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Abstract. The computation of an approximate solution of linear discrete ill-posed problems
with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov reg-
ularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing
the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation.
This regularization method requires that a suitable value of the regularization parameter be chosen.
Recently, Brezinski et al. [Numer. Algorithms (2008), in press| described new approaches to esti-
mate the error in approximate solutions of linear systems of equations and applied these estimates
to determine a suitable value of the regularization parameter in Tikhonov regularization when the
approximate solution is computed with the aid of the singular value decomposition. This paper
discusses applications of these and related error estimates to the solution of large-scale ill-posed
problems when approximate solutions are computed by Tikhonov regularization based on partial
Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization
and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates.
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1. Introduction. This paper considers the approximate solution of least-squares
problems

Inin [|Az — b] (1.1)

with a matrix A € R™*" of ill-determined rank and a vector b € R™, which is
contaminated by an error e € R™. In particular, A is severely ill-conditioned and
may be rank-deficient. For ease of presentation, we will assume that m > n; however,
our method also can be applied when m < n. Throughout this paper || -|| denotes the
Euclidean vector norm or the associated induced matrix norm.

Least-squares problems with a matrix of ill-determined rank are commonly re-
ferred to as discrete ill-posed problems. They arise in science and engineering when
one is interested in determining the cause of an observed effect. The vector b repre-
sents the observations; the error e in b may be caused by measurement inaccuracies,
transmission errors of the data, and discretization errors. We will refer to e as “noise.”

Let b € R™ denote the unavailable noise-free vector associated with b, ie.,

b=b+e, (1.2)

and let & € R™ be the minimal-norm least-squares solution of the unavailable mini-
mization problem with noise-free right-hand side,

in || Az — b]|. (1.3)
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The vector b is not required to be in R(A), the range of A. We would like to determine
an approximation of & by computing an approximate solution of (1.1). Note that due
to the severe ill-conditioning of A and the error e in b, the exact solution of (1.1)
typically is not a meaningful approximation of &.

In order to be able to compute a useful approximate solution of (1.1), the min-
imization problem has to be replaced by a nearby problem that is less sensitive to
the error in b. Tikhonov regularization replaces (1.1) by the penalized least-squares
problem

min {|| Az — b||* + pl| Lz||*}, (1.4)
xcR"
where > 0 is a regularization parameter and L € RP*"™ p < n, a regularization
operator. We will in the present paper use the operator L = I; other possible choices

of L are discussed in, e.g., [17, 20, 23, 25]. The normal equations associated with
(1.4), for L = I, are of the form

(ATA+ pl)x = A™b, (1.5)
and their solution is given by
x, = (ATA+pul)~ 1 ATD (1.6)

for any p > 0. The parameter p determines how sensitive x,, is to the error in b and
how close x,, is to the desired solution & of (1.3). The determination of a suitable
positive value of u is part of the solution process.

Let € R™ be an arbitrary but fixed vector, which we assume not to be explicitly
known. Let the associated residual vector

r:=b— Ax (1.7)

be available. We would like to determining an estimate of the norm of the difference
d = x — &. Brezinski et al. [6] recently derived the following family of estimates,

ld|* = n} = dyg~'dy~>dy ™%, vER, (1.8)
where
do:=|rl®,  di:=|ATr|?, dpi= | AATT?, (1.9)
and showed that
7712/1 < 7732 for v <ws.

The estimates

7
[AATr] [AT]

(1.10)

are of particular interest to us.

The error estimate 73 was first discussed by Auchmuty [1]. Brezinski [4] pro-
posed error estimates related to (1.8) for linear systems of equations with a square
nonsingular matrix and an error-free right-hand side. Moreover, Brezinski et al. [5]
discussed the application of estimates similar to (1.8) to the determination of a suitable
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value of the regularization parameter y in Tikhonov regularization when the matrix
A is square and nonsingular. Error estimates that are applicable to overdetermined
linear systems (1.1) are presented in [6], where both solution by the singular value
decomposition and the conjugate gradient method applied to the normal equations
(1.5) are discussed. The present paper considers the solution of large-scale problems
by Tikhonov regularization using partial Lanczos bidiagonalization and exploits the
connection of the latter with Gauss quadrature.

In the application of the error estimates (1.8) to Tikhonov regularization described
by Brezinski et al. [5, 6], the vector @ in (1.7) is chosen to be the solution (1.6) of

the Tikhonov minimization problem (1.4) with L = I. Since the noise-free vector b is
assumed not to be available, b is replaced by b in (1.7). This gives the residual vector

r,:=b— Ax,. (1.11)

Substituting r = 7, into (1.9) yields error estimates 1, = 7, (1), v € R, which are
functions of u. For a fixed v € R, Brezinski et al. [5, 6] determine a value of the
regularization parameter p that minimizes p — 7, (u).

