolutional layer Fconv of the
JDC network is used for the F0 information feature extraction. Finally, the F0 information
feature f is defined as Fconv(x).

Decoder The decoder G is constructed in the form of an inversion of the content encoder Ec.
The decoder G uses the concatenated feature of the content embedding vector (cs = Ec(xs))
and the F0 information feature (fs = Fconv(xs)) of the source speech xs as the input. The
decoder G consists of four upsampling blocks instead of the downsampling blocks. Each
upsampling block contains a 1D transposed convolutional layer and four residual blocks.
Figure2a illustrates the residual block of the decoder. Unlike the residual block of the content
encoder Ec, the residual block of the decoder G uses the speaker embedding vector as the
conditional input. The 1D transposed convolutional layer of the upsampling block makes the
input of the upsampling block four times higher in temporal resolution. Then, zs and zt are
used as the speaker embedding vector for the source speech and the target speech.

Discriminator As with MelGAN [18], three discriminators Di for i = 1, 2, 3 use the mel-
spectrograms with three different window sizes as the input. Each window size is set to 1024,
512, and 256. The number of speakers in the training data defines the output vector size of
the discriminators. Finally, discriminators distinguish whether the input is the corresponding
speaker by binary classification.
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3.2 Training Objectives

WaveVC aims to accomplish speech and F0 consistent raw audio VC. The losses to achieving
this goal are explained. In the following brief description, the reconstructed speech (x̄ =
G(cs, zs, fs)) and the converted speech (x̃ = G(cs, zt , fs)) are defined, respectively.

Adversarial loss When the speaker id labels of the source speech xs and the target speech
xt are ys and yt , respectively, the adversarial loss is defined as

Ladv = Exs ,ys

∑

i

[log(Di (xs, ys))] + Ex̃,yt

∑

i

[log(1 − Di (x̃, yt )]. (1)

Each discriminator Di is trained through binary classification to distinguish whether it is the
corresponding label’s speech. Conversely, the content encoder Ec, the speaker encoder Es ,
and the decoder G are trained to be indistinguishable from the discriminators Di .

Speech loss Speech loss is used to ensure that the content of the converted speech is main-
tained. The speech loss is composed of the differences between the source speech and the
converted speech and between the source speech and the reconstructed source speech and is
defined as

Lasr = Exs ,x̄[‖A(xs) − A(x̄)‖1] + Exs ,x̃[‖A(xs) − A(x̃)‖1], (2)

where ‖·‖1 denotes l1 norm. In addition, A is a pre-trained automatic speech recognition
(ASR) network for extracting the convolutional speech features from the source speech and
the converted speech. In this case, a joint CTC-attention VGG-BLSTM network [40] is
employed as the pre-trained ASR network for the speech convolutional feature extraction.

F0 loss F0 loss is used to generate fundamental frequency consistent results. The final output
of the F0 extraction network is used as the predicted fundamental frequency. F0 loss is
calculated by the differences in the normalized fundamental frequency between the source
speech and the converted speech and between the source speech and the reconstructed source
speech as follows

L f 0 = Exs ,x̄[
∥∥∥F̂(xs) − F̂(x̄)

∥∥∥
1
] + Exs ,x̃[

∥∥∥F̂(xs) − F̂(x̃)
∥∥∥
1
], (3)

where F̂(·) means the normalized output of the F0 extraction network.

Reconstruction loss Reconstruction loss is composed of two parts to improve perceptual
quality. One is feature matching loss [18], and the other is spectral loss [37]. The feature
matching loss is calculated by feature maps of the discriminators Di as follows

L f m = Exs,x̄

∑

i

∑

j

1

ND

∥∥∥Di
j (xs) − Di

j (x̄)
∥∥∥
1
, (4)

where Di
j (·)denotes the j th featuremapof the i th discriminator, and ND indicates the number

of discriminators. On the other hand, the spectral loss is calculated from mel-spectrograms
with different FFT sizes and is defined as

