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Abstract

An algorithm is developed to compute the complete CS decomposition (CSD) of a
partitioned unitary matrix. Although the existence of the CSD has been recognized
since 1977, prior algorithms compute only a reduced version (the 2-by-1 CSD) that is
equivalent to two simultaneous singular value decompositions. The algorithm presented
here computes the complete 2-by-2 CSD, which requires the simultaneous diagonaliza-
tion of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The
algorithm appears to be the only fully specified algorithm available. The computation
occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal
block form, as described by Sutton and Edelman. In the second phase, the blocks are si-
multaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub,
Kahan, and Demmel. The algorithm has a number of desirable numerical features.

1 Introduction

The complete CS decomposition (CSD) applies to any m-by-m matrix X from the
unitary group U(m), viewed as a 2-by-2 block matrix,

X =

»

q m−q

p X11 X12

m−p X21 X22

–

.

For convenience, we assume q ≤ p and p + q ≤ m. A complete CS decomposition has
the form

X =

»

U1

U2

–

2

6

6

4

C S 0 0
0 0 Ip−q 0

−S C 0 0
0 0 0 Im−p−q

3

7

7

5

»

V1

V2

–∗

, (1.1)

C = diag(cos(θ1), . . . , cos(θq)), S = diag(sin(θ1), . . . , sin(θq)),

in which θ1, . . . , θq ∈ [0, π
2
], U1 ∈ U(p), U2 ∈ U(m− p), V1 ∈ U(q), and V2 ∈ U(m− q).

The letters CS in the term CS decomposition come from cosine-sine.
The major contribution of this paper is an algorithm for computing (1.1). We

believe this to be the only fully specified algorithm available for computing the complete
CS decomposition. Earlier algorithms compute only a reduced form, the “2-by-1” CSD,
which is defined in the next section. The algorithm developed in this article is based
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on the SVD algorithm of Golub and Kahan and has a number of desirable numerical
properties.

The algorithm proceeds in two phases.

1. Phase I: Bidiagonalization. In the special case p = q = m
2
, the decomposition is

X =

»

P1

P2

–

"

B
(0)
11 B

(0)
12

B
(0)
21 B

(0)
22

#

»

Q1

Q2

–∗

, (1.2)

in which B
(0)
11 and B

(0)
21 are upper bidiagonal, B

(0)
12 and B

(0)
22 are lower bidiagonal,

and P1, P2, Q1, and Q2 are q-by-q unitary. We say that the middle factor is a
real orthogonal matrix in bidiagonal block form. (See Definition 1.1.)

2. Phase II: Diagonalization. The CSD of

»

B
(0)
11 B

(0)
12

B
(0)
21 B

(0)
22

–

is computed,

"

B
(0)
11 B

(0)
12

B
(0)
21 B

(0)
22

#

=

»

U1

U2

– »

C S

−S C

– »

V1

V2

–∗

.

Combining the factorizations gives the CSD of X,

X =

»

P1U1

P2U2

– »

C S

−S C

– »

Q1V1

Q2V2

–∗

. (1.3)

Phase I is a finite-time procedure first described in [18], and Phase II is an iterative
procedure based on ideas from bidiagonal SVD algorithms [6, 8].

Some of the earliest work related to the CSD was completed by Jordan, Davis,
and Kahan [4, 5, 12]. The CSD as we know it today and the term CS decomposition
first appeared in a pair of articles by Stewart [16, 17]. Computational aspects of the
2-by-1 CSD are considered in [3, 13, 14, 17, 19] and later articles. A “sketch” of an
algorithm for the complete CSD can be found in a paper by Hari [11], but few details
are provided. For general information and more references, see [2, 10, 15].

1.1 Complete versus 2-by-1 CS decomposition

Most commonly available CSD algorithms compute what we call the 2-by-1 CS de-
composition of a matrix X̂ with orthonormal columns partitioned into a 2-by-1 block
structure. In the special case p = q = m

2
, X̂ has the form

X̂ =

»

q

q X̂11

q X̂21

–

,

and the CSD is

X̂ =

»

U1

U2

– »

C

−S

–

V
∗
1 .

A naive algorithm for computing the 2-by-1 CSD is to compute two SVD’s,

(

X̂11 = U1CV
∗
1

X̂21 = (−U2)SV
∗
1 ,

reordering rows and columns and adjusting signs as necessary to make sure that the
two occurrences of V ∗

1 are identical and that C2 + S2 = I . This works in theory if no
two singular values of X̂11 are repeated, but in practice it works poorly when there are
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clustered singular values. Still, the basic idea can form the backbone of an effective
algorithm for the 2-by-1 CSD [17, 19].

Unfortunately, many algorithms for the 2-by-1 CSD do not extend easily to the
complete 2-by-2 CSD. The problem is the more extensive sharing of singular vectors
evident below (still assuming p = q = m

2
):

(

X11 = U1CV
∗
1 X12 = U1SV

∗
2

X21 = (−U2)SV
∗
1 X22 = U2CV

∗
2 .

(1.4)

All four unitary matrices U1, U2, V1, and V2 play dual roles, providing singular vectors
for two different blocks of X. Enforcing these identities has proven difficult over the
years.

Our algorithm, unlike the naive algorithm, is designed to compute the four SVD’s
in (1.4) simultaneously, so that no discrepancies ever arise.

1.2 Applications

Unlike existing 2-by-1 CSD algorithms, the algorithm developed here fully solves Jor-
dan’s problem of angles between linear subspaces of Rn [12]. If the columns of matrices
X and Y are orthonormal bases for two subspaces of Rn, then the principal angles and
principal vectors between the subspaces can be computed in terms of the SVD of XTY

[15]. The complete CSD, equivalent to four SVD’s, simultaneously provides principal
vectors for these subspaces and their orthogonal complements.

In addition, our algorithm can be specialized to compute the 2-by-1 CSD and hence
has application to the generalized singular value decomposition.

1.3 Numerical properties

The algorithm is designed for numerical stability. All four blocks of the partitioned
unitary matrix are treated simultaneously and with equal regard, and no cleanup pro-
cedure is necessary at the end of the algorithm. In addition, a new representation
for orthogonal matrices with a certain structure guarantees orthogonality, even on a
floating-point architecture [18].

1.4 Efficiency

As with the SVD algorithm of Golub and Kahan, Phase I (bidiagonalization) is often
more expensive than Phase II (diagonalization). For the special case p = q = m

2
,

bidiagonalization requires about 2m3 flops—about 8
3
q3 flops to bidiagonalize each block

of
ˆ

X11 X12
X21 X22

˜

and about 4
3
q3 flops to accumulate each of P1, P2, Q1, and Q2, for a total

of about 4
`

8
3
q3

´

+ 4
`

4
3

´

q3 = 2m3 flops.

1.5 Overview of the algorithm

1.5.1 Bidiagonal block form

During Phase I, the input unitary matrix is reduced to bidiagonal block form. A matrix
in this form is real orthogonal and has a specific sign pattern. Bidiagonal block form
was independently formulated by Sutton in 2005 [18]. Some similar results appear in
a 1993 paper by Watkins [20]. The matrix structure and a related decomposition have
already been applied to a problem in random matrix theory by Edelman and Sutton
[7].
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Definition 1.1. Given θ = (θ1, . . . , θq) ∈ [0, π
2
]q and φ = (φ1, . . . , φq−1) ∈ [0, π

2
]q−1,

let ci = cos θi, si = sin θi, c
′
i = cosφi, and s

′
i = sinφi. Define Bij(θ, φ), i, j = 1, 2, to

be q-by-q bidiagonal matrices, as follows.

»

B11(θ, φ) B12(θ, φ)

B21(θ, φ) B22(θ, φ)

–

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c1 −s1s
′
1 s1c

′
1

c2c
′
1

. . . c2s
′
1 s2c

′
2

. . . −sq−1s
′
q−1

. . .
. . .

cqc
′
q−1 cqs

′
q−1 sq

−s1 −c1s
′
1 c1c

′
1

−s2c
′
1

. . . −s2s
′
1 c2c

′
2

. . . −cq−1s
′
q−1

. . .
. . .

−sqc
′
q−1 −sqs

′
q−1 cq

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (1.5)

Any matrix of the form
»

B11(θ, φ) B12(θ, φ)

B21(θ, φ) B22(θ, φ)

–

is said to be in bidiagonal block form and is necessarily real orthogonal.

To clarify (1.5), the (q−1, q−1) entry of B12(θ, φ) is sq−1c
′
q−1, and the (q−1, q−1)

entry of B22(θ, φ) is cq−1c
′
q−1. Also, if q = 1, then the matrices are defined by

»

B11(θ, φ) B12(θ, φ)

B21(θ, φ) B22(θ, φ)

–

=

»

c1 s1
−s1 c1

–

.

As stated in the definition, any matrix whose entries satisfy the relations of (1.5)
is necessarily real orthogonal. The reverse is true as well—any orthogonal matrix X
with the bidiagonal structure and sign pattern of (1.5) is expressible in terms of some
θ and φ. (This is implicit in [7, 18].) Furthermore, every unitary matrix is equivalent
to a matrix in bidiagonal block form, as stated in the next theorem.

Theorem 1.2. Given any m-by-m unitary matrix X and integers p, q such that 0 ≤
q ≤ p and p+ q ≤ m, there exist matrices P1 ∈ U(p), P2 ∈ U(m− p), Q1 ∈ U(q), and
Q2 ∈ U(m− q) such that

X =

»

P1

P2

–

2

6

6

4

B11(θ, φ) B12(θ, φ) 0 0
0 0 Ip−q 0

B21(θ, φ) B22(θ, φ) 0 0
0 0 0 Im−p−q

3

7

7

5

»

Q1

Q2

–∗

for some θ = (θ1, . . . , θq) ∈ [0, π
2
]q and φ = (φ1, . . . , φq−1) ∈ [0, π

2
]q−1.

