A TRUNCATED PROJECTED SVD METHOD FOR
LINEAR DISCRETE ILL-POSED PROBLEMS

S. MORIGI*, L. REICHEL', AND F. SGALLARI}

Abstract. Truncated singular value decomposition is a popular solution method for linear
discrete ill-posed problems. However, since the singular value decomposition of the matrix is inde-
pendent of the right-hand side, there are linear discrete ill-posed problems for which this method
fails to yield an accurate approximate solution. This paper describes a new approach to incorporat-
ing knowledge about properties of the desired solution into the solution process through an initial
projection of the linear discrete ill-posed problem. The projected problem is solved by truncated
singular value decomposition. Computed examples illustrate that suitably chosen projections can
enhance the accuracy of the computed solution.
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1. Introduction. This paper is concerned with the computation of a meaningful
approximate solution of linear systems of equations

(1.1) Ar=b, AcR™"  zcR"  beR™,

with a matrix A of ill-determined rank. Such systems often are referred to as linear
discrete ill-posed problems. The singular values of A cluster at the origin and this
makes the matrix severely ill-conditioned; the matrix may be singular. The right-
hand side b is assumed to be contaminated by an error e € R™, which may stem from
discretization or measurement inaccuracies. For notational simplicity, we will assume
that m > n; if m > n, then (1.1) is considered a least-squares problem. The method
of this paper, suitably modified, also can be applied when m < n.
Let b denote the unknown error-free vector associated with b, ie.,

(1.2) b=b+e,
and assume that the linear system
(1.3) Az =b

is consistent; the available linear system (1.1) is not required to be consistent. We
would like to determine a solution & of (1.3), e.g., the solution of minimal Euclidean
norm. Since the right-hand side b is not available, we seek to determine an approx-
imation of & by computing an approximate solution of the available linear system
of equations (1.1). Truncated Singular Value Decomposition (TSVD) is a popular
method for determining such an approximate solution.

Introduce the Singular Value Decomposition (SVD)

(1.4) A=UxvT

*Department of Mathematics, University of Bologna, Piazza Porta S. Donato 5, 40127 Bologna,
Italy. E-mail: morigi@dm.unibo.it.

TDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail:
reichel@math.kent.edu. Research supported in part by NSF grant DMS-0107858 and an OBR
Research Challenge Grant.

fCIRAM Department of Mathematics, University of Bologna, Via Saragozza 8, 40123 Bologna,
Italy. E-mail: sgallari@dm.unibo.it. Research supported in part by PRIN 2004 grant 2004014411-
005.



where U = [uy,us,...,u,] € R™" UTU =,V = [v1,vs,...,v,] € RV VTV =
I, and I denotes the identity matrix. The singular values are the diagonal entries of

Y = diag[oy,02,...,0,] € R™*™ and are ordered according to o1 > 09 > ... > oy >
O¢41 = ... = o, = 0, where £ = rank 4; see, e.g., [4] for details on the SVD. The
TSVD method determines approximate solutions of (1.1) defined by
k T
u; b
1. =N, =1,2,...,1.
(1.5) =) v h=l2.t
j=1

In particular,

(1.6) x) € span{vy, va,..., Vg }.

Let || - || denote the Euclidean vector norm or the associated induced matrix norm.

We note for future reference that xj, satisfies the constrained minimization problem
(1.7) min ||z|| subject to ||Arx — b|| minimal,
€T

where

k
Akz E O'j'LLj’U;‘F
j=1

is the best rank-k approximation of A with respect to the norm || -|. The singular
values o; and the Fourier coefficients u]Tb provide valuable insight into the properties
of the linear discrete ill-posed problem (1.1); see, e.g., Hansen [6, 8] for discussions on
the application of TSVD to linear discrete ill-posed problems.

