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Abstract. The truncated singular value decomposition (TSVD) is a popular solution method
for small to moderately sized linear ill-posed problems. The truncation index can be thought of as
a regularization parameter; its value affects the quality of the computed approximate solution. The
choice of a suitable value of the truncation index generally is important, but can be difficult without
auxiliary information about the problem being solved. This paper describes how vector extrapolation
methods can be combined with TSVD, and illustrates that the determination of the proper value of
the truncation index is less critical for the combined extrapolation-TSVD method than for TSVD
alone. The numerical performance of the combined method suggests a new way to determine the
truncation index.
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1. Introduction. Gene Golub has made numerous significant contributions to
scientific computing. His interests included the SVD and vector extrapolation; see,
e.g., [10, 11]. This paper discusses the application of these methods to the solution of
linear discrete ill-posed problems.

The use of scalar extrapolation methods in the context of ill-posed problems was
pioneered by Brezinski et al. [5]; see also [6] for a recent discussion. We believe the
application of vector extrapolation methods to the solution of linear discrete ill-posed
problems to be new. For an excellent overview of extrapolation methods; see Brezinski
and Redivo Zaglia [4].

We consider the computation of an approximate solution of the system of equa-
tions

Ax = b (1.1)

with a matrix A ∈ R
m×n of ill-determined rank, i.e., A has many singular values of

different orders of magnitude close to zero. In particular, A is severely ill-conditioned
and possibly singular. We describe the method for the situation when m ≥ n; however,
the method also is applicable when m < n.

Systems of equations (1.1) with a matrix of ill-determined rank often are referred
to as linear discrete ill-posed problems. They arise in science and engineering when
one seeks to determine the cause of an observed effect. In these applications, the
right-hand side b ∈ R

m is obtained from measured data and typically is contaminated
by a measurement error e ∈ R

m.
Let b̂ ∈ R

m denote the unknown error-free vector associated with b, i.e.,

b = b̂ + e. (1.2)
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We are interested in determining an accurate approximation of the solution x̂ of
minimal Euclidean norm of the unavailable consistent system of equations

Ax = b̂

with error-free right-hand side. Thus, x̂ = A†b̂, where A† denotes the Moore-Penrose
pseudoinverse of A. Note that due to the error e in b and the ill-conditioning of the
matrix A, the vector

A†b = A†(b̂ + e) = x̂ + A†e

generally does not furnish a meaningful approximation of x̂.
A popular method for computing an approximation of x̂ is to use the Truncated

Singular Value Decomposition (TSVD), which replaces A† by a low-rank approxi-
mation; see, e.g., Golub and Van Loan [12] or Hansen [14] for discussions. A brief
review of this method is provided in Section 2. A difficulty when applying TSVD is
to determine a suitable rank of the approximation of A†. The rank, which is equal
to the truncation index, can be considered a regularization parameter. Our vector
extrapolation enhanced TSVD method provides a new approach to choosing this in-
dex. Section 3 describes some known vector extrapolation methods, and Section 4
shows how to apply one of them, the reduced rank extrapolation method, together
with TSVD, to the solution of linear discrete ill-posed problems. Section 5 presents
some numerical examples and Section 6 contains concluding remarks.

2. TSVD. Introduce the singular value decomposition

A =
n

∑

j=1

σjujv
T
j , (2.1)

with the singular values σj ordered so that

σ1 ≥ σ2 ≥ . . . ≥ σℓ > σℓ+1 = . . . = σn = 0. (2.2)

Then

Avj = σjuj, AT uj = σjvj , 1 ≤ j ≤ n,

and the matrices U = [u1, u2, . . . , un] ∈ R
m×n and V = [v1, v2, . . . , vn] ∈ R

n×n have
orthonormal columns, see, e.g., [12] for details on the singular value decomposition.
In problems of interest to us, several of the smallest nonvanishing singular values are
tiny.

For any 1 ≤ k ≤ ℓ, the rank-k approximation Ak of A is defined by

Ak =

k
∑

j=1

σjujv
T
j (2.3)

and its Moore-Penrose pseudoinverse is

A†
k =

k
∑

j=1

σ−1
j vju

T
j . (2.4)
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Consider, for 1 ≤ k ≤ ℓ, the least-squares problem

min
x∈Rn

‖Akx − b‖

with minimal-norm solution

xk := A†
kb =

k
∑

j=1

uT
j b

σj
vj . (2.5)

Here and throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the asso-
ciated induced matrix norm.