The residual vector (1.11) and the quantities (1.9) are inexpensive to evaluate
for several values of the parameter y when the singular value decomposition of A is
available. This makes the computation of the estimates 7, (u) for several values of p
and v quite inexpensive. However, when A is large and its singular value decompo-
sition is not available, the computation of the error estimates (1.8) in the context of
Tikhonov regularization can be expensive, since r = 7, is not explicitly known. We
describe how to determine inexpensively computable bounds for the error estimates
in this situation.

Our approach to large-scale Tikhonov regularization problems is based on first
reducing the matrix A to a fairly small lower bidiagonal matrix by a few steps of Lanc-
zos bidiagonalization. The connection between Lanczos bidiagonalization and Gauss
quadrature then is exploited to determine inexpensively computable lower and upper
bounds for the error estimates (1.8) for several values of p. The number of Lanczos
bidiagonalization steps is chosen to make the upper and lower bounds sufficiently close
in a vicinity of the minimum of the error estimate. We determine p by minimizing
the average of the computed upper and lower bounds for the error estimate.

The connection between the symmetric Lanczos process and Gauss quadrature
was first discussed by Golub [13], and a nice survey of this technique with a few
applications are presented by Golub and Meurant [15]. A book on this topic by Golub
and Meurant is in preparation. Recently Lépez Lagomasino et al. [18] extended this
approach to rational Gauss rules. Many formulas relevant for the development in the
present paper can be found in [7], and we will refer to the latter work for some details.

If an accurate estimate of ||e]| is explicitly known and b € R(A), then a suitable
value of p often can be determined by the discrepancy principle; see, e.g., [8, 10]. We
are concerned with the approximate solution of large-scale minimization problems
(1.1) when no accurate estimate of ||e|| is available or for which b ¢ R(A). We note
that since our criterion for determining p does not use |le||, it may fail for some
problems; see [3] for a discussion. Nevertheless, numerous numerical experiments,
some of which are reported in Section 5, show the proposed method to perform well
for many problems and to be competitive with other schemes that do not use | e|| for
determining .

This paper is organized as follows. Section 2 expresses the quantities (1.9) as
Stieltjes integrals and discusses how Gauss quadrature rules can be used to evaluate
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upper and lower bounds. The connection between partial Lanczos bidiagonalization
of A and Gauss quadrature rules for these Stieltjes integrals is described in Section
3. Our algorithm is discussed in Section 4 and computed examples are presented in
Section 5. Concluding remarks can be found in Section 6.

2. Stieltjes integrals and Gauss quadrature. Let the vectors x, and r, be
given by (1.6) and (1.11), respectively. In order to represent dy = do(u) as a Stieltjes
integral, we first observe that the relation A(ATA + ul)~! = (AAT + uI)~1 A leads
to the following representation of the norm of the residual vector

[rul? = [|b— Az, ||? = p2b" (AAT + ul)~2b. (2.1)
Introduce the spectral decomposition
AAT = WAWT (2.2)
with W € R™*™ WTW = I, and

A =diagh e Am], 0 A <A <ol < A
If m > n, then Ay = Ao = ... = \;,_, = 0. Substitute the spectral decomposition
(2.2), the vector w = [wy, wa, ..., w,]T ;= WTh, and the function
2
0.0 = () 23)

into the right-hand side of (2.1) to obtain
do(p) = |[rull* = p*w™ (A + uI) =2

=Yt = [ suwdulo), (2.4)
i=1 —o0

where dw(t) is a nonnegative measure. The associated distribution function, w(t),
is nondecreasing and piecewise constant with jumps at the eigenvalues A;; when A;
is distinct, w(t) has a jump of size w7 at X;. The right-hand side of (2.4) is a
Stieltjes integral with an integrand that allows the integral to be bracketed by Gauss
quadrature rules; see below.

The norm of x,, also can be expressed as a Stieltjes integral. We have

@ )|® = 2], =b" A(AT A+ ul)2ATb. (2.5)
Consider the spectral decomposition
ATA =WAWT (2.6)
with W e R WTW = I, and
A = diag[h, A2, . .., Anl, 0< M <A <...< )\,

where ;\j = Ajgym—n for 1 < j < n. Substituting the decomposition (2.6), w =
[y, W, . .., 0T := WTATb, and the function (2.3) into the right-hand side of (2.5)
yields

1 Q <1 .



where dw(t) is a nonnegative measure analogous to dw(t); the associated distribution
function, w(t), is nondecreasing, piecewise constant, and has jumps at the eigenvalues
5\j. The Stieltjes integral in the right-hand side of (2.7) can be bounded from above
and below by Gauss quadrature rules; see below.