Lsp = Exs ,x̄

∑

w

‖T (xs, w) − T (x̄, w)‖22 , (5)

where T (·, w) denotes transformation to log mel-spectrogram with a FFT size ofw, and ‖·‖2
indicates l2 norm. In this case, w is set to 2048, 1024, and 512. Finally, the reconstruction
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loss is defined as

Lrec = L f m + Lsp. (6)

Content loss Content loss induces that the content embedding vector of the converted
speech is equal to the content embedding vector of the source speech and is defined as

Lcon = Exs ,x̃ ‖Ec(xs) − Ec(x̃)‖22 . (7)

KL loss KL loss [26, 27, 41] is a constraint that makes the distribution of the speaker
embedding vector close to a normal distribution. The KL loss is defined as

Lkl = Exs [DK L (p(zs |xs)||N (z||0, I))], (8)

where DK L(·||·) denotes KL divergence, and p(zs |xs) indicates the output distribution of
Es(xs). By constraining the speaker’s latent space to the normal distribution, the speaker
encoder makes generalizations to unseen speakers.

Full objective The full generator loss function can be summarized as follows

L(Ec, Es,G) = λadvLadv + λasrLasr + λ f 0L f 0 + λrecLrec + λconLcon + λklLkl , (9)

where λadv , λasr , λ f 0, λrec, λcon , and λkl are hyperparmeters for each loss. In addition, the
discriminators are trained via only adversarial loss Ladv .

4 Experiments

4.1 Datasets

For a fair performance comparison, the baseline and our proposed methods are trained with
the VCTK dataset [42], with 44h of utterances of 109 speakers. As in NVC-Net [37], six
speakers are separated into unseen speakers. 90% and 10% of utterances of the remaining
103 speakers are randomly partitioned into a training set and a test set.

4.2 Implementation Details

For training, all datasets are downsampled to 24 kHz and randomly clipped to 38,540 samples
(approximately 1.5 s) every epoch, and random clipping and random scaling are employed
as the data augmentation. We train for a total of 500 epochs using the Adam optimizer with
β1 = 0.5, β2 = 0.9, and a learning rate of 0.0001. The hyperparameters of the full loss are
set to λadv = 1, λasr = 5, λ f 0 = 2.5, λrec = 10, λcon = 10, and λkl = 0.02 as mentioned
in NVC-Net. The pre-trained networks mentioned in StarGANv2-VC2 [17] are employed
as the F0 extraction network and the ASR network, which are pre-trained with fundamental
frequency given by World vocoder [43] and 24kHz phoneme level data, respectively.

AdaIN-VC [7], Again-VC [33], VQMIVC [11], NVC-Net [37], and TriAAN [44] are
employed as the baseline methods to compare the performance of WaveVC. AdaIN-VC,3

Again-VC,4 VQMIVC,5 and TriAAN-VC6 are trained with the same dataset mentioned

2 https://github.com/yl4579/StarGANv2-VC.
3 https://github.com/jjery2243542/adaptive_voice_conversion.
4 https://github.com/KimythAnly/AGAIN-VC.
5 https://github.com/Wendison/VQMIVC.
6 https://github.com/winddori2002/TriAAN-VC.
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Table 1 The objective quality assessments on VC methods

Method Seen to seen Unseen to unseen

pMOS CER (%) WER (%) pMOS CER (%) WER (%)

Source speech 3.01 1.6 5.9 3.03 1.9 5.5

AdaIN-VC 2.75 13.6 27.1 2.79 12.2 23.6

Again-VC 2.55 27.0 45.3 2.41 29.0 48.1

VQMIVC 2.68 10.4 21.8 2.64 11.5 22.5

NVC-Net 2.87 13.3 24.5 2.79 10.9 21.4

TriAAN-VC 2.70 10.8 21.0 2.59 12.9 24.7

WaveVC 2.90 5.4 12.7 2.84 4.7 10.9

in Sect. 4.1 by using the official code on the website. Unlike WaveVC and other baseline
methods, VQMIVC and TriAAN-VC are experimented with by downsampling the dataset
to 16kHz, while Again-VC is experimented with by downsampling the dataset to 22050Hz
as mentioned in the references. NVC-Net7 is reconfigured and trained with PyTorch [45].

