
Numer Algor (2008) 47:391–407
DOI 10.1007/s11075-008-9194-7

ORIGINAL PAPER

On the solution of the symmetric eigenvalue
complementarity problem by the spectral
projected gradient algorithm

Joaquim J. Júdice · Marcos Raydan ·
Silvério S. Rosa · Sandra A. Santos

Received: 22 October 2007 / Accepted: 29 February 2008 /
Published online: 29 March 2008
© Springer Science + Business Media, LLC 2008

Abstract This paper is devoted to the eigenvalue complementarity problem
(EiCP) with symmetric real matrices. This problem is equivalent to finding
a stationary point of a differentiable optimization program involving the
Rayleigh quotient on a simplex (Queiroz et al., Math. Comput. 73, 1849–
1863, 2004). We discuss a logarithmic function and a quadratic programming
formulation to find a complementarity eigenvalue by computing a stationary
point of an appropriate merit function on a special convex set. A variant of
the spectral projected gradient algorithm with a specially designed line search
is introduced to solve the EiCP. Computational experience shows that the
application of this algorithm to the logarithmic function formulation is a quite
efficient way to find a solution to the symmetric EiCP.
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1 Introduction

Given the matrix A ∈ �n×n and the positive definite (PD) matrix B ∈ �n×n,
the eigenvalue complementarity problem (EiCP) is a problem of the form

Find λ > 0 and x ∈ �n \ {0} such that

⎧
⎨

⎩

w = (λB − A)x,

w � 0, x � 0,

xTw = 0.

(1.1)

The EiCP is a particular case of the mixed eigenvalue complementarity
problem (MEiCPJ) that consists of finding a scalar λ > 0 and a vector x ∈
�

n \ {0} such that
⎧
⎪⎪⎨

⎪⎪⎩

w = (λB − A)x,

wJ � 0, xJ � 0,

wT
J xJ = 0,

w J̄ = 0,

where xJ ≡ (x j, j ∈ J), wJ ≡ (w j, j ∈ J), J ⊆ {1, . . . , n} and J̄ = {1, . . . n} \ J.
Note that the EiCP is obtained when J = {1, . . . , n}. The MEiCPJ is a gen-
eralization of the EiCP, that appears more frequently in practical problems
of engineering and physics where the computation of eigenvalues is required.
Problems involving the resonance frequency of structures and stability of
dynamical systems are among these applications and have been discussed in
[9]. Extensions of these problems to more general cones have been discussed
in [24–26, 28]. We are interested in the Symmetric EiCP, in which the matrices
A and B are both symmetric (i.e., when B is SPD). As is traditional in
complementarity problems, the most important conclusions for the EiCP also
hold for the MEiCPJ .

Note that if λ is unrestricted and w = 0 (J = ∅), then the variables
xi (i = 1, . . . , n) are free and the solution of the MEiCPJ corresponds to a solu-
tion of the Generalized Eigenvalue Problem [15]. For any solution (λ, x) of
EiCP (or MEiCPJ), the value of λ is called Complementary Eigenvalue of the
matrices (A, B) and x is the corresponding Complementary Eigenvector.

For each solution (λ, x) of MEiCPJ , there exists a set of indices I satisfying
J̄ ⊆ I ⊆ {1, . . . , n}, such that λ is a positive eigenvalue of (AII, BII) and xI is
the corresponding eigenvector satisfying xJ∩I � 0 [24], where CII represents
the principal submatrix of order I of the matrix C and xI is the subvector asso-
ciated with the index set I. For the EiCP, this theorem means that given a solu-
tion (λ, x), λ is a positive eigenvalue of (AII, BII) and xI is the corresponding
non-zero eigenvector. An immediate corollary of this result is that the number
of solutions of the EiCP (and MEiCPJ) is finite [22, 24].