Consider the sequence n, = ||xx — Z||, K = 1,2,...,¢. Generally, the 7, decrease
when £ increases and k is fairly small, but due to the error e in the right-hand side b
and the ill-conditioning of A, the n; typically increase rapidly with k when k is large.
Let k. > 1 be the smallest index, such that

1.8 —z|| = i —z||.
(1.9 2. — &) = min o, — &
The index k. generally is not explicitly known.
Assume that an estimate ¢ of the norm of the error e in b is available and note
that the norm of the residual vectors

(19) T = b— A:L’k
is a decreasing function of k; we have ||r||> = 3>°7_, ;(u]b)>. The discrepancy
principle suggests that the smallest integer £ > 1, such that

(1.10) 7kl < cd

be used as an approximation of k., where ¢ > 1 is a user-supplied constant. We
denote this integer by kgiser and the associated approximation of & by x,,...; see,
e.g., Hansen [8] for further details on the discrepancy principle.

For many linear discrete ill-posed problems (1.1), the approximate solution xg,,_,
furnished by TSVD and the discrepancy principle is a fairly accurate approximation of
Z. However, for some problems, not only ... but also xj, are poor approximations
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of &. This situation arises when the subspace span{vi,vs, ..., v} does not contain
an accurate approximation of & for small values of k, cf. (1.6), and the propagated
error, due to the error e in b, destroys the accuracy in x; when k is large.

Example 1.1. Define A = diag[1,271,272,...,27%9] € R%%%50, Thus, the matrices
U and V in the singular value decomposition (1.4) of A are identity matrices. Let
b=1[1,2"12"2 . 2747 c R ¢ =10,0,...,0,271/2.1073, —2-1/2.10-3]T ¢ R,
and let b be given by (1.2). Then z = [1,1,...,1]7 € R®* and |le|| =1-1073.

The approximate solution xj,, .. determined by the discrepancy principle (1.10)
depends on the choice of the constant ¢. If ¢ > 1 is sufficiently close to one, then the
discrepancy principle yields @49 = [1,...,1,1+2%75.1073,0]. Since the penultimate
component is about 2 - 10'!, x49 is a poor approximation of &. For larger values
of ¢, we obtain approximate solutions xj; with 1 < k < 48, whose first k£ entries
equal one and the remaining 50 — k entries vanish. Thus, also in this situation the
determined approximate solutions xj are poor approximations of . For instance,
computations in Matlab with ¢ = 1.01 yields the approximate solution o3 with an
error ||x13 — &|| = 6.08.

The example as presented is finite-dimensional; however, it easily can be extended
to infinite dimensions, such that the Picard condition is satisfied: let A be the infinite-
dimensional diagonal matrix with jth diagonal entry 2'~7 and append zeros to E, b,
x, and e, to obtain infinite-dimensional vectors. This extension does not change the
numerical values presented above. O

The difficulty to determine an accurate approximation of & in Example 1.1 stems
from the fact that the columns of the matrix V' are poorly suited for this purpose. We
remark that while the example is quite special, matrices and right-hand sides closely
related to the ones of Example 1.1 may arise by application of the SVD to the matrix
of linear discrete ill-posed problems. Example 4.1 in Section 4 illustrates that there
are less artificial linear discrete ill-posed problems for which TSVD does not provide
an accurate approximation of the solution & of (1.3). Indeed, quite a few examples
that illustrate shortcomings of the TSVD method can be found in the literature. For
instance, Hansen et al. [10] discuss linear discrete ill-posed problems in helioseismol-
ogy for which TSVD performs poorly. Calvetti et al. [2, Example 4.2] consider a
linear discrete ill-posed problem (1.1) with a square matrix A and show that & steps
of the GMRES iterative method, for a suitable value of k, determines a more accurate
approximation of Z in the Krylov subspace Ky (A,b) = span{b, Ab, ..., A*¥"1b} than
any approximate solution @y given by (1.5). Recently, Eldén [3] presented examples
for which, for small values of k, the approximate solution x) determined by (1.5) does
not approximate & as well as the approximate solution in the k-dimensional Krylov
subspace

K1r(AT A, ATb) = span{ATb, (AT A)ATY, ... (AT A)*1 AT}

determined by the LSQR iterative method.