4.3 Objective Quality Assessment

For the objective quality assessment, 600 samples were randomly generated from seen-to-
seen and unseen-to-unseen cases, respectively. MBNet8 [46]-based predicted mean opinion
score (pMOS) evaluation, Wav2Vec2.0 [47]-based character error rate (CER), and word
error rate (WER) are performed on the sampled data for the objective quality assessments.
Wav2Vec2.0 uses self-supervised learning with unlabeled data for diverse quantized repre-
sentation and is fine-tuned with labeled data by using connectionist temporal classification
(CTC) loss [48]. The objective quality assessments are summarized in Table 1. The first row
shows the results for the source speech used as the input. According to the experimental
results, WaveVC outperforms other baseline methods in objective quality assessments. In
the seen-to-seen case, WaveVC achieves 5.4% CER and 12.7% WER, and in the unseen-
to-unseen case, it shows 4.7% CER and 10.9% WER. In particular, the CER of WaveVC is
close to half of the next lowest-performingmethod. TheWERofWaveVC is also significantly
lower than other baseline methods. Meanwhile, WaveVC and NVC-Net show higher pMOS
than other VC methods using the vocoder. Methods that directly synthesize raw audio wave-
forms show high audio quality because they minimize information loss that occurs during
the conversion process to mel-spectrogram. Consequently, these results mean that WaveVC
not only generates high-quality speech but also preserves the utterance information of the
source speech well.

4.4 Subjective Quality Assessment

Themean opinion score (MOS) is conducted on naturalness and similaritymetrics to evaluate
VC performance (Table 2). The naturalnessmetric is scored from 1 to 5 by evaluatingwhether
the converted speech has noise and distortion. The similarity metric is scored from 1 to 5 on

7 https://github.com/kyungdeuk/NVCNet-pytorch.
8 https://github.com/sky1456723/Pytorch-MBNet.
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Table 2 The experimental results on ablation study according to losses

Method Seen to seen Unseen to unseen

pMOS CER (%) WER (%) pMOS CER (%) WER (%)

WaveVC 2.90 5.4 12.7 2.84 4.7 10.9

WaveVC w/o speech loss 3.04 13.7 26.2 2.87 14.9 27.3

WaveVC w/o F0 loss 2.80 5.3 12.3 2.61 4.8 11.2

Table 3 The MOS results on VC methods

Metric Method Seen to seen Unseen to unseen

M2M M2F F2M F2F M2M M2F F2M F2F

Naturalness Ground truth 4.28 4.26

AdaIN-VC 1.16 1.24 1.30 1.32 1.98 1.78 1.56 1.56

Again-VC 2.14 1.56 1.98 2.00 2.16 1.96 1.60 1.94

NVC-Net 3.06 2.78 3.44 3.50 3.54 3.46 3.08 3.32

WaveVC 3.86 3.50 4.24 4.26 3.98 4.22 3.78 4.12

Similarity AdaIN-VC 1.56 1.64 1.60 1.44 1.74 1.70 1.50 1.56

Again-VC 2.38 1.84 2.08 2.04 1.98 1.86 1.70 2.02

NVC-Net 3.14 3.14 3.46 3.54 3.16 3.44 3.26 3.30

WaveVC 3.70 3.76 4.14 4.00 3.50 4.00 3.70 3.78

how similar the converted voice is to the target speaker. TheMOS evaluation is performed on
20 samples, each in seen-to-seen and unseen-to-unseen cases, by a total of 20 participants.
The MOS results are summarized in Table 3.