A proof of the theorem has already been published in [7, 18], along with an algorithm
for computing the decomposition. The algorithm applies pairs of Householder reflectors
to the left and right of X, causing the structure to evolve as in Fig. 1. This serves as
Phase I of the CSD algorithm.

1.5.2 Simultaneous SVD steps

Phase II of the algorithm simultaneously applies the bidiagonal SVD algorithm of
Golub and Kahan [6, 8, 10] to each of the four blocks of a matrix in bidiagonal block
form.
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2

6

6

6

6

6

4

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

3

7

7

7

7

7

5

unitary

→

2

6

6

6

6

6

4

+ × × × × ×

× × × × ×

× × × × ×

− × × × × ×

× × × × ×

× × × × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
× × × × ×

× × × × ×

− − +
× × × × ×

× × × × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
+ × + × ×

× × ×

− − +
− × − × ×

× × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
+ − + +

× × ×

− − +
− − − +

× × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
+ − + +

+ + ×

− − +
− − − +

− − ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
+ − + +

+ + +
− − +

− − − +
− − +

3

7

7

7

7

7

5

real orthogonal

.

Figure 1: Reduction to bidiagonal block form

The bidiagonal SVD algorithm is an iterative scheme. Given an initial bidiagonal
matrix B(0), the algorithm produces a sequence B(0) → B(1) → B(2) → · · · → Σ
converging to a diagonal matrix of singular values. Implicitly, the step from B(n) to
B(n+1) involves a QR factorization of (B(n))TB(n)−σ2I , for some appropriately chosen
σ ≥ 0, but in practice the matrix (B(n))TB(n) is never explicitly formed. Instead,
the transformation from B(n) to B(n+1) is accomplished through a sequence of Givens
rotations. The first Givens rotation introduces a “bulge,” and the subsequent rotations
“chase the bulge” away.

Our algorithm applies this idea simultaneously to all four blocks to execute a CSD
step. First, two bulges are introduced by a Givens rotation (Fig. 2(a)), and then the
bulges are chased away, also by Givens rotations (Fig. 2(b)). The end result is a new
matrix in bidiagonal block form whose blocks tend to be closer to diagonal than the
original blocks.

1.5.3 The driver routine

The algorithm as a whole proceeds roughly as follows.

• Execute Algorithm bidiagonalize to transform X to bidiagonal block form. (See
Fig. 1).

• Until convergence,

– Execute Algorithm csd step to apply four simultaneous SVD steps. (See
Fig. 2.)

The algorithm as a whole is represented by Fig. 3.
Matrices in bidiagonal block form may be represented implicitly in terms of θ and

φ from Definition 1.1. In fact, the overall algorithm implicitly represents the sequence
of Fig. 3(b) as

(θ(0), φ(0)) → (θ(1), φ(1)) → (θ(2), φ(2)) → · · · → (θ(N)
, φ

(N)).

The implicitly represented matrices are exactly orthogonal, even in floating-point. The
process stops when φ(N) is sufficiently close to (0, . . . , 0); then the blocks of (1.5) are
diagonal up to machine precision.
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2

6

6

6

6

6

4

+ − +
+ − + +

+ + +
− − +

− − − +
− − +

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

× × ×

⋆ × × × ×

× × ×

× × ×

⋆ × × × ×

× × ×

3

7

7

7

7

7

5

(a) Bulges are introduced.

2

6

6

6

6

6

4

× × ×

⋆ × × × ×

× × ×

× × ×

⋆ × × × ×

× × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

× × ⋆ × ⋆

× × × ×

× × ×

× × ⋆ × ⋆

× × × ×

× × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

× × ×

× × × ×

⋆ × ⋆ × ×

× × ×

× × × ×

⋆ × ⋆ × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

× × ×

× × × × ⋆

× × ×

× × ×

× × × × ⋆

× × ×

3

7

7

7

7

7

5

→

2

6

6

6

6

6

4

+ − +
+ − + +

+ + +
− − +

− − − +
− − +

3

7

7

7

7

7

5

.

(b) Bulges are chased.

Figure 2: CSD step

X =

»

X11 X12

X21 X22

–

→

"

B
(0)
11 B

(0)
12

B
(0)
21 B

(0)
22

#

(a) Reduction to bidiagonal block form

"

B
(0)
11 B

(0)
12

B
(0)
21 B

(0)
22

#

→

"

B
(1)
11 B

(1)
12

B
(1)
21 B

(1)
22

#

→

"

B
(2)
11 B

(2)
12

B
(2)
21 B

(2)
22

#

→ · · · →

"

B
(N)
11 B

(N)
12

B
(N)
21 B

(N)
22

#

=

»

C S

−S C

–

(b) Iteration of the CSD step

Figure 3: Computing the complete CSD
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1.6 Overview of the article

The remainder of the article is organized as follows.

Section Title

2 Phase I: Algorithm bidiagonalize

3 Reviewing and extending the SVD step
4 Phase II: Algorithm csd step

5 Algorithm csd

6 On numerical stability

The final section contains results of numerical tests on a BLAS/LAPACK-based im-
plementation, which is available from the author’s web site.

2 Phase I: Algorithm bidiagonalize

Phase I of the CSD algorithm is to transform the partitioned unitary matrix X to
bidiagonal block form.

Specification 2.1. Given an m-by-m unitary matrix X and integers p, q with 0 ≤ q ≤ p

and p+ q ≤ m, bidiagonalize(X, p, q) should compute θ(0) = (θ
(0)
1 , . . . , θ

(0)
q ) ∈ [0, π

2
]q ,

φ(0) = (φ
(0)
1 , . . . , φ

(0)
q−1) ∈ [0, π

2
]q−1, P1 ∈ U(p), P2 ∈ U(m − p), Q1 ∈ U(q), and

Q2 ∈ U(m− q) such that

X =

»

P1

P2

–

2

6

6

4

B
(0)
11 B

(0)
12 0 0

0 0 Ip−q 0

B
(0)
21 B

(0)
22 0 0

0 0 0 Im−p−q

3

7

7

5

»

Q1

Q2

–∗

, (2.1)

in which B
(0)
ij = Bij(θ

(0), φ(0)), i, j = 1, 2, are bidiagonal matrices defined in (1.5).

The algorithm has already appeared in [7, 18]. It is reproduced here. Matlab-
style indexing is used—A(i, j) refers to the i, j entry of A; A(i : k, j : l) refers to the
submatrix of A in rows i, . . . , k and columns j, . . . , l; A(i : k, :) refers to the submatrix
of A in rows i, . . . , k; and so on. Also, house(x) constructs a Householder reflector F =
ω(I − βvv∗) for which the first entry of Fx is real and nonnegative and the remaining
entries are zero. (This is an abuse of common terminology—F is not Hermitian if ω is
not real.) If given the empty vector (), house returns an identity matrix. Finally, ci,

si, c
′
i, and s

′
i are shorthand for cos θ

(0)
i , sin θ

(0)
i , cos φ

(0)
i , and sinφ

(0)
i , respectively.

Algorithm 2.2 (bidiagonalize).

1 Y := X;

3 for i := 1, . . . , q

5 u1 :=

(

Y (1 : p, 1) if i = 1

c′i−1Y (i : p, i) + s′i−1Y (i : p, q − 1 + i) if i > 1;

6 u2 :=

(

−Y (p+ 1 : m, 1) if i = 1

−c′i−1Y (p+ i : m, i)− s′i−1Y (p+ i : m,q − 1 + i) if i > 1;

7 θ
(0)
i := atan2(‖u2‖, ‖u1‖);

8 P
(i)
1 :=

h

Ii−1

house(u1)
∗

i

; P
(i)
2 :=

h

Ii−1

house(u2)
∗

i

;

9 Y :=

»

P
(i)
1

P
(i)
2

–∗

Y ;
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11 v1 :=

(

−siY (i, i+ 1 : q)− ciY (p+ i, i+ 1 : q) if i < q

() if i = q;

12 v2 := siY (i, q + i : m) + ciY (p+ i, q + i : m);
13 if i < q, then

14 φ
(0)
i := atan2(‖v1‖, ‖v2‖);

15 Q
(i)
1 :=

h

Ii
house(v∗

1 )
∗

i

;

16 else

17 Q
(q)
1 := Iq;

18 end if

19 Q
(i)
2 :=

h

Ii−1

house(v∗

2 )
∗

i

;

20 Y := Y

»

Q
(i)
1

Q
(i)
2

–

;

22 end for

24 P1 := P
(1)
1 · · ·P

(q)
1 ; P2 := P

(1)
2 · · ·P

(q)
2 ; Q1 := Q

(1)
1 · · ·Q

(q−1)
1 ; Q2 := Q

(1)
2 · · ·Q

(q)
2 ;

26 Using an LQ factorization, diagonalize the submatrix of Y lying in rows q + 1, . . . , p
and p+ q + 1, . . . ,m and columns 2q + 1, . . . ,m and update Q2;

Theorem 2.3. Algorithm bidiagonalize satisfies Specification 2.1.

The proof is available in [7, 18].
We illustrate the algorithm by concentrating on the case m = 6, p = 3, q = 3.
In the beginning, the matrix entries can have any signs,

Y := X =

2

6

6

6

6

6

4

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

3

7

7

7

7

7

5

.