When at least one of the matrices A or B is asymmetric, the EiCP was stud-
ied in [17], where a branch-and-bound method for the solution of this problem
was introduced. The symmetric EiCP, as defined by (1.1), was discussed in [22],
where it was shown that the EiCP can be reduced to the problem of finding a
stationary point of the Rayleigh function on the simplex.
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In this paper we start by recalling the optimization formulation that uses the
Rayleigh quotient function. We also consider a logarithmic function applied to
the Rayleigh quotient. A quadratic formulation equivalent to (1.1) is also intro-
duced. The resulting problems are nonlinear programs that can be solved by an
interior-point method such as LOQO [27], and also by a general purpose optimi-
zation solver as MINOS [20]. For the Rayleigh quotient and the logarithmic
function, the EiCP is reduced to nonlinear programs on a simplex. We discuss
the solution of these two optimization problems by a variant of the spectral
projected gradient (SPG) [6] algorithm combined with a specially designed line
search, fully described in Section 3. The projection, required at each iteration
of this process, is the unique optimal solution of a strictly convex quadratic
program solved by a strongly polynomial block pivotal principal pivoting algo-
rithm [16]. Computational experience with a set of small and large EiCPs
shows that the SPG algorithm is quite efficient for finding a complementary
eigenvalue and compares favorably with the commercial codes LOQO and
MINOS in these instances. Furthermore the logarithmic function formulation
seems to lead in general into a better performance for the SPG algorithm.

The paper is organized as follows. In Section 2 the three formulations are
presented. The SPG method is introduced in Section 3 along with all the
techniques incorporated in the algorithm for the computation of the search
direction and step length. Numerical experiments and some conclusions are
presented in the last section of this paper.

2 Formulations

Since the set of complementary eigenvectors associated to a certain eigenvalue
is a cone, there is no loss of generality if we consider only the solutions satis-
fying ‖x‖ = p, where p > 0 and ‖ ‖ is any vector norm. This constraint ensures
that x is a non-zero vector. Since x � 0 in the definition of the EiCP, this con-
straint can be replaced by the linear constraint ‖x‖1 = eT x = p, where e is a
vector of ones. So (1.1) is equivalent to finding λ > 0 such that

w = (λB − A)x,

w � 0, x � 0,

xTw = 0,

eT x = p. (2.1)

Considering a suitable continuously differentiable merit function φ(x) [22],
it is possible to reduce the EiCP to the following nonlinear program

Minimize φ(x)

subject to eT x = p,

x � 0. (2.2)
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The Karush–Kuhn–Tucker conditions that define a stationary point for this
problem constitute the complementarity problem

∇φ(x) + αe = w,

eT x = p,

xTw = 0,

w � 0, x � 0, α ∈ �, (2.3)

where α is the Lagrange multiplier associated to the constraint eT x = p.

2.1 Rayleigh quotient formulation

The first objective function is the generalized Rayleigh quotient that was used
in [22]. It is included in this work for completeness.

The complementarity condition wT x = 0 in (2.1) may be substituted by
xT(λBx − Ax) = 0 and, since B is SPD, this equation is equivalent to

λ(x) = xT Ax
xT Bx

.

This is the generalized Rayleigh quotient.
As discussed in [22], if

φ(x) = − xT Ax
xT Bx

,

then a stationary point of (2.2) gives a solution to the EiCP. The gradient and
Hessian for this function are respectively

∇φ(x) = 2

(xT Bx)2

((
xT Ax

)
Bx − (

xT Bx
)

Ax
)
, (2.4)

and

∇2φ(x) = 2
[(

xT Ax
)

B − (
xT Bx

)
A

] + 4
[
(Ax)(Bx)T + (Bx)(Ax)T

]

(
xT Bx

)2

−8
(
xT Ax

)
(Bx)(Bx)T

(
xT Bx

)3 . (2.5)

2.2 Logarithmic formulation

Inspired by the work of Auchmuty [1], Mongeau and Torki [19] and the
behavior of the generalized Rayleigh quotient, we introduce the following
merit function

LAB(x) = ln
(
xT Bx

) − ln
(
xT Ax

)
,

whose gradient and Hessian are respectively

∇LAB(x) = 2Bx
xT Bx

− 2Ax
xT Ax

, (2.6)
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and

∇2LAB(x) = 2B
xT Bx

− 4(Bx)(Bx)T

(xT Bx)2
− 2A

xT Ax
+ 4(Ax)(Ax)T

(xT Ax)2
. (2.7)

Note that this function can only be used if xT Ax > 0 for any x 	= 0, that
is, if A is strictly copositive [10]. Moreover, xT Bx > 0 for any x 	= 0, since B
is SPD.