It follows from (1.5) that

Alr, = uz,. (2.8)

Therefore, d; = d1 (1) can be expressed in terms of the Stieltjes integral (2.7),

() i= 147w = [ " gu(t)di(t),

and be bracketed in terms of Gauss quadrature rules.
Finally, application of the spectral decomposition (2.2) give

da(p) = [ AAT T, |2 = 12| A, |2 = p26T AAT (AAT + uD) 2446 (2.9)

=D ou()ij = /Oo G (t)du(2), (2.10)
=1 —o0

where @ = |01, W2, ..., W,]T ;= WTAATbH and the measure diw(t) is defined analo-
gously as dw(t).

Let Gy, le, and é@l denote /1-point Gauss quadrature rules associated with the
measures dw(t), di(t), and dib(t), respectively, and let Ry,, Rye,, and Ry, denote the
corresponding /o-point Gauss-Radau rules with a prescribed node at the origin. The
derivatives (with respect to t) of even order of the integrand (2.3) are positive on the
positive real axis, which contains the support of the measures dw(t), dw(t), and dw(t),
and the derivatives of odd order are negative on the positive real axis. The remainder
formulas for Gauss and Gauss-Radau rules therefore show these quadrature rules to
provide upper or lower bounds for the integrals. Specifically,

gAfl*l(d)#) < gAZl ((b#) < dO(:u) < 7?'22 ((b#) < 7?22*1(921)#)7
Go—1(dn) < Gu(dn) < di(p) < Re(dp) < Reg-1(dp), (2.11)
g€1—1(¢ﬂ) < gfl ((bﬂ) < d2(M) < sz ((bu) < sz—l(¢u)a

where /1 and {5 are arbitrary positive integers smaller than the number of mass points
of the measures; see, e.g., [7, 15, 18] for details.

We remark that the right-hand side of (2.9) can be expressed as a Stieltjes integral
in several ways. For instance, we have the alternative representation

) = [ a0l 00 = (L) (212)

t+p

However, higher order derivatives of t — 1,,(t) are not of constant sign on the support
of the measure for all values of i > 0 of interest. Pairs of Gauss and Gauss-Radau
quadrature rules applied to the integral (2.12) therefore are not guaranteed to bracket
da(p). For this reason we have chosen to express ds(p) in terms of the Stieltjes integral
(2.10).



3. Partial Lanczos bidiagonalization. We describe how Gauss and Gauss-
Radau quadrature rules for the Stieltjes integrals introduced in the previous section
can be determined via partial Lanczos bidiagonalization of A. A detailed discussion of
Lanczos bidiagonalization is provided by Paige and Saunders [21]; properties relevant
to the present paper also are discussed in [7].

Application of £ steps of Lanczos bidiagonalization to A with initial vector b, with
¢ < n sufficiently small, gives the decompositions

AV = UGy + opr1upyrel ATu, =v,CF, (3.1)
where Uy = [u1, us, ..., u] € R™* and V; = [v1,v2,...,v,] € R satisfy
ulv, =1,  VIVi=1, w=b/|bll, Ulus,=0.
Moreover, ||ug1]] = 1 and o471 > 0. We will assume that o,41 > 0; otherwise the

computations simplify. The rare situation when o,4; = 0 will be commented on at
the end of this section. The matrix

P1 0
o2 P2

Cy € RY¢ (3.2)

O¢—1  pPe—1
0 o0 pe

is lower bidiagonal. It is convenient also to define the rectangular lower bidiagonal
matrix

O, = [ Ce , } € RU+D*L

0¢4+1€y
where e; = [0,...,0,1,0,...,0]T denotes the jth axis vector. For future reference, we
note that
R(Vy) = Ky (AT A, ATD), (3.3)
where
Ko(AT A, ATb) := span{ATb, (AT A)ATb, ... (AT A)*"1ATb} (3.4)

is a Krylov subspace.
Combining the equations (3.1) shows that

AATUg e UzOgCgT + Ug+1p[uE+1eg, (3.5)

where py = eeTCgeg.