This paper describes a new approach to circumventing difficulties that can be
encountered in applications of TSVD. We first apply orthogonal projections to the
matrix A and right-hand side b and then use TSVD to determine an approximate so-
lution of the projected problem. We refer to this scheme as the Truncated Projected
SVD (TPSVD) method. The method is an adaption of the decomposition scheme dis-
cussed in [1] to TSVD. The purpose of the projections is to split the solution subspace
into two parts, one of which is supplied by the user; the other one is determined by
TSVD. The user-supplied subspace makes it possible to incorporate available infor-
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mation about the desired solution #. For instance, an available rough approximation
of & can be supplied to enhance the quality of the computed approximate solution.
If & is known to have a steep slope or be of large magnitude, then a subspace can be
supplied that allows the representation of such solutions. Several approaches to the
selection of a suitable subspace are discussed in Section 2 and computed examples
that illustrate these choices are presented in Section 4.

A variety of approaches have been described in the literature for avoiding the
difficulties that can be experienced with TSVD. For instance, Hansen et al. [10]
propose to replace the minimization problem (1.7) by

min | Lz| subject to ||Arx — b|| minimal,
x

where L is referred to as a regularization operator. Often, L is chosen to be a scaled
finite difference approximation of a differential operator, e.g., the bidiagonal

1 -1
1 -1
(1.11) L= o e R(n—xn
1 -1

or tridiagonal

-1 2 -1

-1 2 -1
(1.12) L= I € R(P=2)xn
-1 2 -1

matrices. Computed examples in [10] illustrate that a suitable choice of L can give a
better approximation of & than TSVD.

The Generalized SVD (GSVD) of the matrix pair {A, L}, where L is a regulariza-
tion operator, is applied in the Truncated GSVD (TGSVD) method; see Hansen [5].
TGSVD with L given by (1.11) or (1.12) gives for many problems better approxima-
tions of & than TSVD. However, we remark that the choice of a suitable regularization
operator L is not always easy, and the computational effort required to compute the
GSVD of the matrix pair {4, L} is quite high even for moderately sized matrices; see,
e.g., Paige [11] for a discussion on numerical methods. More details on TGSVD can
be found in Section 3.

Yet another approach to avoid the shortcomings of TSVD is presented by Hansen
et al. [9], who combine SVD with approximation in the ¢;-norm. The aim of this
approach is to be able to detect and provide accurate approximations of discontinuities
in &.

The variety of available solution schemes indicates that there is no best solution
method for all linear discrete ill-posed problems. We find the conceptual and compu-
tational simplicity of the TPSVD method of the present paper appealing. Computed
examples in Section 4 illustrate that TPSVD is able to determine better approxi-
mations of & than TSVD also in situations when it is not obvious how to choose a
regularization operator L and, therefore, how to apply TGSVD.

2. The TPSVD method. Let W denote a user-chosen subspace of R™ of
(small) dimension ¢, and let the columns of the matrix W € R"** form an ortho-
normal basis of W. Introduce the QR-factorization

AW = @R,
4



where @ € R™*¢ has orthonormal columns and R € R**? is upper triangular. We
will assume that the subspace W is chosen so that AW is of full rank. Then R is
nonsingular. Introduce the orthogonal projectors

Py =WWT, Pyp=I1-Py, Pp=QQ", Py=1-Py,
and split the solution x of the linear system of equations (1.1) according to
(2.1) z=x +z, ' = Py, x' = Pjx.

This splitting suggests the decomposition of the system (1.1),

(22) PQA.’IJ, + PQAZCN = PQb,
(2.3) Py Az = Pgb,

where we have used the fact that Pé-APW = 0 in the derivation of (2.3). TSVD is
applied to the projected linear system (2.3). Since Py APy = Py A, it suffices to
compute the SVD of Pé;A.

Having computed an approximate solution z}, € R"\W of (2.3) by TSVD, where
k, for instance, is determined by the discrepancy principle, we compute an approxi-
mate solution xj, € W of (2.2). The latter equation can be expressed as

(2.4) Rz’ = QT(b— Ax}).
We compute the solution zj, of (2.4), evaluate

(2.5) x, =Wz,

and obtain the approximate solution

(2.6) xp = x), + T,

of (1.1). Note that regularization is only carried out in the subspace orthogonal to
W. Therefore this space should be chosen so that the matrix R = Q7 AW is not very
ill-conditioned. For most linear discrete ill-posed problems this condition is satisfied
when W represents smooth functions with few sign changes, such as algebraic or
trigonometric polynomials of low degree. The following result, shown in [1], relates
the residual errors associated with a:g and xy.