We would like to determine an index k, such that xk defined by (2.5) is an accurate
approximation of x̂. For future reference, we let kopt ≥ 1 be the smallest integer, such
that

‖xkopt
− x̂‖ = min

k≥1
‖xk − x̂‖. (2.6)

When an estimate of the norm of the error e in b is available, the discrepancy principle
can be used to determine such an index; see, e.g., [14]. We are concerned with the
situation when no estimate of the norm of e is known. Several heuristic methods for
choosing a suitable index k in this situation have been proposed in the literature, the
most popular of which may be the L-curve criterion discussed by Hansen; see, e.g.,
[14]. This criterion is based on plotting the points {log(‖Axk − b‖), log(‖xk‖)}, for
k = 1, 2, . . . . These points typically lie on an L-shaped curve, referred to as “the
L-curve,” and k is chosen to be the index of the point closest to the “vertex” of this
curve. It is the purpose of the present paper to propose new guidelines, suggested by
results for vector extrapolated TSVD, for the selection of a suitable value of the index
k.

3. Vector extrapolation methods. The convergence of iterates determined
by a slowly convergent iterative process often can be accelerated by extrapolation
methods. The most popular vector extrapolation methods are minimal polynomial
extrapolation (MPE) by Cabay and Jackson [7], reduced rank extrapolation (RRE) by
Eddy [8] and Mesina [19], and modified minimal polynomial extrapolation (MMPE)
due to Brezinski [3], Pugachev [20], and Sidi et al. [24]. Convergence analyses of these
methods can be found in [21, 23, 24, 25] and recursive implementations are described
in [3, 9, 17]. When applied to linearly generated vector sequences, the MPE and RRE
methods are mathematically equivalent to the FOM and GMRES Krylov subspace
methods, respectively, for the iterative solution of linear systems of equations; see
[22]. We remark that vector extrapolation methods also can be applied to determine
the solution of nonlinear systems of equations; see [15, 16, 18] for details.

Let {sp}p≥0 be a sequence of vectors in R
n, and define the first and the second

forward differences

∆sp := sp+1 − sp and ∆2sp := ∆sp+1 − ∆sp.

When applied to the sequence {sp}p≥0, the MPE, RRE, and MMPE vector extrapola-

tion methods produce approximations t
(q)
p of the limit or antilimit of the sp as p → ∞

of the form

t(p)
q :=

q
∑

j=0

γ
(q)
j sp+j , (3.1)
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where

q
∑

j=0

γ
(q)
j = 1 and

q
∑

j=0

ηijγ
(q)
j = 0, 0 ≤ i < q, (3.2)

with ηij := (y
(p)
i+1, ∆sp+j) and

y
(p)
i+1 := ∆sp+i for MPE,

y
(p)
i+1 := ∆2sp+i for RRE,

y
(p)
i+1 := yi+1 for MMPE.

Here {y1, y2, . . . , yq} is a set of linearly independent vectors in R
n. These vectors

often are chosen to be the canonical vectors in some order; see e.g., [17].
Introduce the matrices

Yq,p := [y
(p)
1 , y

(p)
2 , . . . , y(p)

q ], ∆iSq,p := [∆isp, ∆
isp+1, . . . , ∆

isp+q−1], i = 1, 2.

Using Schur’s formula, t
(p)
q can be expressed as

t(p)
q = sp − ∆Sq,p(Y

T
q,p∆

2Sq,p)
−1Y T

q,p∆sp,

where t
(p)
q exists and is unique if and only if det(Y T

q,p∆
2Sq,p) 6= 0. The t

(p)
q can be

computed by algorithms described in [9] for several values of p and q.
Let us introduce new approximations of the limit or anti-limit of the sp,

t̃(p)
q :=

q
∑

j=0

γ
(q)
j sp+j+1. (3.3)

Following [18], we define the generalized residual

r̃(t(p)
q ) := t̃(p)

q − t(p)
q , (3.4)

which can be expressed as

r̃(t(p)
q ) = ∆sp − ∆2Sq,p(Y

T
q,p∆

2Sq,p)
−1 Y T

q,p∆sp. (3.5)

The above formula shows that r̃(t
(p)
q ) is the orthogonal projection of ∆sp onto

span{∆2sp, ∆
2sp+1, . . . , ∆

2sp+q−1}.