To introduce zeros into column 1, two Householder reflectors, based on u1 = Y (1 :
3, 1) and u2 = −Y (4 :6, 1), respectively, are applied.

Y :=

»

house(u1)
house(u2)

–

Y =

2

6

6

6

6

6

4

+ × × × × ×

0 × × × × ×

0 × × × × ×

− × × × × ×

0 × × × × ×

0 × × × × ×

3

7

7

7

7

7

5

.

In fact, because Y is unitary, ‖u1‖
2 + ‖u2‖

2 = 1, and θ
(0)
1 is defined so that

Y =

2

6

6

6

6

6

4

c1 × × × × ×

0 × × × × ×

0 × × × × ×

−s1 × × × × ×

0 × × × × ×

0 × × × × ×

3

7

7

7

7

7

5

.

Next, the algorithm focuses on rows 1 and 4. Now something nonobvious happens.
Y (1, 2 : 3) and Y (4, 2 : 3) are colinear (because Y (:, 1) is orthogonal to Y (:, 2) and
Y (:, 3)), as are Y (1, 4 : 6) and Y (4, 4 : 6). (By colinear, we mean that the absolute
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value of the inner product equals the product of norms.) The row vectors v1 and v2
are defined so that v1 is colinear with Y (1, 2 :3) and Y (4, 2 :3) and v2 is colinear with

Y (1, 4 : 6) and Y (4, 4 : 6). Computing φ
(0)
1 and multiplying by Householder reflectors

gives

Y := Y

2

4

1
house(v∗1 )

house(v∗2 )

3

5 =

2

6

6

6

6

6

4

c1 −s1s
′
1 0 s1c

′
1 0 0

0 × × × × ×

0 × × × × ×

−s1 −c1s
′
1 0 c1c

′
1 0 0

0 × × × × ×

0 × × × × ×

3

7

7

7

7

7

5

.

The algorithm proceeds in a similar fashion. Now, Y (2 : 3, 2) and Y (2 : 3, 4) are

colinear, as are Y (5 :6, 2) and Y (5 :6, 4). By computing θ
(0)
2 and applying Householder

reflectors, we obtain

Y :=

2

6

6

6

6

6

4

c1 −s1s
′
1 0 s1c

′
1 0 0

0 c2c
′
1 × c2s

′
1 × ×

0 0 × 0 × ×

−s1 −c1s
′
1 0 c1c

′
1 0 0

0 −s2c
′
1 × −s2s

′
1 × ×

0 0 × 0 × ×

3

7

7

7

7

7

5

,

then another pair of Householder reflectors gives

Y :=

2

6

6

6

6

6

4

c1 −s1s
′
1 0 s1c

′
1 0 0

0 c2c
′
1 −s2s

′
2 c2s

′
1 s2c

′
2 0

0 0 × 0 × ×

−s1 −c1s
′
1 0 c1c

′
1 0 0

0 −s2c
′
1 −c2s

′
2 −s2s

′
1 c2c

′
2 0

0 0 × 0 × ×

3

7

7

7

7

7

5

,

and so on. Note that the final matrix is represented implicitly by θ
(0)
1 , . . . , θ

(0)
q and

φ
(0)
1 , . . . , φ

(0)
q−1, so that it is exactly orthogonal, even on a floating-point architecture.

The following theorem will be useful later. A diagonal signature matrix is a diagonal
matrix whose diagonal entries are ±1.

Theorem 2.4. If B11 and B21 are upper bidiagonal, B12 and B22 are lower bidiagonal,
and

»

B11 B12

B21 B22

–

is real orthogonal (but not necessarily having the sign pattern required for bidiagonal
block form), then there exist diagonal signature matrices D1, D2, E1, E2 such that

»

D1

D2

– »

B11 B12

B21 B22

– »

E1

E2

–

is a real orthogonal matrix in bidiagonal block form.

Proof. Run bidiagonalize. P1, P2, Q1, and Q2 are products of Householder reflectors
that are in fact diagonal signature matrices because the input matrix already has the
correct zero/nonzero pattern. Let D1 = P1, D2 = P2, E1 = Q1, and E2 = Q2.

3 Reviewing and extending the SVD step

In [8, 9], Golub, Kahan, and Reinsch developed a bulge-chasing method for computing
the SVD of a bidiagonal matrix. This method, as modified by Demmel and Kahan [6],
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is implemented as one of the most heavily used SVD routines in LAPACK. Phase II of
our CSD algorithm is based on this SVD method.

Given a real upper bidiagonal matrix B and a shift σ ≥ 0, the SVD step of Golub
and Kahan applies a unitary equivalence B̄ = STBT derived from QR iteration on
BTB − σ2I . The step is designed so that iteration will drive a superdiagonal entry of
B̄ to zero (especially quickly if the shifts lie near singular values of B).

This section reviews the SVD step of Golub and Kahan. There are two notable
aspects not present in most descriptions.

• First, a certain left-right symmetry is emphasized—not only is the SVD step
equivalent to a QR step on BTB − σ2I ; it is also equivalent to a QR step on
BBT − σ2I .

• Second, the SVD step is extended to handle any number of zeros on the bidiagonal
band of B. (The original SVD step of Golub and Kahan requires special handling
as soon as a zero appears. The modification by Demmel and Kahan relaxes this,
but only for zeros on the main diagonal and only when the shift is σ = 0.) The
modification is necessary in Section 4.

3.1 QR step

The SVD iteration of Golub and Kahan is derived from QR iteration for symmetric
tridiagonal matrices.

Given a real symmetric tridiagonal matrix A and a shift λ ∈ R, a single QR step is
accomplished by computing a QR factorization

A− λI = QR, (3.1)

then reversing the factors and putting λI back,

Ā := RQ+ λI. (3.2)

Note that the resulting Ā is symmetric tridiagonal, because RQ = QT (A − λI)Q is
upper Hessenberg and symmetric.

Note that if A is unreduced, i.e., its subdiagonal entries are all nonzero, then Q

and R are unique up to signs. (Specifically, every QR factorization is of the form
A − λI = (QD)(DR) for some diagonal signature matrix D.) However, if A has zero
entries on its subdiagonal, then making the QR factorization unique requires extra
care. The following definition introduces a “preferred” QR factorization. There are
two important points: (1) the existence of the forthcoming CSD step relies on the
uniqueness of the preferred QR factorization, and (2) the handling of noninvertible A
supports the CSD deflation procedure. Below, the notation A ⊕B refers to the block
diagonal matrix [A B ].

Definition 3.1. Let A be an m-by-m real symmetric tridiagonal matrix. Express A
as

A =

2

6

6

6

4

A1

A2

. . .

Ar

3

7

7

7

5

,

in which each Ai is either an unreduced tridiagonal matrix or 1-by-1. A preferred QR
factorization for A is a QR factorization with a special form. There are two cases.
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Case 1: A is invertible. Then a preferred QR factorization has the form

A =

2

6

6

6

4

Q1

Q2

. . .

Qr

3

7

7

7

5

2

6

6

6

4

R1

R2

. . .

Rr

3

7

7

7

5

and satisfies the following conditions:

1. every Qi has the same number of rows and columns as Ai, is real orthogonal
and upper Hessenberg, and has positive subdiagonal and determinant one
(unless it is 1-by-1, in which case it equals the scalar 1), and

2. every Ri has the same number of rows and columns as Ai and is upper
triangular.

Case 2: A is not invertible. Define Q1, . . . , Qr and R1, . . . , Rr as in the first case,
let k be the least index identifying a noninvertible Ak, and let l be the index of
this block’s last row and column in the overall matrix A. (Note that the first zero
diagonal entry of R1 ⊕ · · · ⊕Rr must be in position (l, l).) Also, let

P =

2

4

Il−1 0 0
0 0 ±1
0 Im−l 0

3

5 ,

with the sign chosen so that det(P ) = 1. A preferred QR factorization for A is A =
QR with Q = (Q1⊕· · ·⊕Qk⊕Im−l)P and R = P T (R1⊕· · ·⊕Rk⊕Ak+1⊕· · ·⊕Ar).

Theorem 3.2. The terminology is valid: every “preferred QR factorization” really is
a QR factorization.

Theorem 3.3. If A is a real symmetric tridiagonal matrix, then a preferred QR fac-
torization A = QR exists and is unique.

The proofs are straightforward.

Theorem 3.4. Apply the QR step (3.1)–(3.2) to a real symmetric tridiagonal matrix A
using the preferred QR factorization. If the shift λ is an eigenvalue of A, then deflation
occurs immediately: the resulting Ā has the form

Ā =

"

∗
λ

#

.

Proof. A − λI is not invertible, so its preferred QR factorization satisfies Case 2 of
Definition 3.1. The rest of the proof uses the notation of that definition. The last row
of Rk contains all zeros, so row l of R1⊕· · ·⊕Rk⊕(Ak+1−λI)⊕· · ·⊕(Ar−λI) contains
all zeros. The permutation matrix P is designed to slide this row of all zeros to the
bottom of R, and hence the last row of RQ also contains all zeros. By symmetry, the
last column of RQ also contains only zeros, and so RQ is block diagonal with a 1-by-1
block equaling zero in the bottom-right corner. Adding λI to produce Ā = RQ + λI

makes the bottom-right entry equal λ.