THEOREM 2.1. Let x} be an approzimate solution of (2.3), assume that the linear
system of equations (2.4) is solved exactly for z},, and let =}, and x) be determined
by (2.5) and (2.6), respectively. Then

(2.7) Ib — Awy|| = || Pgb — Py Azf| = [Ib — Ax}]|.

Since the system (2.4) is small and typically not very ill-conditioned, we generally
are able to determine its solution to high accuracy. The assumption of Theorem 2.1
that this system be solved exactly therefore is reasonable.

Theorem 2.1 shows that the left-hand side of (1.10) can be computed from the
residual error of TSVD applied to (2.3). This makes it convenient to use the discrep-
ancy principle or the L-curve criterion for determining a suitable value of k for the
approximate solution x; computed by the TPSVD method. The computed examples
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of Section 4 illustrate the use of the discrepancy principle. However, TPSVD also
can be used in conjunction with other criteria for determining a suitable approximate
solution @y, such as Generalized Cross Validation (GCV). We refer to Hansen [8] for
discussions on the L-curve criterion and GCV.

We propose that the subspace W be chosen so that elements of this space can
represent certain desirable known features of &, or so that

(2.8) 1P bl < [1b]].

This inequality suggests that we choose W so that span(Q) contains a significant
portion of the error-free right-hand side b. We can achieve this by choosing the space
W so that it contains a significant portion of the desired solution &. The subspace
span{vy,va,...,vx} furnished by TSVD helps to improve the typically rough approx-
imation of @ that can be furnished by the vectors in W.

Example 2.1. Consider the case when W is a unit vector in R™. The inequality
(2.8) suggests that W be chosen as a solution of the minimization problem

min || P5bl.
i, Pl

When A is invertible, this minimization problem is solved by W = A~'b/||A71b||,
which indicates that it often may be appropriate to choose the subspace W = range W,
so that it contains an accurate approximation of . O

In many applications of linear discrete ill-posed problems, the general form of
the desired solution & is known already before the computation of an approximate
solution of (1.1) is begun. For instance, scientists or engineers may know that the
solution they seek to determine is of large magnitude, rapidly increasing, or periodic.
The framework of the present paper allows incorporation of this information into the
solution process. For instance, when the solution is known to be of large magnitude
or to increase rapidly and approximately linearly, then using the spaces

(2.9) W =range[l,1,...,1]7
and

11

1 2
(2.10) W=range | 1 3 |,

1 n

respectively, may be beneficial for the accuracy in the computed approximation of &.
An alternative approach in these situations is to apply GSVD with a regularization
operator L that has the null space (2.9) or (2.10). For instance, the operator (1.11)
has the null space (2.9) and the operator (1.12) has the null space (2.10). Often, but
not always, these approaches give approximations of & of about the same accuracy.
However, the approach of the present paper also can be applied when the choice of
regularization operator is not obvious, such as when the desired solution is known
to be periodic and can be approximated fairly well by a trigonometric polynomial
of low degree, when the solution is known to have jump discontinuities, or in image
restoration problems. These situations are discussed in Examples 4.3-4.5 below.
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When solving Fredholm integral equations of the first kind, inexpensive prelimi-
nary computations on a coarse grid can give a smooth approximation of the desired
solution &, and this approximation can be used to define the space V. It may also be
attractive to first solve the Fredholm integral equation on the original (fine) grid and
then include a smoothed version of the computed solution in the space W, possibly in
addition to the spaces (2.9) or (2.10). These approaches to choosing W are illustrated
in Examples 4.1 and 4.2 below.

The main advantage of the decomposition method of the present paper, when
compared with application of TGSVD with a regularization operators L, is the ease
of incorporating known properties of the desired solution into the solution process.
Computed examples in Section 4 illustrate that suitable choices of spaces W can
improve the quality of the computed approximate solution significantly compared
with TSVD.

We conclude this section by showing that the approximate solutions determined
by the method of this paper are invariant under linear transformation by W of the
solution of the system (1.1).