Theorem 2.1 If A is strictly copositive, then any stationary point x̄ of LAB(x) in
the convex set K = {x ∈ �n : eT x = p, x � 0} leads to the solution (x̄, λ̄) of the
EiCP, where λ̄ = (x̄T Ax̄)/(x̄T Bx̄).

Proof Computing the inner product of x ∈ �n and the gradient vector,
we obtain

xT∇LAB(x) = 0. (2.8)

By assuming that (x̄, w̄, ᾱ) ∈ �n ×�n ×� satisfy the conditions (2.3) with
φ(x) = LAB(x), then

x̄T∇LAB(x̄) + ᾱ
(
x̄Te

) = x̄Tw̄ = 0.

By (2.8) and since x̄Te = p > 0 it follows that ᾱ = 0. Now by (2.3) we have

∇LAB(x̄) = w̄ � 0. (2.9)

Since A is strictly copositive and B is SPD, the expressions (2.6) and (2.9) imply
that (λ̄B − A)x̄ � 0 with λ̄ = (x̄T Ax̄)/(x̄T Bx̄) and x̄T(λ̄B − A)x̄ = 0. Hence
(x̄, λ̄) is a solution of the EiCP. 
�

2.3 Quadratic formulation

An equivalent way to formulate the EiCP (1.1) is through the quadratic
formulation:

Maximize xT Ax

subject to xT Bx � 1,

x � 0, (2.10)

where the matrix A is symmetric and B is SPD.

Theorem 2.2 If A is strictly copositive and x̄ 	= 0 is a stationary point of (2.10),
then the pair x̄, λ̄ = x̄T Ax̄ is a solution of EiCP.

Proof Since the constraint set is convex, we start by showing that Slater’s con-
straint qualification [3] holds, that is, there exists an x > 0 such that xT Bx < 1.
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Since B is an SPD matrix, then B ∈ S [10] and there exists an x̄ > 0 such that
Bx̄ > 0. Furthermore, x̄T Bx̄ > 0 and there are three possible cases:

a) x̄T Bx̄ < 1 and the Slater’s constraint qualification holds;
b) x̄T Bx̄ = 1;
c) x̄T Bx̄ = β > 1.

The third case reduces to the second one, as x̃ = x̄/
√

β satisfies x̃ > 0, Bx̃ > 0
and x̃T Bx̃ = 1.

Consider now that there exists x̄ > 0 such that Bx̄ > 0 and x̄T Bx̄ = 1. We
prove that for any positive real number θ such that

θ < min

{

x̄1,
2(Bx̄)1

b 11

}

then x = x̄ − θe1 satisfies x > 0 and xT Bx < 1 (e1 is the first vector of the
canonical basis). In fact x > 0 by construction. Furthermore

xT Bx = (x̄ − θe1)T B(x̄ − θe1)

= x̄T Bx̄ − 2θ(Bx̄)1 + θ2b 11,

and xT Bx < 1 if and only if
(
x̄T Bx̄ − 1

) + θ [θb 11 − 2(Bx̄)1] < 0,

that is, if and only if, θ < 2(Bx̄)1/b 11. This shows that Slater’s constraint quali-
fication is true and [3] any optimal solution x̄ of (2.10) satisfies the Karush–
Kuhn–Tucker (KKT) conditions

w = (λB − A)x,

xiwi = 0, i = 1, . . . , n

x � 0, w � 0, λ � 0,

ν = 1 − xT Bx,

νλ = 0,

ν � 0.

Since 0 	= x̄ � 0 and B is an SPD matrix, then x̄T Bx̄ > 0. If x̄T Bx̄ < 1, then
λ = 0 and w̄ = −Ax̄. Therefore

x̄Tw̄ = 0 = −x̄T Ax̄,

which is impossible, since A is strictly copositive. Hence x̄T Bx̄ = 1 and
λ = x̄T Ax̄ > 0. This completes the proof. 
�

3 Spectral projected gradient algorithm

In this section the spectral projected gradient (SPG) method is applied to the
two formulations with linear constraints of the previous section. This method
can be viewed as a variant of the classical projected gradient method.
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Projected gradient (PG) methods provide an interesting option for solving
large-scale convex constrained problems. They are simple and easy to code,
and avoid the need for matrix factorizations. Practical monotone backtracking
line search versions have been introduced to the choice of step length (see
e.g., [4]). However, these early PG methods are frequently inefficient since
their performance resembles the optimal gradient method (also known as the
steepest descent method), which is usually very slow. Nevertheless, the effec-
tiveness of PG methods can be greatly improved by incorporating recently
developed choices of step length and globalization strategies.