When the sequence {sp}p≥0 is generated linearly, i.e., when

sp+1 = (I − A) sp + b, p = 0, 1, . . . ,

the generalized residuals reduce to the classical residuals,

r̃(t(p)
q ) = r(t(p)

q ) = b − At(p)
q .

Henceforth, we focus on the case when p is kept fixed, and set p = 0. For
notational convenience, we denote the matrices ∆iSq,0 by ∆iSq, 1 ≤ i ≤ 2, and the

vectors y
(0)
q and t

(0)
q by yq and tq, respectively.



Vector extrapolation enhanced TSVD 5

The system of equations (3.2) can be written as



























γ
(q)
0 + γ

(q)
1 + . . . + γ

(q)
q = 1,

γ
(q)
0 (y1, ∆s0) + γ

(q)
1 (y1, ∆s1) + . . . + γ

(q)
q (y1, ∆sq) = 0,

γ
(q)
0 (y2, ∆s0) + γ

(q)
1 (y2, ∆s1) + . . . + γ

(q)
q (y2, ∆sq) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ
(q)
0 (yq, ∆s0) + γ

(q)
1 (yq, ∆s1) + . . . + γ

(q)
q (yq, ∆sq) = 0.

(3.6)

Let β
(q)
i = γ

(q)
i /γ

(q)
q for 0 ≤ i ≤ q. Then

γ
(q)
i =

β
(q)
i

q
∑

i=0

β
(q)
i

for 0 ≤ i < q and β(q)
q = 1. (3.7)

With this notation, the linear system of equations (3.6) becomes











β
(q)
0 (y1, ∆s0) + β

(q)
1 (y1, ∆s1) + . . . + β

(q)
q−1(y1, ∆sq−1) = −(y1, ∆sq),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

β
(q)
0 (yq, ∆s0) + β

(q)
1 (yq, ∆s1) + . . . + β

(q)
q−1(yq, ∆sq−1) = −(yq, ∆sq).

(3.8)

This system can be written in the form

(Y T
q ∆Sq−1)β(q) = −Y T

q ∆sq, (3.9)

where β(q) = [β
(q)
0 , β

(q)
1 , . . . , β

(q)
q−1]

T and ∆Sq = [∆s0, ∆s1, . . . , ∆sq−1].

Assume now that γ
(q)
0 , γ

(q)
1 , . . . , γ

(q)
q have been calculated and introduce the new

variables

α
(q)
0 = 1 − γ

(q)
0 , α

(q)
j = α

(q)
j−1 − γ

(q)
j , 1 ≤ j < q, and α

(q)
q−1 = γ(q)

q , (3.10)

so that the vector tq can be expressed as

tq = s0 +

q−1
∑

j=0

α
(q)
j ∆sj = s0 + ∆Sq−1 α(q), (3.11)

where α(q) = [α
(q)
0 , . . . , α

(q)
q−1]

T .

In order to determine the γ
(q)
i , we first have to compute the β

(q)
i by solving the

nonsingular linear system of equations (3.9). Using (3.4) and (3.11), the generalized
residual r̃(tq) can be expressed as

r̃(tq) =

q
∑

i=0

γ
(q)
i ∆sq = ∆Sq γ(q), (3.12)

where γ(q) = [γ
(q)
0 , . . . , γ

(q)
q ]T .
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4. Application of RRE to TSVD. In the remainder of this paper, we only
consider the application of RRE to the sequence of vectors generated by TSVD,
because the MPE method gives the same iterates as TSVD, and MMPE is more
expensive than RRE for the present application. In the sequel, we set

yi = ∆2si−1 for 1 ≤ i ≤ m − 2,

and consider the sequence {sk}k≥0 generated by TSVD. Thus,

s0 := 0, sk := xk = A†
kb =

k
∑

j=1

uT
j b

σj
vj =

k
∑

j=1

δjvj , (4.1)

where

δj :=
uT

j b

σj
, 1 ≤ j ≤ k. (4.2)