THEOREM 2.2. Consider the linear system of equations

(2.11) Az =b,

where b = b + AWy for some y € RY. Let the approzimate solution xy of (1.1)
be determined by (2.6), and let &y be an approzimate solution of (2.11) computed
analogously. Then

Ty =x + Wy.

Proof. Since Pé-lu) = Pé-b, the system (2.3) and therefore the vector xj are

invariant under the transformation of the right-hand side. Moreover, we have QTB =
QTb + Ry and therefore the system analogous to (2.4) for (2.11) can be written as

(2.12) Rz = Q"(b— Az}) + Ry.

The solution of (2.12) can be expressed as %) = 2, + y, where 2}, satisfies (2.4). The
approximate solution of (2.11) determined by zj and ], is given by &) = Wz, + xy,
which shows the theorem. O

Note that the approximate solutions determined by TSVD applied to (1.1) are,
in general, not invariant under transformations of the form considered in Theorem
2.2. Problems for which such an invariance is desirable can be solved by the method
of the present paper with an appropriate choice of the subspace W.

Example 2.2. The choice (2.9) of W yields computed solutions that are invariant
under addition of a constant to the solution. Such a transformation is caused by
change of origin in a mathematical model. O

Example 2.3. Consider the finite-dimensional linear discrete ill-posed problem
of Example 1.1. TPSVD with W given by (2.9) yields an accurate approximation
@1 of & that satisfies the discrepancy principle (1.10), e.g., with ¢ = 1.01. We have
|l&1 — &| = 1.57 - 1071°. The computations were carried out in Matlab. O

3. The TGSVD method. Let L € RP*" with 1 < p < n be of full rank and
such that the null spaces of A and L only intersect trivially. The GSVD of the matrix
pair {A, L} then is given by

(3.1) A=UxZ1, L=V[M,0]Z71,
7



where U = [@y, @s, ..., 0, € R, UTU =1,V € R*?, VTV = ], and Z =
[21,22,..., Z,] € R™ "™ is nonsingular. Moreover,

¥ = diag[61, 62, .-, 6p,1,1,...,1] € R™"

M = diag[ﬂlaﬁ% s 7[117] € RP*P

With 0 =61 = ... =6; <G5, S 070 <. S <L 120 2 i > ... 2 fi, >0,
and &]2 +ﬁ]2 =1for 1 < j < p; see, e.g., Hansen [5] or Golub and Van Loan [4, Section
8.7.3] for details. Hansen [5] describes the TGSVD method, which is based on the
factorizations (3.1), for the computation of approximations of &. In this method, the
smallest generalized singular values 6;/fi; are set to zero, i.e., TGSVD determines an
approximation of & of the form

P alb "
(3.2) Tp=Y <%+ » @bz
j=k 7 j=p+1

for some ¢ < k < p. We are using the standard enumeration in GSVD of the o; and
fij. The computed approximate solutions (3.2) of (1.3) in Section 4 therefore have
index k close to p. We remark that span{Z,41, Zp+2, ..., Z,} is the null space of L.
The following analog of Theorem 2.2 holds.

THEOREM 3.1. Let the reqularization operator L € RP*™ with p < n, have the
null space W = range W. Consider the linear system of equations

(3.3) Az = b,

where b = b + AWy for some y € R. Let the approzimate solution x, of (1.1) be
given by (3.2), i.e., xy is determined by using the GSVD of the matriz pair {A, L}.
Let &y, be an approximate solution of (3.8) computed analogously. Then

Ty = x + Wy.

Proof. The computation of &y by TGSVD using the GSVD of the matrix pair
{4, L} is equivalent computing x by TSVD using the SVD of the matrix ALT47 where
LL is the A-weighted pseudoinverse of A; see, e.g., Hansen [8, Sections 2.3 and 3.2]
for a definition of L]:‘ and a discussions of this connection. The theorem follows from
the formulas for the latter approach. O

4. Numerical examples. This section presents a few computed examples which
illustrate the performance of TPSVD. All computations were carried out in Matlab
with about 16 significant decimal digits. The right-hand sides in the examples below
are contaminated by an error e of relative norm ¢, i.e.,

The entries of e are normally distributed with zero mean and variance about &/ (n|b||).
The constant ¢ in the discrepancy principle (1.10) is set to 1.01 and we let § = e|b||
in (1.10).