The orthogonal factor Q in a preferred QR factorization can be expressed as a
product of Givens rotations in a particularly simple way. A 2-by-2 Givens rotation
with an angle of θ is a matrix [ c −s

s c ] in which c = cos θ and s = sin θ. More generally,
anm-by-mGivens rotation is anm-by-m real orthogonal matrix with a 2-by-2 principal
submatrix that is a Givens rotation and whose principal submatrix lying in the other
rows and columns is the (m− 2)-by-(m− 2) identity matrix.
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Theorem 3.5. The orthogonal factor Q in a preferred QR factorization of an m-by-
m real symmetric tridiagonal matrix can be expressed uniquely as a product of Givens
rotations G1 · · ·Gm−1 in which Gj rotates columns j and j + 1 through an angle in
[0, π).

Proof. Existence is proved by Algorithm 3.7 below. Uniqueness is guaranteed by the
upper Hessenberg structure: inductively, the (j + 1, j) entry of Q determines Gj .

Algorithm 3.6 (givens). This algorithm computes a Givens rotation, with a corner
case defined in a particularly important way.

1. Given a nonzero 2-by-1 vector x, givens(m, i1, i2, x) constructs anm-by-mGivens
rotation whose submatrix lying in rows and columns i1 and i2 is a 2-by-2 Givens
rotation G = [ c −s

s c ] with angle in [0, π) such that GTx = (±‖x‖, 0)T .

2. givens(m, i1, i2, (0, 0)
T ) is defined to equal givens(m, i1, i2, (0, 1)

T )—it rotates
through an angle of π

2
.

The choice to rotate through π
2
when x = (0, 0)T allows the following algorithm to

handle Cases 1 and 2 of the preferred QR factorization in a uniform way.

Algorithm 3.7 (qr step). Given an m-by-m real symmetric tridiagonal matrix A

and a shift λ ∈ R, the following algorithm performs one QR step. See Theorem 3.8. It
is an extension of the idea on pp. 418–420 of [10].

1 Ā := A− λI ;
2 for i = 1, . . . ,m− 1

3 v =

(

Ā(i : i+ 1, i) if i = 1 or Ā(i : i+ 1, i− 1) is the zero vector

Ā(i : i+ 1, i− 1) otherwise;

4 Gi := givens(m, i, i+ 1, v);

5 Ā := GT
i ĀGi;

6 end for
7 Ā := Ā+ λI ;

Theorem 3.8. Run Algorithm 3.7 to compute G1, . . . , Gm−1 and Ā, and define Q =
G1 · · ·Gm−1 and R = QT (A−λI). Then A−λI = QR is a preferred QR factorization
and (3.1) and (3.2) are satisfied.

Proof. The proof is broken into two cases.

Case 1: λ is not an eigenvalue of A. The proof is by induction on r, the number
of unreduced blocks of A.

The base case is r = 1. In this case, the algorithm executes the usual bulge-
chasing QR step. See [10].

For the inductive step, suppose r > 1 and assume that the theorem has been
proved for smaller values of r. Let s be the number of rows and columns in the
final block Ar. The first m − s − 1 executions of the loop neither observe nor
modify the final s rows or columns of Ā and by induction compute Q1, . . . , Qr−1

and R1, . . . , Rr−1 of the preferred QR factorization. At the beginning of the loop
with i = m − s, the (m − s,m − s − 1)-entry of Ā is nonzero because A − λI is
invertible, and the (m − s + 1,m − s − 1)-entry of Ā is zero, so Gm−r is set to
an identity matrix. When the loop continues with i = m − s + 1, the algorithm
proceeds as in [10].
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Case 2: λ is an eigenvalue of A. Let l be the index of the first column of A that is
a linear combination of the earlier columns. The algorithm proceeds as in Case
1 until the loop with i = l. At that point, the leading (l − 1)-by-(l− 1) principal
submatrix of the new tridiagonal matrix is fixed (ignoring the addition of λI at
the very end), and considering the proof of Theorem 3.4, the lth row of Ā is all
zeros. Therefore, Gl is a rotation by π

2
, which has the effect of swapping rows

l and l + 1 of Ā. Now, the (l + 1)st row of Ā is all zeros, so by induction, all
remaining Givens rotations have angle π

2
and the row of zeros is pushed to the

bottom of Ā. This constructs Q and R as in Case 2 of Definition 3.1.

3.2 SVD step

The SVD algorithm of Golub and Kahan starts with the idea of applying the QR step
to BTB−σ2I . Because the formation of BTB is problematic in floating-point, the QR
step must be executed implicitly, working directly with the entries of B. The following
definition of the SVD step is unconventional but equivalent to the usual definition.

Definition 3.9. Let B be a real bidiagonal matrix (either upper bidiagonal or lower
bidiagonal) and σ a nonnegative real number. Matrices B̄, S, and T are obtained from
an SVD step if

BB
T − σ

2
I = SL

T and B
T
B − σ

2
I = TR

are preferred QR factorizations and

B̄ = S
T
BT.

Note that
B̄B̄

T = L
T
S + σ

2
I and B̄

T
B̄ = RT + σ

2
I,

i.e., an SVD step on B implicitly computes QR steps for BBT and BTB.

Theorem 3.10. The SVD step exists and is uniquely defined.

Proof. This follows immediately from the existence and uniqueness of the preferred
QR factorization.

Theorem 3.11. If B is upper bidiagonal, then B̄ is upper bidiagonal. If B is lower
bidiagonal, then B̄ is lower bidiagonal.

The proof is presented after Lemma 3.17 below.
Before going any further with the SVD step, we need a utility routine.

Algorithm 3.12 (bulge start). Given a 2-by-1 vector x and a shift σ ≥ 0, bulge start

computes a vector colinear with (x2
1−σ

2, x1x2)
T . If (x2

1−σ
2, x1x2)

T is the zero vector,
then bulge start returns the zero vector.

The implementation of bulge start is omitted. LAPACK’s DBDSQR provides
guidance [1].

The following algorithm computes an SVD step for an upper bidiagonal matrix. It
can also handle lower bidiagonal matrices by taking transposes as appropriate.

Algorithm 3.13 (svd step). Given an m-by-m upper bidiagonal matrix B and a
shift σ ≥ 0, the following algorithm computes one SVD step. See Theorem 3.14.
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1 B̄ := B;

3 for i := 1, . . . ,m− 1

5 v :=

(

bulge start(B̄(i, i : i+ 1)T , σ) if i = 1 or B̄(i− 1, i : i+ 1) = (0, 0)

B̄(i− 1, i : i+ 1)T otherwise;

6 Ti := givens(m, i, i+ 1, v);
7 B̄ := B̄Ti;

9 u :=

(

bulge start(B̄(i : i+ 1, i+ 1), σ) if B̄(i : i+ 1, i) = (0, 0)T

B̄(i : i+ 1, i) otherwise;

10 Si := givens(m, i, i+ 1, u);

11 B̄ := ST
i B̄;

13 end for

15 S := S1 · · ·Sm−1; T := T1 · · ·Tm−1;

Theorem 3.14. Given a real upper bidiagonal matrix B and a shift σ ≥ 0,

1. Algorithm 3.13 computes an SVD step.

2. B̄ is real upper bidiagonal.

The proof follows immediately from Theorem 3.8 and the following three lemmas.

Lemma 3.15. Upon completion of line 7, B̄ is upper bidiagonal, with the possible
exception of a “bulge” at (i+ 1, i). Upon completion of line 11, B̄ is upper bidiagonal,
with the possible exception of a “bulge” at (i, i+ 2) if i < m − 1. Upon completion of
the entire algorithm, B̄ is upper bidiagonal.

The proof is omitted; the bulge-chasing nature of the algorithm is standard.

Lemma 3.16. Let B be an m-by-m real upper bidiagonal matrix and σ a nonnegative
real number. Run Algorithm 3.13 to produce T1, . . . , Tm−1, and run Algorithm 3.7 with
A = BTB and λ = σ2 to produce G1, . . . , Gm−1. Then Ti = Gi for i = 1, . . . , m− 1.

The proof can be found in Appendix A.

Lemma 3.17. Let B be an m-by-m real upper bidiagonal matrix and σ a nonnegative
real number. Run Algorithm 3.13 to produce S1, . . . , Sm−1, and run Algorithm 3.7 with
A = BBT and λ = σ2 to produce G1, . . . , Gm−1. Then Si = Gi for i = 1, . . . ,m− 1.

The proof can be found in Appendix A.

Proof of Theorem 3.11 If B is upper bidiagonal, then B̄ can be obtained from Algorithm
3.13, which produces upper bidiagonal matrices. If B is lower bidiagonal, then apply
the same argument to BT .

4 Phase II: Algorithm csd step

Now we can return to the CSD algorithm. Phase I, which was already seen, transforms
the original partitioned unitary matrix to bidiagonal block form. Phase II, which is
developed now, iteratively applies the SVD step to each of the four blocks of this
matrix. Algorithm csd step executes a single step in the iteration.
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4.1 Existence of the CSD step

Definition 4.1. Let

»

B11 B12

B21 B22

–

be a real orthogonal matrix in bidiagonal block

form and µ and ν nonnegative shifts satisfying µ2 + ν2 = 1. The matrix equation

»

B̄11 B̄12

B̄21 B̄22

–

=

»

D1

D2

– »

S1

S2

–T »

B11 B12

B21 B22

– »

T1

T2

– »

E1

E2

–

effects a CSD step if

1. B11 7→ ST
1 B11T1 and B22 7→ ST

2 B22T2 are SVD steps with shift µ,

2. B12 7→ ST
1 B12T2 and B21 7→ ST

2 B21T1 are SVD steps with shift ν,

3. D1, D2, E1, and E2 are diagonal signature matrices, and

4.