The matrix Ty := C,C{ is symmetric and tridiagonal. It follows from (3.5) that
the columns w; of Uy, as well as ugy1, satisfy a three-term recurrence relation, and
that for certain polynomials p;_; € II;_1,

U :pj_l(AAT)b, 1 S]Sf—f'l

Introduce the inner product

o= [ " F0)a(t)du(t).
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Then

(Pj-1,PK-1) = /oo Ppi—1(t)pr—1(t)dw(t) = b p;_1(AAT )pr_1(AAT )b

T 1 =k
ula ) J ’
vk { Oa j# kv

i.e., the p; are orthonormal polynomials with respect to this inner product. The
nontrivial entries of the matrix T, are recursion coefficients for the p;. Hence, the
¢-point Gauss rule associated with the measure dw(t) can be expressed as

Ge(f) = [Ibl*ef f(Te)es;
see [7, 15] for details. In particular,
Ge(9) = 12 [|bl|*e] 6, (CeCY er = pi®||bl*e] (CeCf + ul) e
Let y,(p) := u(CeCF + uI)~'e;. Then
Ge(¢) = 1011°y7 (g, ().

We compute y,(u) as the solution of the least-squares problem

. (3.6)

min
y€eR?

cf 1/2
— e
[ M1/2Ie ]y K 0+1

Eldén [9] has described an algorithm for solving this kind of least-squares problem in
only O(¢) arithmetic floating point operations for each value of p.

The (¢ + 1)-point Gauss-Radau rule for the measure dw(t) with a preassigned
node at the origin, applied to the integrand ¢,,, can be expressed as

Rog1(dp) = [|bl*e] ¢ (CeCY e

see, e.g., [7] for a proof. We compute R¢41(¢,,) for different values of x > 0 by solving
a least-squares problem analogous to (3.6).

We turn to the evaluation of Gauss rules for the measure dw(t). Let Uppq =
[wi, wg, ..., upp1] € R™¥EFD - Then the left-hand side equation in (3.1) can be
written in the form

AVy = Upy1Cy. (3.7)
Multiplying this equation by AT yields
ATAV, = ATUw1Co = Vi1 CF 1 Co = ViCF Co + prsroes1vesief (3-8)

where pg41 is the last diagonal entry of Cyqq and wvyqq is the last column of V.
Determine the QR-factorization

CZ = Qféga (39)
{+1)x¢

e.g., by application of ¢ Givens rotations. This factorization, with Q, € R(
represented as a product of Givens rotations, can be computed in only O(¢) arithmetic
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floating point operations. Thus, Q, has orthonormal columns and C’ZT € R** is upper
bidiagonal. Equation (3.8) now can be written as

ATAVg = VgégégT + pz+10g+1’vg+1eg.

This relation is analogous to (3.5). The matrix Ty := C’gég is tridiagonal. Therefore
the columns v; of V; and wvey; satisfy a three-term recurrence relation. The first
column of V is proportional to ATb. It follows that the polynomials p;—1 € II;_4
determined by the relations

v; =p;-1(ATA)ATb, 1<j<l+1,

are orthonormal with respect to the inner product
()= [ fOg(0)di(0) = b AF(AT A)g(AT 4) AT,

The nontrivial entries of the matrix 7, are recurrence coefficients for the polynomials
pj. It follows that the ¢-point Gauss rule with respect to the measure dw(¢) is given
by

Ge(f) = | ATblPef f(To)er.
In particular,
Ge(¢) = 12| ATD|*e] (C.Cf + ul) e

Note that ||ATd|| = ||b]|p1, where p; is the leading diagonal entry of Cy; see (3.2).
Thus, ||ATb|| can be determined cheaply without additional matrix-vector product
evaluations. We compute G (¢u) by solving a least-squares problem analogous to
(3.6). The corresponding ¢-point Gauss-Radau rule with one fixed node at the origin
is given by

Re(by) = 12| ATD|2el (Cor(Cor)T + pl) e,

where C'g_l e R*U=1) ig obtained by removing the last column of C'g. Also this
quadrature rule is evaluated by solving a least-squares problem similar to (3.6).

We are in a position to discuss the computation of Gauss rules for the measure
dw(t). Consider the QR-factorization of the lower bidiagonal matrix (3.2),

Cy = Q)R). (3.10)

The orthogonal matrix Q) € R can be represented as a product of £ — 1 Givens
rotations, which shows that Q) is of upper Hessenberg form. The matrix Rj € R**¢
is upper bidiagonal and differs from the matrix C’g in (3.9) only in the last diagonal
entry. Indeed, if the matrix CA’; is computed with the aid of ¢ Givens rotations, then

R is available when ¢ — 1 of these rotations have been applied.
Substitution of (3.10) into (3.5), with Uj := U,Q)}, yields

AATUg = UéRéCg + Ug+1pguE+1eg. (3.11)
Assume that ¢ > 1 and multiply this equation by e;. We obtain

AATu; = U)R,C e; = vUje,
8



where the last equality follows from the fact that both matrices Rj, and OET are upper
triangular; the constant v, is the product of the leading diagonal entries of R} and
CI'. We conclude that the first column of U} is proportional to AA™b.