When solving linear discrete ill-posed problems with a contaminated right-hand
side, we would like the subspace W be such that the component of the desired solution
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TPSVD TSVD TGSVD
Kdiscr 2 9 998
|Thy... —a||/|%] | 4.88-1073 | 2.34-10"! | 6.66- 103
TABLE 4.1

Comparison of TPSVD, TSVD, and TGSVD for Example 4.1.

0.1

0.02f |

001t ,

0 . . . . )
0 200 400 600 800 1000

Fic. 4.1. Ezample 4.1: Ezact solution & (continuous curve), approzimate solution xa de-
termined by TPSVD using the discrepancy principle (dashed curve), and approzimate solution xg
determined by TSVD using the discrepancy principle (dash-dotted curve).

& not in W can be approximated well by a linear combination of the first few columns
of the matrix V in (1.4).
Example 4.1. Consider the Fredholm integral equation of the first kind

1
(4.2) / E(s,t)z(t)dt =e®* + (1 —e)s — 1, 0<s<1,
0

where

s(t—1), s <t,

k(s ) = { t(s—1), s>t

We discretize the integral equation by a Galerkin method with orthonormal box func-
tions as test and trial functions using the Matlab program deriv2 from [7]. This
program yields a symmetric indefinite matrix A € R!000x1000 and 4 scaled discrete
approximation & € R19%0 of the solution z(t) = exp(t) of (4.2). The condition num-
ber of A, defined by x(A) = ||A||||A7Y], is 1.22 - 10°. Figure 4.1 shows & (continuous
curve). The error-free right-hand side vector is given by b= Az, and the right-hand
side vector b in (1.1) is determined by (1.2) with e = 1-1072 in (4.1).

We first consider approximants xj of & computed by TSVD. The discrepancy
principle (1.10) yields kqiser = 9. The dash-dotted curve of Figure 4.1 displays @g. The
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relative error in @ is seen to be quite large; we have ||zg — || /||| = 2.34- 107 . For
comparison, we determine k., = 13 from equation (1.8) and obtain ||x13 — Z||/||Z| =
2.06 - 10~L. Thus, the error in x5 is not much smaller than the error in xg. The low
accuracy obtained by TSVD combined with the discrepancy principle therefore does
not depend on a failure of the latter, but instead depends on that linear combinations
of the first few columns of the matrix V in (1.4) are poorly suited to approximate &.

We turn to the TPSVD method. The approximate solution g determined by
TSVD suggests that the desired solution & may be increasing and convex, and that
it may be possible to approximate & fairly well by a parabola. We therefore apply
TPSVD with

1 1 1
1 2 4
(4.3) W=range | 1 3 9
1 n n?

The discrepancy principle (1.10) yields kqiser = 2 and the associated approximant s
is displayed in Figure 4.1 (dashed curve). The error ||z2 — Z||/||| = 4.88 - 1073 is
about 1/48th of the error in the approximate solution &g determined by TSVD.

For this example, TGSVD with the 4-diagonal regularization operator

-1 3 -3 1

(4.4) L- S € R

which is a scaled approximation of a 3rd derivative operator with null space is (4.3),
performs almost as well as TPSVD. The discrepancy principle (1.10) yields kqiser =
998 and we obtain the error ||zggs — Z||/||Z| = 6.66 - 1073, which is about 36% larger
than the corresponding error for TPSVD. Table 4.1 provides a summary of the errors
in the computed solutions. This example illustrates that preliminary computations
with TSVD can provide valuable information about the solution that can be used
to determine a suitable space for TPSVD or a suitable regularization operator L for
TGSVD. O

Example 4.2. This example differs from Example 4.1 only in how knowledge of
the desired solution & is incorporated into the solution process. Thus, let the linear
system of equations (1.1) be the same as in Example 4.1 and determine the set W
by solving a small linear system of equations defined by a coarse discretization of the
integral equation (4.2). Specifically, we discretize (4.2) using a Galerkin method with
only four box functions as test and trial functions. This gives the matrix A, € R**4,
We determine an associated right-hand side b, € R* by projecting the available noisy
right-hand side b € R'%% into R*. The small linear system of equations