Thus, we have

∆sk−1 = sk − sk−1 = δkvk, (4.3)

We may assume that δk 6= 0, because if this is not the case, then we delete the
corresponding member from the sequence (4.1) and compute the next one by keeping
the same index notation. The matrix ∆Sk−1 = [∆s0, . . . , ∆sk−1] can be factored
according to

∆Sk−1 = [δ1v1, . . . , δkvk] = Vk diag[δ1, . . . , δk], (4.4)

where Vk = [v1, . . . , vk]. Moreover, since ∆2sk−1 = δk+1vk+1 − δkvk, we deduce that

∆2Sk−1 = Vk+1















−δ1

δ2 −δ2

. . .
. . .

δk −δk

δk+1















. (4.5)

Then using (4.4), we get

∆2ST
k−1∆Sk−1 =















−δ1

δ2 −δ2

. . .
. . .

δk −δk

δk+1















T

V T
k+1 [δ1 v1, . . . , δk vk].

On the other hand, since

V T
k+1 [δ1v1, . . . , δkvk] =















δ1 0 . . . 0
0 δ2 . . . 0
...

...
. . .

...
0 . . . 0 δk

0 0 . . . 0















, (4.6)
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it follows that

∆2ST
k−1∆Sk−1 =



















−δ2
1 δ2

2

−δ2
2 δ2

3

. . .
. . .

−δ2
k−1 δ2

k

−δ2
k



















.

Consequently, using (4.3) and (4.4), we obtain

∆2ST
k−1∆sk = [0, . . . , 0, δ2

k+1]
T ,

and it follows that the solution of the linear system

∆2ST
k−1∆Sk−1β

(k) = −∆2ST
k−1∆sk (4.7)

is given by

β
(k)
i =

δ2
k+1

δ2
i+1

, 0 ≤ i < k.

Therefore

k
∑

i=0

β
(k)
i = 1 +

k−1
∑

i=0

δ2
k+1

δ2
i+1

= δ2
k+1

k
∑

i=0

1

δ2
i+1

.

Using (3.7), we obtain

γ
(k)
j =

1
δ2

j+1

k
∑

i=0

1

δ2
i+1

, 0 ≤ j ≤ k. (4.8)

We therefore can compute the scalars α
(k)
0 , . . . , α

(k)
k−1 in (3.10) by

α
(k)
i =

k
∑

j=i+1

γ
(k)
j =

k
∑

j=i+1

1

δ2
j+1

k
∑

l=0

1

δ2
l+1

, 0 ≤ i < k. (4.9)

Finally, the extrapolated vector tk can be determined from

tk =
k

∑

j=1

α
(k)
j−1

uT
j b

σj
vj . (4.10)

Notice that the application of the RRE method acts as a filter for TSVD with filter

factors f
(k)
j = α

(k)
j−1, 1 ≤ j ≤ k.
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We need to evaluate ‖tk+1− tk‖ for our stopping criterion. From (4.10) we obtain
that

tk+1 − tk =

k
∑

j=1

(α
(k+1)
j−1 − α

(k)
j−1)

√

δj

vj +
α

(k+1)
k

√

δk+1

vk+1.

Since the vectors vj , 1 ≤ j ≤ k + 1, are orthonormal, it follows that

‖tk+1 − tk‖ =

√

√

√

√

k
∑

j=1

|α
(k+1)
j−1 − α

(k)
j−1|

2

δj
+

|α
(k+1)
k |2

δk+1
.

The generalized residual can be written as

r̃(tk) = ∆Sk γ(k) = Vk+1 diag

[

uT
1 b

σ1
, . . . ,

uT
k+1b

σk+1

]

γ(k), (4.11)

where γ(k) = [γ
(k)
0 , γ

(k)
1 , . . . , γ

(k)
k ]T is given by (4.8). It follows from (4.2) that

‖r̃(tk)‖2 =

k
∑

i=0

δ2
i+1

(

γ
(k)
i

)2

,

and by using (4.8), we obtain the simple expression

‖r̃(tk)‖ =
1

√

√

√

√

k
∑

j=0

1

δ2
j+1

.

Moreover, from the relation (4.8) we also have

‖r̃(tk)‖ =

√

δ2
kγ

(k)
k−1.