Multiplying (3.11) from the right-hand side by Q) gives

AATU) = U,R,(R)T + oup1piury el Q). (3.12)

This is not a decomposition of the form (3.5), because the last two entries of the
vector e Q) are nonvanishing. We bring the decomposition (3.12) into the form of
(3.5) in two steps, the first of which entails the computation of the QR-factorization

(Ry)" = QVRY, (3.13)

where Q] € R*¢ is orthogonal and R € R** is upper bidiagonal. Substituting
(3.13) into (3.12) yields

AATU) = UJ(R))T'R] + ov11peuerre] Q). (3.14)

The second steps consists of removing the last column in every term of (3.14). Let
the matrix Uy_; € R™*¢=1 be the leading m x (¢ — 1) submatrix of Uy, and let R,y
be the leading (¢ — 1) x (¢ — 1) principal submatrix of Rj. Then (3.14) yields

AATU, = Ui R Ry + fo_jel

where the vector f,_; € R™ is orthogonal to the columns of Ur_1. This is the
desired decomposition. It is analogous to (3.5) and shows that the (£—1)-point Gauss
quadrature rule associated with the measure dw(t) is given by

Ge-1(f) = |AATD| el f(RI_ Ri-1)er. (3.15)

The corresponding Gauss-Radau rule with one prescribed node at the origin can be
expressed as

Re-1(f) = |AATD|%e] F(RI_1 o Re-10)en, (3.16)

where the matrix }v{g_l)o e RU-2x(=1) ig obtained by removing the last row from
Ro_1. Equivalently, we can define RZ,LO by setting the last diagonal entry of Ro_q
to zero. It follows from (3.1)-(3.2) that

[ AAT B = ||b]|* 3 (07 + 03).

Thus, ||AATb||? can be evaluated inexpensively by using entries of C;. Note that the
computation of bounds for do = dz(u) only requires the quadrature rules (3.15) and
(3.16), not the matrices Uj and U;_,. We therefore do not have to compute the latter.

The measure diw(t) is obtained by multiplying dw(t) by the factor t. Several
derivations of algorithms for modifying the symmetric tridiagonal matrix 7} associated
with dw(t) to obtain the symmetric tridiagonal matrix To_q = Re 1Rg 1 associated
with the measure dw(t) are available; see Gautschi [11, 12] and Golub and Kautsky
[14]. Our derivation is suitable in the context of bounding matrix functionals and
differs from the approaches in the references mentioned.
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THEOREM 3.1. The following upper and lower bounds for the quantities (1.9) can
be computed after £ steps of Lanczos bidiagonalization applied to A with initial vector

b:

Ge(dp) < do(p) < Rega(dn),
vgg((bu) < di(p) < :Ré((bu)v (3.17)
Go—1(pp) < do(p) < Re—1(du)-

These bounds allow the computation of upper and lower bounds for the error estimates
(1.8) for any v € R. In particular, writing n, = n,(u) in order to explicitly indicate
the dependence of the estimates (1.10) on u, we obtain

(gé(¢u)gé(¢u)>l/2 < m(p) < (Rf-i-lwu)ﬁ'f(qsu))lﬂa

Ro-1(¢p) Go1(dp) (3.18)
Ge(9p) Rey1(opu)
R (Cel6p)) /2

Proof. The discussion of this section shows that the quadrature rules in (3.17)
and (3.18) can be evaluated when ¢ Lanczos bidiagonalization steps have been carried
out. The bounds follow from the inequalities (2.11). O

We finally consider the situation when ¢y = 0 in (3.1). Then b" p(4AT)b =
||bl|2eTp(Ty)e; for all polynomials p, and therefore also for all functions f that can
be approximated arbitrarily well by polynomials.