AdaIN-VC andAgain-VC do not convert well and sometimes fail to generate data. A large
number of speakers during training seems impossible to cover with the zero-shot learning-
based VC methods. The adversarial raw audio VC methods show relatively higher MOS
values than the zero-share learning-based methods. WaveVC shows from 0.72 to 0.8 higher
naturalness score and from 0.46 to 0.68 higher similarity score than NVC-Net in the seen-
to-seen case. In particular, in the case of WaveVC’s F2M and F2F, naturalness scores similar
to the ground truth are shown. In the unseen-to-unseen case, WaveVC gets from 0.44 to 0.80
higher naturalness score and from 0.34 to 0.56 higher similarity score than NVC-Net. These
scores indicate that WaveVC performs speech and fundamental frequency consistent VC. As
a result,WaveVC not only performs adversarial raw audio VC but also improves performance
by concatenating the fundamental frequency feature into the content embedding vector and
applying the speech loss and the F0 loss.

4.5 Ablation Study

The ablation study is performed to compare how the speech loss and the F0 loss affect the
converted speech. When speech loss is not applied, CER and WER increase significantly.
These results indicate that the speech loss helps preserve the source speech’s utterance infor-
mation well. On the other hand, the pMOS values decrease when using not the F0 loss. It
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Table 4 The experimental results on ablation study for speaker verification

Method Cosine similarity SV resemblyzer (%) SV TitaNet (%)

WaveVC 0.731 75.0 95.3

AdaIN-VC 0.646 30.5 25.8

Again-VC 0.690 51.8 12.8

VQMIVC 0.770 89.3 97.7

TriAAN-VC 0.789 95.7 99.0

converts into high-quality speech while preserving the information about the fundamental
frequency of the source speaker and injecting the information at the time of conversion.

Additionally, cosine similarity and speaker verification (SV) accuracy are measured by
using the pre-trained speaker verification model such as Resemblyzer9 and TitaNet10 [49]
(Table 4). Resemblyzer is composed of LSTM and is trained by using the generalized end-to-
end (GE2E) loss [50]. TitaNet is based on ContextNet ASR architecture [51] and is trained by
using additive angular margin (AAM) loss [52] The cosine similarity is calculated between
the converted speech’s embedding vector and the seen target speech’s embedding vector by
using Resemblyzer. The threshold for SV using Resemblyzer is set to the equal error rate of
the VCTK dataset as mentioned in TraiAAN-VC [44]. The autoencoder-based methods such
asAdaIN-VCandAgain-VC show significantly low cosine similarity and SV accuracy. These
results indicate that they have a limitation in disentangling the content and speaker informa-
tion. To solve this problem, VQMIVC uses VQCPC [47, 53], and TriAAN-VC employs
an attention-based mechanism, time-wise instance normalization, and CPC. Meanwhile,
WaveVC archives higher cosine similarity and SV accuracy than AdaIN-VC and Again-
VC but shows lower performances than VQMIVC and TriAAN-VC. We can consider two
reasons for these results. One is that CPC [54] is employed for extracting only content infor-
mation from source speech. Because CPC is trained to predict future contextual information
using current features, it is advantageous for extracting content information regardless of the
speaker. The other is to use an attention mechanism to inject the target speaker’s information
into the content information. To overcome this limitation in future works, we will apply
the VQCPC-based method to the content encoder and the attention-based mechanism to the
speaker encoder.

5 Conclusions

In this paper, we proposed the adversarial raw audio VCmethod calledWaveVC, which does
not require a separate vocoder because it performs VC directly on raw audio. In addition, the
proposedWaveVC performed speech and fundamental frequency consistent VC by reflecting
the fundamental frequency information to the content embedding vector and adding two
losses: speech loss and F0 loss. To compare the performance of WaveVC with other VC
methods, we conducted a MOS evaluation for the naturalness and similarity of the VC
results. As a result, WaveVC not only produced better performance than other competing VC
methods but also showed a level of naturalness similar to the ground truth. In addition, in

9 https://github.com/resemble-ai/Resemblyzer.
10 https://huggingface.co/nvidia/speakerverification_en_titanet_large.
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objective quality assessments such as pMOS, CER, andWER,WaveVC showed significantly
better performance than other VC methods.
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