(4.5) Asx = b,

obtained in this manner is solved by a direct solution method without regularization.
Since the matrix A in (4.5) is not very ill-conditioned, k(A;) = 18, regularization is
not required. Prolongation of the solution x, € R* by piecewise linear interpolation,
using the Matlab function interpl, yields the approximation @, € R with error
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TPSVD TSVD TGSVD
Ediser 13 49 789
ks, — 2| /12]| | 1.86-1072 | 6.49-1072 | 2.26 - 1072
TABLE 4.2

Comparison of TPSVD, TSVD, and TGSVD for Example 4.5.

|Tpror — & = 2.13-1072. TPSVD with W = span{# o1}, and using the discrepancy
principle, gives the approximate solution @z of (1.1) with error ||zo — | = 1.11-1072.
Thus, x2 is a better approximation of & than all approximations furnished by TSVD
and TGSVD. For comparison, we also note that for this choice of W, k, = 3 and
|lxs — | =1.08-1072. O

0 100 200 300 400 500 600 700 800

Fic. 4.2. Ezample 4.3: Original signal & (dashed curve) and the associated corrupted signal
(solid curve) with e =1-10"1 in (4.1).

Example 4.3. We consider the reconstruction of a discrete signal & € R8%0 defined
by the discretization of

x(t) = sin(5t) + 2 cos(t), tel—mn, 7,

on a uniform grid with n = 800 points. Specifically, we seek to determine an approx-
imation of & from the vector b € R8%° an available noisy (due to the transmission
process) and slightly smoothed (due to the signal capturing method) version of &. Let
A € R800%800 he a4 Toeplitz matrix, such that b = A% models convolution of & with
a Gaussian with mean zero and variance 0.4. The matrix A is numerically singular;
we have k(A) = 9-10'. The vector b represents a smoothed signal associated with
&. The available signal b is obtained by adding noise e € R8% to b, cf. (1.2), with
e =1-10"1in (4.1). Figure 4.2 shows the original (unavailable) signal & (dashed
curve) and the available corrupted signal b (continuous curve). The former is barely
visible.
11
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0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Fic. 4.3. Example 4.3: The top graphs show the first 200 components of the exact solution &
(solid curves), the corresponding components of the approzimation €49 determined TSVD using the
discrepancy principle (dashed curve, left-hand side graph), and the corresponding components of the
approzimation x13 determined TPSVD using the discrepancy principle (dashed curve, right-hand
side graph). The bottom graphs show the last 150 entries of the exact solution & (solid curves), the
corresponding components of x49 determined by TSVD (dashed curve, left-hand side graph), and
the corresponding components of @13 determined by TPSVD (dashed curve, right-hand side graph).

Assume that we know that the sought signal is periodic and of low frequency. It
is then natural to apply TPSVD with

1 sin(—m) cos(—)

1 sin(—7+ 2%)  cos(—7 + 2%;) [
(4.6) W = range ) 1 _ 1 C R800X3.
1 sin(r) cos()

The discrepancy principle (1.10) yields kgiser = 13 and we obtain the relative error
|lx13 — 2||/||2| = 1.86 - 10~2. Two different parts of the reconstructed signal ;3 are
displayed with dashed curves on the right-hand side graphs of Figure 4.3; the top
graph shows the first 200 entries of 13 and the bottom graph the last 150 entries.
The corresponding parts of the original signal & are depicted with continuous curves.

We now consider approximations x of  determined by TSVD and obtain kqjser =
49 and the relative error ||z49 — &||/||Z|| = 6.49 - 1072, The dashed curves in the left-
hand side graphs of Figure 4.3 display the first 200 (top graph) and last 150 (bottom
graph) components of the computed approximation x49. Comparison of the right-
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TPSVD TSVD
kdiscr 782 871
|2 kg, — 2 /[l2]| | 4.23-1072 | 4.35-1072
TABLE 4.3

Comparison of TPSVD and TSVD for Example 4.4.

hand side and left-hand side graphs of Figure 4.3 shows the reconstruction obtained
by TPSVD using the discrepancy principle to be significantly more accurate than the
reconstruction determined by TSVD.