»

B̄11 B̄12

B̄21 B̄22

–

is a matrix in bidiagonal block form.

The existence of the CSD step is not obvious at first glance. It depends on several
SVD steps being related in very specific ways, e.g., B11 and B21 having the same right
orthogonal factor T1. The following theorem establishes that yes, indeed, the CSD step
exists, and its proof makes clear the necessity of the restriction µ2 + ν2 = 1.

Theorem 4.2. The CSD step exists and the result

»

B̄11 B̄12

B̄21 B̄22

–

is uniquely defined.

Proof. Begin with the identities

B
T
11B11 − µ

2
I = −(BT

21B21 − ν
2
I), (4.1)

B
T
22B22 − µ

2
I = −(BT

12B12 − ν
2
I), (4.2)

B11B
T
11 − µ

2
I = −(B12B

T
12 − ν

2
I), (4.3)

B22B
T
22 − µ

2
I = −(B21B

T
21 − ν

2
I). (4.4)

Each is proved using orthogonality and the relation µ2 + ν2 = 1. For example, the
orthogonality of

ˆ

B11 B12
B21 B22

˜

implies BT
11B11 +BT

21B21 = I , and splitting the right-hand-

side I into µ2I + ν2I and rearranging gives (4.1).
Define B̄ij = SijBijTij by an SVD step with the appropriate shift (µ if i = j or ν

if i 6= j). This produces a total of eight orthogonal factors Sij , Tij , but only four are
required for the CSD step. In fact, by uniqueness of the preferred QR factorization,
T11 = T21, T12 = T22, S11 = S12, and S21 = S22. (For example, T11 is the orthogonal
factor in the preferred QR factorization BT

11B11 − µ2I = T11R11, and T21 is the or-
thogonal factor in the preferred QR factorization BT

21B21−ν
2I = T21R21. Considering

(4.1) and the uniqueness of the preferred QR factorization, we must have T21 = T11

and R21 = −R11.) Hence, it is legal to define T1 = T11 = T21, T2 = T12 = T22,
S1 = S11 = S12, and S2 = S21 = S22.

Finally, D1, D2, E1, and E2 are designed to fix the sign pattern required for a
matrix in bidiagonal block form. Their existence is guaranteed by Theorem 2.4.

Regarding uniqueness, S1, S2, T1, and T2 are uniquely defined by the preferred
QR factorization, so ST

i BijTj , i, j = 1, 2, are uniquely defined. This uniquely defines
the absolute values of the entries of B̄ij , i, j = 1, 2, and the signs are specified by the
definition of bidiagonal block form.
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The obvious way to compute a CSD step is to compute four SVD steps and then
to combine them together as in the proof. Of course, when working in floating-point,
the identities such as T11 = T21 typically will not hold exactly. In fact, when singular
values are clustered, the computed T11 and T21 may not even bear a close resemblance.

Our approach is to interleave the computation of the four SVD steps, taking care
to compute S1, S2, T1, and T2 once and only once. We find that when one block of a
matrix provides unreliable information (specifically, a very short vector whose direction
is required for a Givens rotation), another block may come to the rescue, providing
more reliable information. Hence, the redundancy in the partitioned orthogonal matrix,
rather than being a stumbling block, is actually an aid to stability.

4.2 Algorithm specification

The following is a specification for Algorithm csd step, which accomplishes one step
in Phase II of the CSD algorithm.

Specification 4.3. The input to csd step should consist of

1. θ(n) ∈ [0, π
2
]q and φ(n) ∈ [0, π

2
]q−1, implicitly defining a matrix in bidiagonal block

form

»

B
(n)
11 B

(n)
12

B
(n)
21 B

(n)
22

–

,

2. integers 1 ≤ i < i ≤ q identifying the current block in a partially deflated matrix—
»

B
(n)
11 B

(n)
12

B
(n)
21 B

(n)
22

–

must have the form

2

6

6

6

6

6

6

4

∗ 0 ∗
B

(n)
11 (i : i, i : i) 0 0 B

(n)
12 (i : i, i : i)

∗ 0 ∗
∗ 0 ∗

B
(n)
21 (i : i, i : i) 0 0 B

(n)
22 (i : i, i : i)

∗ 0 ∗

3

7

7

7

7

7

7

5

, (4.5)

3. shifts 0 ≤ µ, ν ≤ 1 satisfying µ2 + ν2 = 1.

The algorithm should compute one CSD step with shifts µ and ν to effect

"

B
(n)
11 (i : i, i : i) B

(n)
12 (i : i, i : i)

B
(n)
21 (i : i, i : i) B

(n)
22 (i : i, i : i)

#

7→

»

B̄11 B̄12

B̄21 B̄22

–

. (4.6)

The output should consist of θ(n+1) ∈ [0, π
2
]q and φ(n+1) ∈ [0, π

2
]q−1, implicitly defin-

ing the matrix

»

B
(n+1)
11 B

(n+1)
12

B
(n+1)
21 B

(n+1)
22

–

that results from replacing the appropriate submatri-

ces from (4.5) with the corresponding submatrices of (4.6), and orthogonal matrices

U
(n+1)
1 , U

(n+1)
2 , V

(n+1)
1 , V

(n+1)
2 such that

"

B
(n+1)
11 B

(n+1)
12

B
(n+1)
21 B

(n+1)
22

#

=

"

U
(n+1)
1

U
(n+1)
2

#∗ "

B
(n)
11 B

(n)
12

B
(n)
21 B

(n)
22

# "

V
(n+1)
1

V
(n+1)
2

#

.

(4.7)
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4.3 The algorithm

The naive idea for implementing the above specification is to compute four SVD steps
separately. As mentioned in the proof of Theorem 4.2, this produces eight orthogonal
factors when only four are needed. In fact, in light of (4.1)–(4.4) and Theorem 3.5,
the Givens rotations defining S1, S2, T1, and T2 come in identical pairs. Of course,
in floating-point, the paired Givens rotations would not actually be identical. Hence,
the naive algorithm suffers from the standpoints of efficiency (each Givens rotation is
needlessly computed twice) and stability (what happens when two computed Givens
rotations disagree?).

Our solution, suggested by Fig. 2, is to execute the four SVD steps simultaneously,
computing each Givens rotation once and only once through a bulge-chasing procedure
that treats all four blocks with equal regard.

The algorithm makes use of a routine called merge. In the absence of roundoff
error, merge is essentially a no-op; given two vectors in any one-dimensional subspace,
it returns a vector in the same subspace. (And merge((0, 0)T , (0, 0)T ) = (0, 0)T .) In
the presence of roundoff error, merge is used to ameliorate small differences resulting
from previous roundoff errors.

Algorithm 4.4 (csd step). This algorithm performs one CSD step on a matrix in
bidiagonal block form and satisfies Specification 4.3. Its correctness is established in
Theorem 4.5.

1 Explicitly construct
ˆ

B11 B12
B21 B22

˜

from (θ(n), φ(n));

3 Initialize
h

B̄11 B̄12

B̄21 B̄22

i

:=
ˆ

B11 B12
B21 B22

˜

;

5 v11 := bulge start(B̄11(i, i : i+ 1)T , µ);

6 v21 := bulge start(B̄21(i, i : i+ 1)T , ν);
7 v1 := merge(v11, v21);
8 T1,i := givens (q, i, i+ 1, v1);

9

h

B̄11 B̄12

B̄21 B̄22

i

:=
h

B̄11 B̄12

B̄21 B̄22

i h

T1,i

I

i

;

10 u11 :=

(

B̄11(i : i+ 1, i) if nonzero

bulge start(B̄11(i : i+ 1, i+ 1), µ) otherwise;

11 u12 := bulge start(B̄12(i : i+ 1, i), ν);

12 u21 :=

(

B̄21(i : i+ 1, i) if nonzero

bulge start(B̄21(i : i+ 1, i+ 1), ν) otherwise;

13 u22 := bulge start(B̄22(i : i+ 1, i), µ);
14 u1 := merge(u11, u12); u2 := merge(u21, u22);
15 S1,i := givens(q, i, i+ 1, u1); S2,i := givens(q, i, i+ 1, u2);

16

h

B̄11 B̄12

B̄21 B̄22

i

:=
h

S1,i

S2,i

iT h

B̄11 B̄12

B̄21 B̄22

i

;

18 for i := i+ 1, . . . , i− 1

20 v11 :=

(

B̄11(i− 1, i : i+ 1) if nonzero

bulge start(B̄11(i, i : i+ 1), µ) otherwise;

21 v21 :=

(

B̄21(i− 1, i : i+ 1) if nonzero

bulge start(B̄21(i, i : i+ 1), ν) otherwise;
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22 v12 :=

(

B̄12(i− 1, i− 1 : i) if nonzero

bulge start(B̄12(i, i− 1 : i), ν) otherwise;

23 v22 :=

(

B̄22(i− 1, i− 1 : i) if nonzero

bulge start(B̄22(i, i− 1 : i), µ) otherwise;

24 v1 := merge(v11, v21); v2 := merge(v12, v22);
25 T1,i := givens(q, i, i+ 1, v1); T2,i−1 := givens(q, i− 1, i, v2);

26

h

B̄11 B̄12

B̄21 B̄22

i

:=
h

B̄11 B̄12

B̄21 B̄22

i h

T1,i

T2,i−1

i

;

28 u11 :=

(

B̄11(i : i+ 1, i) if nonzero

bulge start(B̄11(i : i+ 1, i+ 1), µ) otherwise;