There have been many different variations of the early PG methods. They
all have the common property of maintaining feasibility of the iterates by fre-
quently projecting trial steps on the feasible convex set. In particular, Birgin
et al. [5, 6] combine the projected gradient method with recently developed
ingredients in unconstrained optimization to propose an effective scheme that
is known as the spectral projected gradient (SPG) method. One of the interest-
ing features of the SPG method is the spectral choice of step length along
the gradient direction, originally proposed by Barzilai and Borwein [2] for
unconstrained optimization. In [2], R-superlinear convergence was established
for the minimization of two-dimensional strictly convex quadratics. Recently,
though, Dai and Fletcher [11] established that the method is also asymptoti-
cally R-superlinearly convergent in the three-dimensional case, but not when
the dimension is greater than or equal to four. Dai and Liao [12] refined the
global analysis in Raydan [23] for quadratics and proved that the convergence
rate is R-linear in general. Numerical experiments have shown that the spectral
gradient method for unconstrained optimization ([13]) or the SPG method
for convex constrained optimization ([5]) are much faster than the steepest
descent method or the classical PG methods, respectively.

In the setting of Birgin et al. [5, 6], the SPG algorithm starts with x0 ∈ �,
and moves at every iteration k along the internal projected gradient direction

dk = P(xk − ηk∇φ(xk)) − xk,

with a parameter ηk > 0. In particular, in the SPG method, the spectral choice
is used, which is given by

ηk = 〈sk−1, sk−1〉
〈sk−1, yk−1〉 ,

sk−1 = xk − xk−1, yk−1 = ∇φ(xk) − ∇φ(xk−1) whenever the denominator is
positive. Furthermore, P(w) is the projection of w ∈ �n onto �, where for the
optimization formulations under study

� = {
x ∈ �n : x � 0, eT x = p

}
. (3.1)

In the case that the first trial point, xk + dk, is rejected the next ones are com-
puted along the same direction, i.e., x+ = xk + δdk, using a line search to
choose 0 < δ ≤ 1, to be described later, such that global convergence towards
a stationary point of φ is guaranteed.
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We now present the algorithm used in this paper. It starts with x0 ∈ �, a
sufficient decrease parameter ζ ∈(0, 1), and a small stopping tolerance ε >0.
Initially, η0 > 0 is arbitrary. Given xk ∈ � and ηk > 0, we describe next an
iteration of the SPG algorithm.

Spectral projected gradient algorithm

Step 1 Compute zk = P(xk − ηk∇φ(xk)) and the direction dk ∈ �n by

dk = zk − xk.

Step 2 If ‖dk‖ < ε then stop: xk is a stationary point of φ in �.
Step 3 If φ(zk) � φ(xk) − ζdT

k ∇φ(xk) then δk = 1.
Else determine the step length δk ∈ ]0; 1] by exact line search.

Step 4 Update the solution

xk+1 ← xk + δkdk.

In the implementation, the value of ε depends on the optimization problem.
This value must guarantee that the algorithm ends after a finite number of
iterations and the solution is accurate.

At each iteration we have to compute the objective function, its gradient
and the projection zk. The gradient is given by (2.4) or (2.6), depending on the
merit function to be used. We now discuss how to obtain the initial solution,
the parameter ηk, the step length δk, and the projection.

3.1 The initial guess

As described in [22], the initial solution x0 can be chosen by one of several
processes. In particular if A has at least one diagonal element aii > 0 then the
initial solution can be chosen as

x0 = p ei,

where ei is the vector i of the canonical basis. Another possible choice is

x0 = p
n

e, (3.2)

as long as (x0)
T Ax0 > 0. Therefore this initial point can be used if A is strictly

copositive.