For well-posed problems, ‖r̃(tk)‖ decreases to zero as k increases. However, for ill-
posed problems with an error in the right-hand side, the ‖r̃(tk)‖ decrease when k
increases and is sufficiently small, but for larger values of k, the norm ‖r̃(tk)‖ in-
creases with k. As will be illustrated in the following section, the value of the index
k for which the ‖r̃(tk)‖ cease to decrease often gives a good approximation xk of x̂.
The RRE-TSVD algorithm is summarized as follows:

Algorithm 1. The RRE-TSVD algorithm

• Compute the SVD of the matrix A: [U, Σ, V ] = svd(A).

Set s0 = 0, s1 =
uT
1 b
σ1

v1, and t1 = s1, with
ui = U(:, i) and vi = V (:, i) for i = 1, . . . , n.

• For k = 2, . . . , n
1. Compute sk from (4.1).

2. Compute the γ
(k)
i and α

(k)
i for i = 0, . . . , k − 1, using (4.8) and (4.9).

3. Form the approximation tk by (4.10).
4. If ‖tk − tk−1‖/‖tk−1‖ < tol, stop.

• End
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5. Numerical examples. All computations are carried out using MATLAB
7.4 with unit round-off ǫ ≈ 2 · 10−16. We used the MATLAB Regularization Tools
package [13]. The matrices A and the desired solutions x̂ are determined by codes

of this package; the assumed unknown error-free right-hand side is given by b̂ := Ax̂.
The associated “noisy” right-hand side b is determined by (1.2), where the “noise-
vector” e has normally distributed components with zero mean, normalized so that a
specific noise-level

ν =
‖e‖

‖b̂‖

is achieved.

Example 5.1. We illustrate the convergence behavior of the sequences {tk}k≥1 and
{‖r̃(tk)‖}k≥1 by considering the integral equation

∫ π/2

0

κ(s, t)x(t)dt = g(s), 0 ≤ s ≤ π, (5.1)

where

κ(s, t) = exp(s cos(t)) and g(s) = 2 sin(s)/s.

The solution is given by x(t) = sin(t). This integral equation is discussed in [1]. We
used the MATLAB code baart from [13] to discretize (5.1) by a Galerkin method with
600 orthonormal box functions as test and trial functions. This yields the nonsym-
metric matrix A ∈ R

600×600 with the condition number κ(A) = 4 · 1018 computed by
MATLAB, where κ(A) := ‖A‖ ‖A−1‖. Thus, A is numerically singular. The vectors

b̂ and b are determined as described above with noise-level ν = 1 · 10−2.
Figure 5.1 shows the convergence of TSVD and RRE-TSVD. Observe from Figure

5.1 that when k increases and is sufficiently small, the relative error norms

‖sk − x̂‖/‖x̂‖ and ‖tk − x̂‖/‖x̂‖

decrease; here the sk are determined by TSVD and the tk by RRE-TSVD. However,
when k is larger than kopt = 9, the error in the sk increases; the norm of the error in the
tk stagnates at k = kopt; cf. (2.6) for the definition of kopt. The generalized residual
norm also stagnates at k = kopt. Hence, stagnation of the generalized residual norm
is a practical criterion for selecting a suitable truncation index k for both RRE-TSVD
and TSVD.

We remark that the L-curve criterion, as implemented by the MATLAB function
l corner from [13], gives the truncation index k = 6. This is not a good choice, as
can be seen from Figure 5.1. For many linear discrete ill-posed problems, the L-curve
criterion determines a value of the truncation index, which is not close to the optimal
one. 2

Example 5.2. For this experiment, we generate the nonsymmetric matrix A ∈
R

1000×1000 and the desired solution x̂ ∈ R
1000 with the code wing from [13]; the

condition number of A is larger than 1 · 1020, i.e., the matrix is numerically singular.
The right-hand side b is generated similarly as in Example 5.1 with noise-level ν =
1 · 10−2.
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Generalized residuals
RRETSVD
TSVD

Fig. 5.1. Example 5.1: The relative errors ‖sk − x̂‖/‖x̂‖ for TSVD (dashed graph), the relative
errors ‖tk − x̂‖/‖x̂‖ for RRE-TSVD (dash-dotted graph), and the norm of the generalized residuals
‖r̃(tk)‖ (solid graph).