29 u12 :=

(

B̄12(i : i+ 1, i− 1) if nonzero

bulge start(B̄12(i : i+ 1, i), ν) otherwise;

30 u21 :=

(

B̄21(i : i+ 1, i) if nonzero

bulge start(B̄21(i : i+ 1, i+ 1), ν) otherwise;

31 u22 :=

(

B̄22(i : i+ 1, i− 1) if nonzero

bulge start(B̄22(i : i+ 1, i), µ) otherwise;

32 u1 := merge(u11, u12); u2 := merge(u21, u22);
33 S1,i := givens(q, i, i+ 1, u1); S2,i := givens(q, i, i+ 1, u2);

34

h

B̄11 B̄12

B̄21 B̄22

i

:=
h

S1,i

S2,i

iT h

B̄11 B̄12

B̄21 B̄22

i

;

36 end for

38 v12 :=

(

B̄12(i− 1, i− 1 : i) if nonzero

bulge start(B̄12(i, i− 1 : i), ν) otherwise;

39 v22 :=

(

B̄22(i− 1, i− 1 : i) if nonzero

bulge start(B̄22(i, i− 1 : i), µ) otherwise;

40 v2 := merge(v12, v22);

41 T2,i−1 := givens(q, i− 1, i, v2);

42

h

B̄11 B̄12

B̄21 B̄22

i

:=
h

B̄11 B̄12

B̄21 B̄22

i h

I
T
2,i−1

i

;

44 U
(n+1)
1 := S1,i · · ·S1,i−1; U

(n+1)
2 := S2,i · · ·S2,i−1;

45 V
(n+1)
1 := T1,i · · ·T1,i−1; V

(n+1)
2 := T2,i · · ·T2,i−1;

47 Fix signs in
h

B̄11 B̄12

B̄21 B̄22

i

to match (1.5), negating columns of U
(n+1)
1 , U

(n+1)
2 , V

(n+1)
1 ,

and V
(n+1)
2 as necessary;

49 Compute (θ(n+1), φ(n+1)) to implicitly represent
h

B̄11 B̄12

B̄21 B̄22

i

;

Note that it is possible and preferable to enforce signs and compute θ(n+1) and
φ(n+1) as Givens rotations are applied, instead of waiting until the end of the algorithm.

Theorem 4.5. If arithmetic operations are performed exactly, then Algorithm csd step

satisfies Specification 4.3.

Proof. The proof is organized into three parts. First, it is shown that the algorithm
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computes SVD steps for the top-left and bottom-right blocks. Then, it is shown that
the algorithm computes SVD steps for the top-right and bottom-left blocks. Finally,
utilizing the proof of Theorem 4.2, it is shown that the algorithm as stated simulta-
neously computes SVD steps of all four blocks and hence a CSD step for the entire
matrix.

For the first part, temporarily delete lines 6, 11, 12, 21, 22, 29, 30, 38, 47, and 49
and make the following replacements:

line original replacement

7 v1 := merge(v11, v21); v1 := v11;
14 u1 := merge(u11, u12); u2 := merge(u21, u22); u1 := u11; u2 := u22;
24 v1 := merge(v11, v21); v2 := merge(v12, v22); v1 := v11; v2 := v22;
32 u1 := merge(u11, u12); u2 := merge(u21, u22); u1 := u11; u2 := u22;
40 v2 := merge(v12, v22); v2 := v22;

All references to the top-right and bottom-left blocks have been removed, and the
resulting algorithm is equivalent to running Algorithm svd step on the top-left and
bottom-right blocks. Hence, U

(n+1)
1 and V

(n+1)
1 are the outer factors from an SVD

step on the top-left block, and U
(n+1)
2 and V

(n+1)
2 are the outer factors from an SVD

step on the bottom-right block.
For the second part, revert back to the original algorithm but make the following

changes, intended to focus attention on the top-right and bottom-left blocks: Delete
lines 5, 10, 13, 20, 23, 28, 31, 39, 47, and 49 and make the following replacements:

line original replacement

7 v1 := merge(v11, v21); v1 := v21;
14 u1 := merge(u11, u12); u2 := merge(u21, u22); u1 := u12; u2 := u21;
24 v1 := merge(v11, v21); v2 := merge(v12, v22); v1 := v21; v2 := v12;
32 u1 := merge(u11, u12); u2 := merge(u21, u22); u1 := u12; u2 := u21;
40 v2 := merge(v12, v22); v2 := v12;

This time, the algorithm is equivalent to running Algorithm svd step on the top-right
and bottom-left blocks, and so U

(n+1)
1 and V

(n+1)
2 are the outer factors from an SVD

step on the top-right block and U
(n+1)
2 and V

(n+1)
1 are the outer factors from an SVD

step on the bottom-left block.
By the existence of the CSD step, the two versions of the algorithm discussed above

produce identical U
(n+1)
1 , U

(n+1)
2 , V

(n+1)
1 , and V

(n+1)
2 . Hence, by Theorem 3.5, the two

versions produce identical Givens rotations. Therefore, in each invocation of merge in
the final algorithm, one of the following holds: both vectors are nonzero and colinear,
or one vector is the zero vector and the other vector points along the second coordinate
axis, or both vectors equal the zero vector. In any case, the call to merge is well
defined. Therefore, the final algorithm simultaneously computes SVD steps for all four
blocks.

The final two lines of code could be implemented (inefficiently) with a single call to
bidiagonalize. It is straightforward to check that this would only change the signs of
entries and would compute θ(n+1) and φ(n+1).

5 Algorithm csd

Algorithm csd is the driver algorithm, responsible for initiating Phase I and Phase II.
Given an m-by-m unitary matrix X and integers p, q with 0 ≤ q ≤ p and p+q ≤ m,

csd(X, p, q) should compute θ = (θ1, . . . , θq) ∈ [0, π
2
]q , U1 ∈ U(p), U2 ∈ U(m − p),
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V1 ∈ U(q), and V2 ∈ U(m− q) satisfying

X ≈

»

U1

U2

–

2

6

6

4

C S 0 0
0 0 Ip−q 0

−S C 0 0
0 0 0 Im−p−q

3

7

7

5

»

V1

V2

–∗

,

with C = diag(cos(θ1), . . . , cos(θq)) and S = diag(sin(θ1), . . . , sin(θq)). It would be
preferable to replace the approximate equality with an error bound, but a formal
stability analysis is left to the future.

csd’s responsibility is to invoke bidiagonalize once and then csd step repeatedly.
The following code fleshes out this outline.

Algorithm 5.1 (csd). Given X, p, and q, the following algorithm computes the
complete CS decomposition in terms of θ, U1, U2, V1, and V2.

1 Find θ(0), φ(0), P1, P2, Q1, and Q2 with bidiagonalize;

2 If any θ
(0)
i or φ

(0)
i is negligibly different from 0 or π

2
, then round;

4 n := 0;

6 Set i and i as in (5.1);

8 while i > 1

10 if some θ
(n)
i , i ≤ i ≤ i, is negligibly far from π

2
, then

11 µ := 0; ν := 1;

12 elseif some θ
(n)
i , i ≤ i ≤ i, is negligibly far from 0, then

13 µ := 1; ν := 0;
14 else
15 Select shifts µ and ν satisfying µ2 + ν2 = 1; (* see discussion *)
16 end if

18 Compute θ(n+1), φ(n+1), U
(n+1)
1 , U

(n+1)
2 , V

(n+1)
1 , V

(n+1)
2 with csd step;

20 n := n+ 1;

21 If any θ
(n)
i or φ

(n)
i is negligibly different from 0 or π

2
, then round;

22 Set i and i as in (5.1);

24 end while

26 U1 := P1((U
(1)
1 U

(2)
1 · · ·U

(n)
1 )⊕ Ip−q); U2 := P2((U

(1)
2 U

(2)
2 · · ·U

(n)
2 )⊕ Im−p−q);

27 V1 := Q1(V
(1)
1 V

(2)
1 · · ·V

(n)
1 ); V2 := Q2((V

(1)
2 V

(2)
2 · · ·V

(n)
2 )⊕ Im−2q);

As promised, the algorithm calls bidiagonalize once and csd step repeatedly. The
subtleties are the deflation procedure and the choice of shifts.

Deflation If the matrix obtained after n CSD steps,

"

B
(n)
11 B

(n)
12

B
(n)
21 B

(n)
22

#

=

»

B11(θ
(n), φ(n)) B12(θ

(n), φ(n))

B21(θ
(n), φ(n)) B22(θ

(n), φ(n))

–

,
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has the form (4.5), then the next CSD step can focus on just a principal submatrix.
The indices i and i are determined by φ(n) as follows.

8

>

>

<

>

>

:

φ
(n)

i
= · · · = φ

(n)
q−1 = 0

none of φ
(n)
i , . . . , φ

(n)

i−1
equal 0

i is as small as possible

(5.1)

Hence, deflation occurs when some φ
(n)
i transitions from nonzero to zero.

Note that some θ
(n)
i may equal 0 or π

2
or some φ

(n)
i may equal π

2
, producing zero

entries in the matrix without satisfying (5.1). Fortunately, in this case one of the blocks
has a zero on its diagonal, the appropriate shift is set to zero, and deflation occurs in
the one block just as in the bidiagonal SVD algorithm of Demmel and Kahan [6]. (This
is the reason for Case 2 of the preferred QR factorization.) It is easy to check that

then one of the φ
(n+1)
i becomes zero. Hence, as soon as a zero appears anywhere in

any of the four bidiagonal bands, the entire matrix in bidiagonal block form deflates
in at most one more step (assuming exact arithmetic).