3.2 The parameter ηk

The parameter ηk can be fixed or changed at each iteration. A first choice is
simply setting ηk = 10−1 or any other small positive value.

A second choice demands some computational effort and is based on [6].
When calculating the first projection we begin with

η0 = min(ηmax, max(ηmin, 1/‖P(x0 − ∇φ(x0)) − x0‖∞)),
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where ηmin is a quite small positive number and ηmax = η−1
min. The subsequent

values are obtained by the following procedure:

Compute sk = xk+1 − xk, yk = ∇φ(xk+1) − ∇φ(xk) and βk = 〈sk, yk〉.
If βk � 0 then ηk+1 = ηmax,

else compute ηk+1 = min[ηmax, max(ηmin, 〈sk, sk〉/βk)]
This process is well-defined [6]. In practice, we accept ηk+1 = ηmax provided
βk � ε with ε a positive tolerance. Furthermore, we set ηmin = εM, where εM is
the machine precision.

3.3 Projecting onto �

Next, we explain the computation of the projection z = P(xk − ηk∇φ(xk)) onto
�, given by (3.1), that is required in every iteration of the algorithm.

I. Find u = xk − ηk∇φ(xk).
II. The vector z is the unique optimal solution of the strictly convex quadratic

problem

Minimize
z∈�n

1

2
‖u − z‖2

2

subject to
eT z = p,

zi � 0, i = 1, . . . , n.

Since

‖u − z‖2
2 = (u − z)T(u − z) = uTu − 2uT z + zT z,

and 1
2 uTu is constant, then this program reduces to

Minimize
z∈�n qT z + 1

2
zT z

subject to

eT z = p,

zi � 0, i = 1, . . . , n. (3.3)

where q = −u.
Several methods can be used to solve this kind of quadratic programs.

Among those methods, the block pivotal principal pivoting algorithm pre-
sented in [16] is chosen because it is strongly polynomial and very efficient.
The steps of this method are presented below.

Block pivotal principal pivoting algorithm

Step 0 Let F = {1, 2, . . . , n}.

Step 1 Compute ϕ = −
p +

∑

i∈F

qi

|F| .
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Step 2 Let H = {i ∈ F : qi + ϕ > 0}.
If H = ∅ stop and

z = (zi)i=1,...,n, where zi =
{

0 if i 	∈ F
−(qi + ϕ) if i ∈ F

is the optimal solution of the quadratic program (3.3).
Otherwise, set F = F − H and return to Step 1.

Note that, in practice, the set H is determined by

H = {i ∈ F : qi + ϕ > ε},

where ε = √
εM .

3.4 The step length δ

If the first trial point does not satisfy the condition in Step 3 of the SPG
algorithm, then the value of the step length δ is obtained by exact line search,
i.e., it is the solution of the unconstrained program:

Minimize φ(x + δd) = ϕ(δ),
0 � δ � 1

(3.4)

which depends on φ. Next, we explain how δ can be computed for the Rayleigh
quotient and logarithmic functions.

Rayleigh quotient function In this case,

ϕ(δ) = − (x + δd)T A(x + δd)

(x + δd)T B(x + δd)
.

Here we ignored any reference (subindex) to the iteration number.

Theorem 3.1 Any solution δ of the equation ϕ′(δ) = 0 associated with the
Rayleigh quotient merit function is a root of the equation of degree two:

a1 + δa2 + δ2a3 = 0,

where

a1 = (
dT Ax

) (
xT Bx

) − (
dT Bx

) (
xT Ax

)
,

a2 = (
dT Ad

) (
xT Bx

) − (
dT Bd

) (
xT Ax

)
,

a3 = (
dT Ad

) (
xT Bd

) − (
dT Bd

) (
xT Ad

)
. (3.5)



Numer Algor (2008) 47:391–407 401

Proof The stationary point of problem (3.4) satisfies

ϕ′(δ)= 2dT B(x+δd)(x+δd)T A(x+δd)−2dT A(x+δd)(x+δd)T B(x+δd)

[(x+δd)B(x+δd)]2
=0

⇔ 2dT A(x + δd)(x + δd)T B(x + δd)

[(x + δd)B(x + δd)]2
= 2dT B(x + δd)(x + δd)T A(x + δd)

[(x + δd)B(x + δd)]2
.