Figure 5.2 compares TSVD and RRE-TSVD. The graphs show the relative error
norm versus the truncation index k as well as the norm of the generalized residuals
for RRE-TSVD. As can be seen from the figure, the best truncation index is kopt = 5
for TSVD. The generalized residual norm ‖r̃(tk)‖ stagnates at k = 3. We note that
the errors in t3 and t5 are about the same. Moreover, t3 is a good approximation of
x̂.

The L-curve criterion, as implemented by the function l corner in [13], determines
the truncation index k = 2. This is not a good choice. 2

Example 5.3. We consider two more examples, foxgood and heat, from [13]. These
linear discrete ill-posed problems are discretized to yield matrices of order 800 and
500, respectively. The desired solutions x̂ are provided by the codes foxgood and heat,
and the right-hand sides b are determined similarly as in Example 5.1 with noise level
ν = 1 · 10−2.

We detect stagnation of the generalized residuals r̃k by computing the quotient
|‖r̃k+1‖−‖r̃k‖|/‖r̃k‖ for increasing values of k. Let k̂ be the smallest index, such that

|‖r̃k̂+1‖ − ‖r̃k̂‖|

‖r̃k̂‖
≤ 5 · 10−3. (5.2)

We say that stagnation has occurred at k = k̂, and use tk̂ as approximation of x̂. The
choice of right-hand side in (5.2) is based on numerical experience; we have found it
to give good results for a large number of linear discrete ill-posed problems.

The selection criterion (5.2) formalizes the approach of Examples 5.1 and 5.2. In
particular, the use of the criterion (5.2) obviates the need to look at graphs. This
criterion is an attractive alternative to other approaches, such as the L-curve criterion,
that are used when no information about the norm of the error e in b is available.
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0 2 4 6 8 10 12 14 16 18 20
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Fig. 5.2. Example 5.2: The relative errors ‖sk − x̂‖/‖x̂‖ for TSVD (dashed graph), the relative
errors ‖tk − x̂‖/‖x̂‖ for RRE-TSVD (dash-dotted graph), and the norm of the generalized residuals
‖r̃(tk)‖ (solid graph).

Nevertheless, being a heuristically motivated criterion, which does not explicitly use
‖e‖, it may fail; see [2] for a discussion. Tables 5.1 and 5.2 show results for foxgood

and heat, respectively.

Table 5.1

foxgood with noise-level ν = 1 · 10−2.

k ‖tk − x̂‖/‖x̂‖ ‖sk − x̂‖/‖x̂‖ |‖r̃k+1‖ − ‖r̃k‖|/‖r̃k‖
4 4.11 · 10−2 6.97 · 10−2 1.37 · 10−3

5 4.11 · 10−2 9.13 · 10−2 3.08 · 10−4

Table 5.1 shows (5.2) to be satisfied for k = 4. This is the smallest value of k for

which (5.2) holds. Thus, k̂ = 4 and we use t4 as an approximation of x̂. The error in
the approximate solutions sk determined by TSVD increases with k for k ≥ 4, while
the error in the approximate solutions tk computed by RRE-TSVD does not change
much when k incresase and k ≥ 4.

Table 5.2

heat with noise-level ν = 1 · 10−2.

k ‖tk − x̂‖/‖x̂‖ ‖sk − x̂‖/‖x̂‖ |‖r̃k+1‖ − ‖r̃k‖|/‖r̃k‖
27 7.11 · 10−2 8.34 · 10−2 2.57 · 10−3

28 7.11 · 10−2 9.68 · 10−2 5.18 · 10−4

Table 5.2 shows (5.2) to be satisfied for k = 27 and, indeed, k̂ = 27. Thus, we
use t27 as an approximation of x̂. Note that the error in t28 is about the same as in
t27, but the error in s28 is larger than the error in s27. Moreover, the error in t27 is
smaller than the error in s27. 2
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6. Conclusion. This paper describes how vector extrapolation can be applied
together with TSVD. The stagnation point for the generalized residual determined by
the extrapolation method typically is a suitable truncation index. The approximate
solutions computed by extrapolation generally do not deteriorate in quality when the
truncation index is increased. The choice of truncation index therefore is less critical
than for TSVD.
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