Choice of shift There are two natural possibilities for choosing shifts in line 15.

• One possibility is to let µ or ν be a Wilkinson shift (the smaller singular value
of the trailing 2-by-2 submatrix of one of the blocks) from which the other shift
follows by µ2 + ν2 = 1. This seems to give preference to one block over the other
three, but as mentioned above, as soon as one block attains a zero, the other
three blocks follow immediately.

• Another possibility is to let µ and ν be singular values of appropriate blocks, i.e.,
“perfect shifts.” This keeps the number of CSD steps as small as possible [10,
p. 417] at the cost of extra singular value computations.

Based on what is known about the SVD problem and limited testing with the CSD algo-
rithm, Wilkinson shifts appear to be the better choice, but more real world experience
is desirable.

6 On numerical stability

So far, the input matrix X has been assumed exactly unitary, and exact arithmetic has
been assumed as well. What happens in a more realistic environment? The algorithm
is designed for numerical stability. All four blocks are considered simultaneously and
with equal regard. Nearly every computation is based on information from two different
sources, from which the algorithm can choose the more reliable source.

Below, some numerical issues and strategies are addressed. Then results from nu-
merical experiments are presented. A BLAS/LAPACK-based implementation is avail-
able from the author’s web site for further testing.

6.1 Numerical issues and strategies

The better of two vectors in bidiagonalize. As mentioned in the discussion
after Algorithm 2.2, most of the Householder reflectors used in the bidiagonalization
procedure are determined by pairs of colinear vectors. If the input matrix X is not
exactly unitary, then some of the pairs of vectors will not be exactly colinear. Each of
the computations for u1, u2, v1, and v2 in Algorithm 2.2 performs an averaging of two
different vectors in which the vector of greater norm is weighted more heavily. (Vectors
of greater norm tend to provide more reliable information about direction.)
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Implementation of bulge start. The implementation of bulge start (Algo-
rithm 3.12) requires care to minimize roundoff error. LAPACK’s DBDSQR provides
guidance [1].

Implementation of merge. In csd step, most Givens rotations can be con-
structed from either (or both) of two colinear vectors. The function merge in the
pseudocode is shorthand for a somewhat more complicated procedure in our imple-
mentation:

• If the Givens rotation is chasing an existing bulge in one block and introducing
a new bulge in the other block, then base the Givens rotation entirely on the
existing bulge. (Maintaining bidiagonal block form is crucial.)

• If the Givens rotation is chasing existing bulges in both blocks, then take a
weighted average of the two vectors in the call to merge, waiting the longer
vector more heavily. (Vectors of greater norm provide more reliable information
about direction.)

• If the Givens rotation is introducing new bulges into both blocks, then base the
computation solely on the block associated with the smaller shift, either µ or
ν. (In particular, when one shift is zero, this strategy avoids roundoff error in
bulge start.)

Representation of θ(n) and φ(n). Angles of 0 and π
2
play a special role in the

deflation procedure. Because common floating-point architectures represent angles near
0 more precisely than angles near π

2
, it may be advisable to store any angle ψ as a pair

(ψ, π
2
− ψ). This may provide a minor improvement but appears to be optional.

Rounding of θ(n) and φ(n) in csd. To encourage fast termination, some angles
in θ(n) and φ(n) may need to be rounded when they are negligibly far from 0 or π

2
. The

best test for negligibility will be the subject of future work.

Disagreement of singular values when using perfect shifts. If in csd,
the shifts µ and ν are chosen to be perfect shifts, i.e., singular values of appropriate
blocks, then the computed shifts may not satisfy µ2 + ν2 = 1 exactly in the presence
of roundoff error. Empirically, satisfying µ2 + ν2 = 1 appears to be crucial. Either
µ or ν should be set to a singular value no greater than 1√

2
and then the other shift

computed from µ2 + ν2 = 1.

6.2 Results of numerical experiments

The sharing of singular vectors in (1.4) is often seen as a hindrance to numerical com-
putation. But in our algorithm, the redundancy appears to be a source of robustness—
when one block provides questionable information, a neighboring block may provide
more reliable information. Numerical tests support this claim.

Our criteria for a stable CSD computation,

X ≈

»

U1

U2

–

2

6

6

4

C S 0 0
0 0 Ip−q 0

−S C 0 0
0 0 0 Im−p−q

3

7

7

5

»

V1

V2

–∗

,

are the following: If X is nearly unitary,

‖X∗
X − Im‖2 = ε, (6.1)
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then we desire θ = (θ1, . . . , θq) and U1, U2, V1, V2 such that

C = diag(cos(θ1), . . . , cos(θq)) S = diag(sin(θ1), . . . , sin(θq))

‖U∗
1U1 − Ip‖2 ≈ ε ‖U∗

2U2 − Im−p‖2 ≈ ε

‖V ∗
1 V1 − Iq‖2 ≈ ε ‖V ∗

2 V2 − Im−q‖2 ≈ ε
»

C

0

–

= U
T
1 (X11 + E11)V1, ‖E11‖2 ≈ ε

»

S 0 0
0 Ip−q 0

–

= U
T
1 (X12 + E12)V2, ‖E12‖2 ≈ ε

»

−S
0

–

= U
T
2 (X21 + E21)V1, ‖E21‖2 ≈ ε

»

C 0 0
0 0 Im−p−q

–

= U
T
2 (X22 + E22)V2, ‖E22‖2 ≈ ε.

Van Loan’s example. Our first test case is based on an example of Van Loan
[19]. Let

X11 =

2

6

6

4

0.220508860423 −0.114095899416 0.001410518052 0.309131888087
0.075149984350 0.552192330457 0.309420137864 0.519525649668
0.346099513974 −0.465523358094 −0.147474170901 0.284504924779
0.200314808251 0.015869922033 0.063768831702 0.364621650530

3

7

7

5

X12 =

2

6

6

4

0.123868614848 −0.424487382687 0.756283107266 −0.274401793502
0.505660921957 0.028765021298 −0.138696588123 0.219160328651

−0.068044487719 −0.292950312278 −0.202722377746 0.655183291894
−0.339461927716 −0.307319405113 −0.530848659627 −0.575436177767

3

7

7

5

X21 =

2

6

6

4

−0.149903307775 0.456869095895 −0.814555019070 0.205461483909
−0.132593956233 0.403919514293 0.374067025998 −0.294979263882
0.631588073183 0.226164206817 0.132173742848 0.047014825861

−0.588949720476 −0.205112923304 0.239887841318 0.537774110108

3

7

7

5

X22 =

2

6

6

4

−0.211288905103 −0.065095708488 0.064582503584 0.100169729053
−0.422173038686 −0.565182436669 0.079260723473 0.297296887111
−0.473064671229 0.502284642254 0.218767959397 0.079539299401
−0.403033356444 0.250518329548 0.166101999167 0.107399029584

3

7

7

5

,

and let X =
[

X11 X12

X21 X22

]

. Van Loan considered the submatrix
[

X11

X21

]

.

X satisfies (6.1) with ε ≈ 3.4 × 10−12. Our implementation produces θ, U1,
U2, V1, and V2 for which ‖UT

1 U1−I4‖2 ≈ 1.2×10−15, ‖UT
2 U2−I4‖2 ≈ 1.4×10−15,

‖V T
1 V1 − I4‖2 ≈ 5.8× 10−16, ‖V T

2 V2 − I4‖2 ≈ 1.7× 10−15, ‖E11‖2 ≈ 1.3× 10−12,
‖E12‖2 ≈ 6.1 × 10−13, ‖E21‖2 ≈ 1.6 × 10−12, and ‖E22‖2 ≈ 9.3 × 10−13. The
algorithm performs stably.

Haar measure. Let X be a random 40-by-40 orthogonal matrix from Haar
measure, let p = 18 and q = 15, and compute the CS decomposition of X

using csd. Actually, it is impossible to sample exactly from Haar measure in
floating-point, so define X by the following Matlab code.

[X,R] = qr ( randn ( 4 0 ) ) ;
X = X ∗ diag ( s i gn ( randn ( 4 0 , 1 ) ) ) ;
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Over 1000 trials of our implementation, ‖UT
1 U1−I18‖2, ‖U

T
2 U2−I22‖2, ‖V

T
1 V1−

I15‖2, ‖V
T
2 V2− I25‖2, ‖E11‖2, ‖E12‖2, ‖E21‖2, and ‖E22‖2 were all less than 2ε,

where ε was defined to be the greater of ten times machine epsilon or ‖XTX −
I40‖2.

Clusters of singular values. Let δ1, δ2, δ3, . . . , δ21 be independent and identi-
cally distributed random variables each with the same distribution as 10−18U(0,1),
in which U(0, 1) is a random variable uniformly distributed on [0, 1]. For i =

1, . . . , 20, let θi = π
2 ·

P

i
k=1 δk

P21
k=1 δk

, and let C = diag(cos(θ1), . . . , cos(θ20)), S =

diag(sin(θ1), . . . , sin(θ20)), and

X =

[

U1

U2

] [

C S

−S C

] [

V1

V2

]T

,

in which U1, U2, V1, and V2 are random orthogonal matrices from Haar measure.
(These matrices can be sampled as X was sampled in the previous test case.)
The random matrixX is designed so that C and S have clustered singular values,
as well as singular values close to 0 and 1. Such singular values break the naive
CSD algorithm. Compute the CSD of X with p = q = 20 using csd. Over 1000
trials of our implementation, ‖UT

1 U1 − I18‖2, ‖U
T
2 U2 − I22‖2, ‖V

T
1 V1 − I15‖2,

‖V T
2 V2 − I25‖2, ‖E11‖2, ‖E12‖2, ‖E21‖2, and ‖E22‖2 were all less than 3ε, with

ε defined as in the previous test case.