4. The numerical method. The QR-factorizations (3.9), (3.10), and (3.13) are
computed by the application of a judiciously chosen sequence of simple orthogonal
transformations. For instance, the upper bidiagonal matrices

01 e 0 0 7 0
R} and Cf = e
Op—1 e do—1 Ve

0 5g 0 52

~
|

only differ in the last diagonal entry. Assuming that Rj is nonsingular, we can deter-
mine C} and R)_, by first adding a new row to R} and then updating the extended
matrix by applying the reflection

co s o 0 | _ |0 e
Se —cg 041 Prt1 0 41 |’
where

0 = cedy + 500041, Vo1 = S0P, Opg1 = —CePry1-

The constants ¢, and sy are chosen to annihilate the (¢ 4 1,¢)-entry of Cypyi. The
process is initialized by setting 0; = p;.

The upper bidiagonal factor Ry in (3.13) is computed by application of a sequence
of £ — 1 Givens rotations. Their product, in reverse order of application, forms the
orthogonal matrix @}. Note that the latter matrix does not have to be explicitly
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formed. All the QR-factorizations (3.9), (3.10), and (3.13) can be determined in only
O(¢) arithmetic floating point operations. It follows that the bounds (3.1) can be
evaluated in only O(¢) arithmetic floating point operations for each value of u > 0.

For a chosen value of v for the error estimate 7, = 7, (p) defined by (1.8), we
determine suitable values of the number of Lanczos bidiagonalization steps, ¢, and of
the regularization parameter, p, in the following manner. We start with a grid of ¢
log-equispaced values of p,

0<pr < pg<...<pg, (4.1)

in an interval [fmin, ftmax]- The grid points are partitioned into two sets, C and N,
depending on whether the upper and lower bounds 1!, (u;) and n%(u;), respectively, of
1, (1) are close enough to be considered converged; see below. Note that the integrand
(2.3) is analytic in the extended complex plane, except at the point ¢ = —p. This
singularity is further away from the interval of integration (a subset of the positive
real axis) when p is large than when g > 0 is small. Therefore, the Gauss and Gauss-
Radau rules deliver more accurate bounds for large values of y than for small ones.
It follows that for a fixed value of ¢, the set C of grid points with converged bounds
typically is made up of some of the larger values of u; in the sequence (4.1).

Our algorithm consists of two phases. The first phase computes a rough estimate
of the minimum p* of n,(x). This estimate is improved in the second phase. We
initialize N := {1, ..., g} and C := () and carry out a few Lanczos bidiagonalization
steps. At step ¢, we perform the following additional computations:

(i) For each uj in N, compute the lower and upper bounds 7l (1;) and n%(u;),
respectively, as well as their averages 7, (1t;).

(ii) Determine the smallest index k, such that

() =l ()| < B-nu(iy),  G=kk+1,... #N, (4.2)

where #A denotes the cardinality of the set &' and 3 > 0 is a user-specified
tolerance.

(iii) If condition (4.2) holds for k < #N, then move the parameters {p, ..., uun}
from the set A to the set C; this indicates that we consider 7, (u;) a converged
approximation of n, (u;) for j =k, ..., #N.

(iv) Let £:= {41 in (3.1), i.e., carry out another Lanczos bidiagonalization step and
repeat the computations of steps (i)-(iii) until

M (ptk) > Mo (pk41)

for some pair {u, ur+1} C C. Thus, we carry out an increasing number of Lanc-
zos bidiagonalization steps until we have determined a local minimum p* of the
function 7, (1) at an internal point of C. This ends the first phase of our scheme.
The dominating computational work for this phase is the evaluation of matrix-
vector products with the matrices A and A”. Each Lanczos bidiagonalization
step requires the evaluation of one matrix-vector product with A and one with
AT,

The above algorithm assumes that 7, (u) is convex in an interval around the
minimal value of 7, (1). In the computed examples of Section 5, we used the parameter
values ¢ = 10, tmin = 1 - 10724, fmax = 1-10% g1 = Lmin, Mg = Mmax, and
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B =1-10"2. We found these parameter values to be suitable for a large number of
discrete ill-posed problems.

The second phase of our scheme improves the approximate local minimum p* of
7, (1) determined in phase one. This is achieved by refining the grid C by adding
points around p*. We do this by bisection in log-scale and update the value p* until
the minimum distance between adjacent grid points around p* in C reaches a pre-
scribed (small) tolerance. The computations of this phase typically do not require
that additional Lanczos bidiagonalization steps be carried out and therefore are inex-
pensive.

Assume now that a suitable value y = p* of the regularization parameter has
been determined. We turn to the computation of an approximate solution of (1.5).
The partial Lanczos decomposition (3.1) of A thus is available and we describe a
Galerkin method, which uses this decomposition to compute an approximation x, ¢
of z,, in the Krylov subspace (3.4). In particular, z, ¢, € R(A”) and, therefore, z,, ¢
is orthogonal to the null space of A.