(3.6)

Since the matrix B is SPD and x 	= 0, then (3.6) is equivalent to:

dT A(x + δd)(x + δd)T B(x + δd) = dT B(x + δd)(x + δd)T A(x + δd). (3.7)

Simplifying the left side of (3.7), we get

dT A(x + δd)(x + δd)T B(x + δd) =
= [

dT Ax + δdT Ad
] [

xT Bx + 2δxT Bd + δ2dT Bd
]

= (
dT Ax

) (
xT Bx

) + 2δ
(
xT Bd

) (
dT Ax

) + δ2
(
dT Bd

) (
dT Ax

) +
+ δ

(
dT Ad

) (
xT Bx

) + 2δ2
(
dT Ad

) (
xT Bd

) + δ3
(
dT Ad

) (
dT Bd

)
. (3.8)

Furthermore, the right side of (3.7) leads to

dT B(x + δd)(x + δd)T A(x + δd) =
= [

dT Bx + δdT Bd
] [

xT Ax + 2δxT Ad + δ2dT Ad
]

= (
dT Bx

) (
xT Ax

) + 2δ
(
xT Ad

) (
dT Bx

) + δ2
(
dT Ad

) (
dT Bx

) +
+ δ

(
dT Bd

) (
xT Ax

) + 2δ2
(
dT Bd

) (
xT Ad

) + δ3
(
dT Bd

) (
dT Ad

)
. (3.9)

From (3.8), (3.9) and recalling that A and B are symmetric matrices, we obtain

a1 + δa2 + δ2a3 = 0, (3.10)

for a1, a2 and a3 as in (3.5). 
�

Now let s1 and s2 be the solutions of equation (3.10). Since 0 � δ � 1, then
the step length δ in the SPG algorithm is computed as follows:

1) s1, s2 	∈ [0, 1] ⇒ δ = 1
2) There exists only one si ∈ [0, 1], i ∈ {1, 2} ⇒ δ = si

3) s1, s2 ∈ [0, 1].
Then, δ =

{
s1, if ϕ(s1) � ϕ(s2)

s2, otherwise.

Logarithmic function In this case,

ϕ(δ) = φ(x + δd) = log((x + δd)T B(x + δd)) − log((x + δd)T A(x + δd)).

and the following result holds.

Theorem 3.2 Any solution δ of the equation ϕ′(α) = 0 satisfies the polynomial
equation of second degree (3.10).
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The proof is identical to the previous case and the step length δ is obtained
following the same steps.

4 Numerical results

The computational experience presented in this section was done on a personal
computer with 3.0 GHz Pentium IV processor and 2 GBytes of RAM memory,
running Linux 2.6.22. The MINOS code of GAMS [7] and LOQO code of AMPL [14]
collections were used to solve the three nonlinear formulations. Moreover,
the SPG algorithm was used for the first two formulations and implemented
in FORTRAN 90 [8], using the Intel compiler, version 10.0. Running times
presented in this section are always given in CPU seconds. The times reported
for the SPG algorithm were measured using the system_clock intrinsic
subroutine.

For our initial test problems, the matrix B is, by default, the identity matrix
and the matrix A ∈ �n×n is SPD and sparse (pentadiagonal [21, page 380])
or dense (Fathy [21, page 311]). It is interesting to note that matrices A of
Fathy class are all positive. This means that each one of these matrices has
exactly one positive complementarity eigenvalue, which is its Perron root [24].
On the other hand this uniqueness property no longer holds for the matrices
of the pentadiagonal class. The parameter p in the constraint eT x = p has
the fixed value p = 1. In our experiments, we fix the parameters ε = 10−6 and
ζ = 10−4.

The test problems are scaled according to the procedure described in [17,
Section 5]. The scaling is important because the matrices that we are using
are badly conditioned, and without this tool some of the problems cannot be
solved.