θ(0) and φ(0) chosen uniformly from
[

0, π2
]

Choose θ1, . . . , θ20 and φ1, . . . , φ19

independently and uniformly from the interval
[

0, π2
]

, and let

X =

[

B11(θ, φ) B12(θ, φ)
B21(θ, φ) B22(θ, φ)

]

.

Compute the CSD of X with p = q = 20 using csd. Over 1000 trials, ‖UT
1 U1 −

I18‖2, ‖U
T
2 U2 − I22‖2, ‖V

T
1 V1 − I15‖2, ‖V

T
2 V2 − I25‖2, ‖E11‖2, ‖E12‖2, ‖E21‖2,

and ‖E22‖2 were all less than 4ε, with ε defined as above.

θ(0) and φ(0) chosen randomly from
{

0, π4 ,
π
2

}

. Repeat the previous test
case, but with θ1, . . . , θ20 and φ1, . . . , φ19 chosen uniformly from the three-
element set

{

0, π
4 ,

π
2

}

. This produces test matrices with many zeros, which can
tax the novel aspects of our extension of the Golub-Kahan-Demmel SVD step.
Over 1000 trials, ‖UT

1 U1− I18‖2, ‖U
T
2 U2− I22‖2, ‖V

T
1 V1− I15‖2, ‖V

T
2 V2− I25‖2,

‖E11‖2, ‖E12‖2, ‖E21‖2, and ‖E22‖2 were all less than ε, with ε defined as above.

Acknowledgment. The thoughtful comments of an anonymous referee are ap-
preciated.

A Additional proofs

A.1 Proof of Lemma 3.16

Proof. The proof is by induction on i.
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That T1 = G1 is straightforward to prove.
Assume by induction that Tj = Gj , j = 1, . . . , i − 1. At line 6 of Algorithm

3.13, B̄ = ST
i−1 · · ·S

T
1 BT1 · · ·Ti−1, and so

B̄T B̄ − σ2I = T T
i−1 · · ·T

T
1 (BTB − σ2I)T1 · · ·Ti−1.

At line 4 of Algorithm 3.7,

Ā = GT
i−1 · · ·G

T
1 (A− λI)G1 · · ·Gi−1.

By the induction hypothesis and the fact that BTB − σ2I = A − λI, we have
(at the current step),

B̄T B̄ − σ2I = Ā. (A.1)

We show Ti = Gi up to signs using three cases.
Case 1: Ā(i : i + 1, i − 1) is nonzero. From (A.1), Ā(i : i + 1, i − 1) =

B̄(i−1, i−1)B̄(i−1, i : i+1)T . Hence, B̄(i−1, i : i+1)T is nonzero, Ā(i : i+1, i−1)
is colinear with B̄(i− 1, i : i+ 1)T , and Ti = Gi.

Case 2: Ā(i : i + 1, i − 1) and B̄(i − 1, i : i + 1)T equal the zero vector.
Then the Givens rotations Ti and Gi are based on Ā(i : i + 1, i) and (‖B̄(:
, i)‖2−σ2, B̄(:, i)T B̄(:, i+1))T , respectively, which are equal according to (A.1).
Hence, Ti = Gi.

Case 3: Ā(i : i+ 1, i− 1) is the zero vector but B̄(i − 1, i : i+ 1) is nonzero.
Then B̄ must have the form

B̄ =

















∗ ∗
∗ ∗

0 a b

c d

∗ ∗
∗

















with a and b not both zero. Let’s roll back the previous Givens rotation:

(ST
i−1)

−1B̄ = Si−1B̄ =

















∗ ∗
∗ ∗

0 x

0 y z

∗ ∗
∗

















.

Hence,

Ā = B̄T B̄−σ2I = (Si−1B̄)T (Si−1B̄)−σ2I =

















∗ ∗
∗ ∗ ∗

∗ ∗ 0 0
0 x2 + y2 − σ2 yz

0 yz ∗ ∗
∗ ∗

















.
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Now, Si−1 = givens(i − 1, i, (x2 − σ2, xy)T ) = ± 1
r

[

x2 − σ2 −xy

xy x2 − σ2

]

, in

which r = ‖(x2 − σ2, xy)T ‖, so

B̄ = ST
i−1Si−1B̄ =

















∗ ∗
∗ ∗

0 ±x
r
(x2 + y2 − σ2) ±x

r
yz

0 ± y
r
(−σ2) ± 1

r
(x2 − σ2)z

∗ ∗
∗

















.

By assumption, B̄(i−1, i : i+1)T is nonzero, and hence by inspection B̄(i−1, i :
i+ 1)T and Ā(i : i+ 1, i) are colinear. Therefore, Ti = Gi.

A.2 Proof of Lemma 3.17

Proof. Assume by induction that Sj = Gj for j = 1, . . . , i − 1. At line 10 of
Algorithm 3.13, B̄ = ST

i−1 · · ·S
T
1 BT1 · · ·Ti, and so

B̄B̄T − σ2I = ST
i−1 · · ·S

T
1 (BBT − σ2I)S1 · · ·Si−1.

At line 4 of Algorithm 3.7,

Ā = GT
i−1 · · ·G

T
1 (A− λI)G1 · · ·Gi−1.

By the induction hypothesis and the fact that BBT − σ2I = A − λI, we have
(at the current step),

B̄B̄T − σ2I = Ā. (A.2)

We show Si = Gi using three cases.
Case 1: Ā(i : i + 1, i − 1) is nonzero. From (A.2), Ā(i : i + 1, i − 1) =

B̄(i − 1, i)B̄(i : i + 1, i). Hence, B̄(i : i + 1, i) is nonzero, Ā(i : i + 1, i − 1) is
colinear with B̄(i : i+ 1, i), and Si = Gi.

Case 2: Ā(i : i + 1, i − 1) and B̄(i : i + 1, i) equal the zero vector. Then the
Givens rotations Gi and Si are based on Ā(i : i+1, i) and (‖B̄(i, :)‖2−σ2, B̄(i, :
)B̄(i+ 1, :)), respectively, which are equal according to (A.2). Hence, Si = Gi.

Case 3: Ā(i : i+1, i−1) is the zero vector but B̄(i : i+1, i) is nonzero. Then
B̄ must have the form

B̄ =

















∗ ∗
∗ 0

a c

b d ∗
∗ ∗

∗

















with a and b not both zero. Let’s roll back the previous Givens rotation:

B̄T−1
i = B̄T T

i =

















∗ ∗
∗ 0 0

x y

z ∗
∗ ∗

∗

















.
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Hence,

Ā = B̄B̄T −σ2I = (B̄T T
i )(B̄T T

i )T −σ2I =

















∗ ∗
∗ ∗ 0 0

0 x2 + y2 − σ2 yz

0 yz ∗ ∗
∗ ∗ ∗

∗ ∗

















.

Now, Ti = givens(i, i+1, (x2−σ2, xy)T ) = ± 1
r

[

x2 − σ2 −xy

xy x2 − σ2

]

, in which

r = ‖(x2 − σ2, xy)T ‖, so

B̄ = B̄T T
i Ti =

















∗ ∗
∗ 0 0

±x
r
(x2 + y2 − σ2) ± y

r
(−σ2)

±x
r
yz ± 1

r
(x2 − σ2)z ∗

∗ ∗
∗

















.

By assumption, B̄(i : i + 1, i) is nonzero, and hence by inspection B̄(i : i + 1, i)
and Ā(i : i+ 1, i) are colinear. Therefore, Si = Gi.
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[12] C. Jordan. Essai sur la géométrie à n dimensions. Bull. Soc. Math. France,
3:103–174, 1875.

[13] C. C. Paige. Computing the generalized singular value decomposition. SIAM
J. Sci. Statist. Comput., 7(4):1126–1146, 1986.

[14] C. C. Paige and M. A. Saunders. Towards a generalized singular value
decomposition. SIAM J. Numer. Anal., 18(3):398–405, 1981.

[15] C. C. Paige and M. Wei. History and generality of the CS decomposition.
Linear Algebra Appl., 208/209:303–326, 1994.

[16] G. W. Stewart. On the perturbation of pseudo-inverses, projections and
linear least squares problems. SIAM Rev., 19(4):634–662, 1977.

[17] G. W. Stewart. Computing the CS decomposition of a partitioned orthonor-
mal matrix. Numer. Math., 40(3):297–306, 1982.

[18] B. D. Sutton. The stochastic operator approach to random matrix theory.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA 02139,
June 2005.

[19] C. Van Loan. Computing the CS and the generalized singular value decom-
positions. Numer. Math., 46(4):479–491, 1985.

[20] D. S. Watkins. Some perspectives on the eigenvalue problem. SIAM Rev.,
35(3):430–471, 1993.


	Introduction
	Complete versus 2-by-1 CS decomposition
	Applications
	Numerical properties
	Efficiency
	Overview of the algorithm
	Bidiagonal block form
	Simultaneous SVD steps
	The driver routine

	Overview of the article

	Phase I: Algorithm bidiagonalize
	Reviewing and extending the SVD step
	QR step
	SVD step

	Phase II: Algorithm csd_step
	Existence of the CSD step
	Algorithm specification
	The algorithm

	Algorithm csd
	On numerical stability
	Numerical issues and strategies
	Results of numerical experiments

	Additional proofs
	Proof of Lemma ?? 
	Proof of Lemma ??