In view of (3.3), we have x, ¢, = V,y for some y € R, and we determine x,, ¢ by
imposing the Galerkin condition

VI(ATA + u)Vey = VEATD.
Using (3.1) and (3.7), this equation can be reduced to
(CTCy + ul)y = b CTer. (4.3)

These are the normal equations associated with the least-squares problem

min
y€ER!

c,
ik v le

We compute the solution y,, , of the reduced Galerkin equation (4.3) by solving this
least-squares problem, whose solution can be computed in the same manner as (3.6).
When doing this, we may use the QR-factorization (3.9) of C,.

THEOREM 4.1. The error estimate ns = ns(u) can be written as

nau) = ATl (1.4)
W]

Let x,, 0 := Vyy,, , be the computed approzimate solution of (1.1) with Y0 the solution
of (4.8). Introduce

_ el

I

3,0 () : (4.5)

where T, ¢ :=b— Ax, . Then nz (1) achieves the upper bound (3.18) for ns(w).
Proof. The representation (4.4) is a consequence of (1.10) and (2.8). It follows
from [7, Theorem 5.1] that

1 -
”wuyfnz = Fgf(@t)v ”ru,f”2 = R€+l(¢u)'

Substituting these expressions into the right-hand side of (4.5) yields

Rey1(ou)
(Ge(du))/?

12

n3,e(p) =



The right-hand side is equal to the upper bound (3.18) for ns(x). O
We remark that, generally, ATr, , — ux, , # 0, i.e., relation (2.8) does not hold
for the computed solution x, ¢ and the associated residual 7, ¢.

5. Computed examples. The algorithm described in the previous section has
been implemented in MATLAB in order to assess its performance. The MATLAB
code is available, upon request, from the authors.

The algorithm is applied to a selection of discrete ill-posed problems, most of
which are standard test problems from [16]. The noise-free right-hand side b, see
(1.2), is available in our test problems, and the “noise-vector” with noise-level « is
of the form e = x||b||e, where € is a vector of normally distributed random variables
with zero mean and of unit variance.

20

10
upper bound e N,
" — — —lower bound 102 error
10 ]
10°
10°
/
10_10 //
/
/
-20 -2
10 10
10101010 ™10° 10 10° 10 10” 10° 10" 10° 10*

Fic. 5.1. The left-hand side graphs illustrate the first phase of our algorithm for determining
w* and the right-hand side graphs the second phase. The p-values are given by the horizontal azxes.

In our first test problem, we are concerned with the solution of a Fredholm integral
equation of the first kind with a nonsymmetric analytic kernel described by Baart [2].
We use MATLAB code from [16] to discretize the integral equation to obtain a discrete
ill-posed problem (1.1) with a matrix A € R?90%290 The noise-level is £ = 1-1072.
We refer to this problem as Baart. The regularization parameter p is determined by
minimizing 79 ().

The left-hand side graphs of Figure 5.1 illustrate the first phase of the algorithm.
The graphs show computed upper and lower bounds for n2(u) obtained with 7 steps
of Lanczos bidiagonalization, which were required to determine the local minimum p*
of 7j2(u) on the coarse grid. The thick graph depicts the averages 72 (u) in an interval
containing C. These averages are considered converged. The upper and lower bounds
for ma(u), i.e., n¥(u) and nb(u), are displayed in an interval containing A/ by the
thin continuous and dashed graphs, respectively. We apply Lanczos bidiagonalization
with reorthogonalization. The latter can reduce the number of bidiagonalization steps
necessary significantly.

The right-hand side graphs of Figure 5.1 display the refinement of the minimum
in the second phase of the algorithm. The circles show where 7j2(p) is evaluated.
Adjacent circles are connected by straight lines for visual clarity; however, the lines
are of no significance. The thick curve depicts the error

e(p) = & — @y 0l (5.1)
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for £ = 7 as a function of p. The figure shows that 72(u) and e(p) achieve their
minima for close p-values, even though 7js(p) is much smaller than e(u).

0.14 2.5
0.12} 5
0.1}
1.5
0.08}
1
0.06}
0.5
0.04}
0.02} 0
0 -0.5
0 50 100 150 200 0 50 100 150 200

Fic. 5.2. Computed and desired solutions for the Baart and Shaw test problems.