Table 1 contains the results of the SPG algorithm for solving symmetric
EiCPs with the initial solution (3.2), the Rayleigh quotient and the logarithmic
objective functions. In our tests with these matrices the algorithm had better
results with this initial solution. In the referred Table, ‘Rayleigh’ means
‘Rayleigh quotient function’, ‘Logarithmic’ means ‘logarithmic function’,
‘λ’ is the complementarity eigenvalue found for the EiCP, ‘T’ is the total CPU
time performed by the method and ‘It’ is the number of iterations needed to
solve each problem. This notation is also used in the remaining tables.

Table 1 shows that usually the logarithmic function makes the SPG method
slightly more efficient when A is the pentadiagonal matrix. We also ob-
serve that the algorithm has an identical performance for both objective func-
tions for matrices of Fathy class. For the pentadiagonal matrices, the number
of iterations increases much with the dimension of the EiCP. However, it is
noticed that the SPG method can perform many iterations in little CPU time
for this class of matrices.

In order to have a clearer idea about the performance of the SPG in
practice, we tested it on a set of matrices A taken from the Matrix Market
repository [18]. The matrix B was considered diagonal with diagonal elements
Bii = i, i = 1, . . . , n. The numerical results of this experience for a stopping
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Table 1 EiCPs solutions with the SPG algorithm

A Order Rayleigh Logarithmic

It T λ It T λ

Fathy 100 7 0.0012 40.8331 8 0.0015 40.8331
200 7 0.0051 81.3612 8 0.0053 81.3612
300 7 0.0231 121.8896 8 0.0111 121.8896
400 7 0.1343 162.4180 8 0.0197 162.4180
500 7 0.0272 202.9465 7 0.0271 202.9465
700 7 0.0536 284.0034 7 0.0536 284.0034

1,000 7 0.1103 405.5888 7 0.1098 405.5888
pentadiagonal 100 355 0.0106 1.3309 224 0.0059 1.3309

200 692 0.0387 1.3327 1,004 0.0544 1.3327
300 1,976 0.1867 1.3330 1,378 0.1130 1.3330
400 2,811 0.3157 1.3332 2,901 0.3084 1.3332
500 3,857 0.5451 1.3332 3,146 0.4256 1.3332
700 5,073 1.1542 1.3333 6,638 1.2813 1.3333

1,000 9,344 2.7180 1.3333 8,239 2.3036 1.3333
2,000 17,655 10.8075 1.3333 12,579 7.3733 1.3333
5,000 16,272 27.7868 1.3333 13,063 18.8608 1.3333

10,000 13,259 45.2588 1.3333 13,063 37.3628 1.3333
20,000 12,881 83.2591 1.3333 14,867 92.6165 1.3333

tolerance of ε = 10−6 are displayed in Table 2 and show that, as before, the
SPG algorithm has been able to find a solution of the EiCP in a very fast way.
Furthermore, in general the algorithm has required few iterations to terminate.
The performance of the method is the worst for the test problem nos5,
where, as for the pentadiagonal matrices, the number of iterations required
by the algorithm to get an accurate solution of the EiCP is large. These
results are not surprising, as the SPG algorithm only uses first order derivative
information and may have slow progress in the last iterations. To illustrate this
type of behavior, we display the numerical results of the performance of the
SPG algorithm for ε = 10−5 and ε = 10−4 in Table 3. Note that for ε = 10−4

the algorithm requires a quarter of the number of iterations that have been
performed to get the most accurate solution associated with ε = 10−6. It is also
interesting to note that the SPG algorithm has found different stationary points
for the two merit functions in two examples (nos4 and nos6). This may be

Table 2 EiCPs solutions for Matrix Market matrices with the SPG algorithm

A Order Rayleigh Logarithmic

It T λ It T λ

bcsstk01 48 28 0.0005 2.5920 22 0.0004 2.5920
bcsstk02 66 164 0.0297 16.5555 82 0.0068 16.5555
nos1 237 6 0.0004 118.5386 10 0.0006 118.5386
nos2 957 3 0.0008 478.5097 7 0.0017 478.5097
nos3 960 97 0.0427 210.4494 129 0.0564 210.4494
nos4 100 26 0.0012 50.8760 2 0.0001 25.0000
nos5 468 2,918 0.4766 81.1665 2,809 0.4550 81.1665
nos6 675 12 0.0020 2.3356 2 0.0003 0.3827
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Table 3 EiCP solutions for nos5 matrix with SPG method

Rayleigh Logarithmic

ε It λ ε It λ ε It λ ε It λ

10−5 1753 81.1639 10−4 832 80.9779 10−5 1807 81.1645 10−4 771 80.9532

explained by the fact that the gradient of the two functions involve different
calculations, and the line search combines two different procedures to move in
the same direction.