We also apply TGSVD; however, the choice of a suitable regularization operator
L is not obvious. Using the operator (4.4) gives a fairly good approximation of &.
The null space of L is of the same dimension as the space (4.6). The discrepancy
principle yields kqiser = 789 and the relative error |x7so — &||/||Z|| = 2.26 - 1072,
Thus, TGSVD furnishes a better approximation of & than TSVD, but worse than
TPSVD. The relative errors achieved by the different approaches are summarized in
Table 4.2. O

(a) (b) (c)

Fi1G. 4.4. Ezample 4.4: (a) unavailable original image, (b) available contaminated image, (c)
image restored by TPSVD.

Example 4.4. We consider the restoration of a discrete image that has been
contaminated by blur and noise. The “original” noise- and blur-free image, which is
displayed by Figure 4.4(a), is assumed to be unavailable. It consists of 40 x 40 pixels,
whose values are stored column-wise in the vector & € R'%%0. The Matlab function
blur from [7] with parameters band = 3 and sigma = 0.7 is applied to generate a
blurring operator A € R1690%1600 that models spatially invariant Gaussian blur. The
vector b = A& represents a blurred version of the original image &. An error e € R'0%
of relative norm € = 1-1072, cf. (4.1), which models “noise,” is added to b to obtain
the right-hand side b of (1.1). The latter vector represents the available contaminated
version of . Figure 4.4(b) shows the image represented by b.

We use b as available a priori information about the desired image; i.e., we apply
TPSVD with W = spanb. The discrepancy principle yields the vector x7ge. Figure
4.4(c) shows the “restored image” represented by @7g2. TSVD is applied similarly,
i.e., the discrepancy principle yields xg7;. Table 4.3 summarizes the computed results.
O

Example 4.5. We consider the reconstruction of a piecewise constant signal & €
13



Fic. 4.5. Example 4.5: The top left-hand side graph shows the desired signal & (dashed curve)
and the available corrupted signal (solid curve) with relative noise ¢ = 1-1071. The continuous
curves top-right, bottom-right, and bottom-left display, in order, the reconstructed signals determined
by TPSVD, TSVD, and TGSVD using the discrepancy principle.

TPSVD TSVD TGSVD
Ediscr 7 15 186
kg, — 2N /I12] | 872-1072 | 1.97-107% | 2.08 - 1071
TABLE 4.4

Comparison of TPSVD, TSVD, and TGSVD for Example 4.5.

R2%0 defined by the discretization of

0, t e [0,1/4],
)Lt e (1/4,1/2),
z(t) = 4,  t e (1/2,3/4],
0. t € (3/4,1],

on a uniform grid with n = 200 points starting from an available vector b € R2%°
contaminated by smear and noise, as in Example 4.3. We suppose that the locations
of the discontinuities of the signal are captured by the signal acquisition equipment
and therefore are known. These lead us to choose W as a 3-dimensional space of
piecewise constant functions with possible discontinuities at 1/4, 1/2, and 3/4. The
operator A is of the same kind as in Example 4.3 and the error e € R?% in b is of
relative norm e = 0.1; cf. (4.1).
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Table 4.4 shows the relative errors |z — &||/||Z| achieved by TSVD, TPSVD,
and TGSVD, using the discrepancy principle. The latter method is used with the
regularization operator (4.4), which has a null space of the same dimension as W.
TPSVD can be seen to yield the best approximation of the desired signal &. The
graphs in Figure 4.5 illustrate the advantage of TPSVD over both TGSVD and TSVD.
The graphs display the exact and computed solution as functions of the grid points.

The conditions of the present example are fairly special. The purpose of the
example is to illustrate the ease with which auxiliary information about the desired
solution can be incorporated in the solution process. O

5. Conclusion. The projections in TPSVD provide a novel way to incorporate
knowledge about the behavior of &, the desired solution of the noise-free problem
(1.3), into the solution process. Numerical examples show that TPSVD can give
better approximations of & than standard TSVD. TPSVD uses auxiliary information
about & in a different way than TGSVD and can be more natural to use in certain
situations, such as in Examples 4.2-4.5. TPSVD and TGSVD modify standard TSVD
for the solution of linear discrete ill-posed problems. Which one of these methods
should be used depends on the problem at hand and on the auxiliary information
available.
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