In Table 4 we report the behavior of the well-known packages MINOS/GAMS
and LOQO/AMPL for the solution of the same EiCPs. For these experiments we
use the initial solution (3.2). These codes use the same initial solution because
it produces the best results for both. These codes were applied to the first and
second formulations. For matrices of order greater than 500, MINOS/GAMS
was unable to solve them and LOQO/AMPL requires too much time to solve
these problems. These methods required much more time to achieve a solution
than the SPG algorithm. Furthermore, MINOS/GAMS seems to be a better
choice for solving EiCP with both formulations, when A is pentadiagonal,
while LOQO/AMPL is a better choice for processing EiCP with the logarithmic
formulation, when A belongs to the Fathy collection.

For solving the Quadratic formulation by MINOS we use the following initial
solution:

x0 = 1
2
√

B11
e1,

where e1 is the first vector of canonical basis and B11 is the element of matrix
B that is in the first line and first column. For LOQO, the initial guess is chosen
internally. The results of the experiments obtained with this formulation are
presented in Table 5, where (***) is used when the algorithm was unable to
solve the EiCP, ‘M’ is the number of major iterations and ‘m’ the number of
minor iterations in MINOS/GAMS. As before, MINOS/GAMS and LOQO/AMPL
could not solve problems of dimensions greater than 500. The LOQO/AMPL is
clearly better than MINOS/GAMS to solve problems with Fathy matrices. The
later code was able to solve all the problems with pentadiagonal matrices,
while LOQO/AMPL was unable to solve two problems.

These results show that the quadratic formulation has some potential for
processing the EiCP. However, traditional algorithms, such as MINOS and
LOQO, for solving this convex programs, are not competitive with the SPG
algorithm for the two remaining formulations. The possible use of an SPG
algorithm for solving the quadratic formulation requires an efficient technique
to compute the projection on a convex set defined by the intersection of an
ellipsoid with the nonnegative orthant. This is a subject for future research.

Based on these experiments, we claim that the SPG algorithm is a very
efficient procedure and compares favorably with commercial codes such as
LOQO/AMPL and MINOS/GAMS for processing symmetric eigenvalue comple-
mentarity problems by exploiting its reduction to stationary points of suitable
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Table 5 Quadratic formulation program solutions

A Order MINOS/GAMS LOQO/AMPL

M m T λ It T λ

Fathy 100 9 166 2.03 40.8331 20 0.06 40.8331
200 10 276 16.68 81.3612 23 0.33 81.3612
300 13 398 43.69 121.8896 27 1.14 121.8896
400 16 519 101.81 162.4180 27 2.51 162.4180
500 19 640 197.14 202.9465 20 3.04 202.9465

pentadiagonal 100 16 331 0.16 1.3327 770 0.42 1.3327
200 22 554 0.56 1.3332 150 0.16 1.3332
300 28 739 1.12 1.3333 ***
400 32 916 2.24 1.3333 105 0.21 1.3333
500 36 1,112 3.23 1.3333 ***

merit functions. The algorithm is in general able to find a solution of the EiCP
with good precision with a quite small computational effort. For some difficult
problems, the algorithm can easily compute a solution with low precision,
but may require a large amount of calculations to get an accurate solution.
We believe that preconditioning techniques could be designed to improve the
quality of the solutions for these difficult problems. This should also be a topic
for future investigation.

As far as the formulations are concerned, the logarithmic merit function
seems to lead into a better performance for the SPG algorithm. Furthermore,
the expression of the Hessian for this function is simpler than for the Rayleigh
function and this could be another reason to use the logarithmic function
for processing the EiCP by a preconditioned spectral projected gradient
algorithm.

Acknowledgement We are indebted to an anonymous referee for helpful suggestions.
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