The left-hand side graphs of Figure 5.2 display the solution & of the noise-free
problem (1.3) (thick curve) and the solution determined by our algorithm (thin curve,
p=5.6-10"%). We also show the solution x, 7, which is obtained by minimizing the
error (5.1) over u > 0 for ¢ = 7; the dashed curve of the figure shows this solution.
The associated regularization parameter is p = 4.4 - 107%. Note that, despite that
7l2(p) is not a good approximation of e(u), the thin continuous and dashed graphs are
very close.

4

10

-4

10

Fic. 5.3. Error e(p) (thick curves) and error estimates f2(p) and 7j3(p) for the Shaw test
problem (left-hand side graphs) and the Gauss test problem (right-hand side graphs).

Our second test problem is a Fredholm integral equation of the first kind with
an analytic kernel described by Shaw [26]. MATLAB code for its discretization is
available in [16]. We use this code to determine a discrete ill-posed problem with a
matrix A € R299%200 The error e with noise-level £ = 1- 1072 is defined similarly
as above. We refer to this problem as Shaw. The left-hand side graph of Figure 5.3
displays the error e(p) (thick curve) as well as the error estimates 72(u) and 7j5(p).
The minima of these curves are marked by circles. The curves show the minimum of
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fi2(1) to provide a better approximation of the minimum of e(x) than the minimum
of n3().

The right-hand side graphs of Figure 5.2 show the solution & of the noise-free
problem (1.3) (thick curve) and the solution determined by our algorithm (thin curve,
p=5.4-10"%). The computation of the latter required 10 Lanczos bidiagonalization
steps. The thin dashed curve is obtained by minimizing (5.1) over p > 0 for ¢ = 10.
The p-value determined in this manner is g = 3.2-107%; it is in Table 5.1 referred to
as Uopt- Lhe thin continuous and dashed curves are close.

K 1072 1074 1076 10-8 1010 10-12
14 10 14 15 16 18 19
I 54-107*% 54-107% 53-107'2 22.107% 5.3-10720 52.10"%

e(p) |7.8-1071 35-107' 83-107' 1.2.-107' 3.8-107' 5.2.107*
fopt | 3.2-107% 3.0-107% 1.1-1079 4.2.107 4.4.107% 1.1.1071°
e(fiopt) | 6.7-1071 3.3.1071 2.8-10"' 7.9-1072 1.7-1072 1.2-1072

TABLE 5.1
Results for the Shaw test problem for several noise-levels k. The parameter { shows the number
of Lanczos bidiagonalization steps required, the computed value of the regularization parameter is
denoted by p, and the value of the regularization parameter that minimizes the error e(u) is referred
to as popt-

Table 5.1 illustrates the performance of our method for different noise-levels. The
table shows that the method also is applicable for small noise-levels. The number of
Lanczos bidiagonalization steps, /¢, is seen to increase when the noise-level x decreases,
because the discrete ill-posed problems (1.1) are solved more accurately for small
noise-levels.

In the above test problems, the singular values of the matrices decrease rapidly
with increasing index. We now illustrate the performance of our method for a test
problem for which the singular values decay quite slowly. Specifically, we consider
discrete ill-posed problems with a Gaussian matrix with entries

A=lag) €R™" = /o- ep(5E-4)7)  a=1-107

The asymptotic condition number is of order 10%!4; see [19] for details. We refer to
this test problem as Gauss.

Letting m = 400 and n = 200 yields the matrix in (1.1). The desired solution & is
a sampling of the function sin(t) at 200 equidistant points in the interval [0, 7]. The
right-hand side b in (1.3) is chosen to make the noise-free discrete ill-posed problem
(1.3) consistent or inconsistent. Let

7= ||b— Az|.

Thus, the minimization problem (1.3) is consistent when 7 = 0. Vectors b that give an
inconsistent problem with a prescribed positive value of 7 are constructed as described
in [24, p. 744]. A noise-vector e is determined similarly as in the above test problems
and scaled to correspond to the noise-level kK = 1-1072.

Figure 5.4 displays three computed solutions corresponding to 7 =0, 7 =1 - 102,
and 7 = 1-10%, as well as the desired solution &. The latter is depicted by a thick
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Fic. 5.4. Computed and desired solutions for the Gauss test problem.

curve and referred to as “solution” in the legend. The figure shows our method to
produce meaningful approximate solutions also for inconsistent problems. The method
requires 30 Lanczos bidiagonalization steps for 7 = 0 and 7 = 1 - 102, and 26 steps
for 7 = 10*. The computed values of the regularization parameters are, for increasing
values of 7, pp = 7.7, p = 4.2-10%, and p = 3.0-103. We remark that, when 7 = 0, the
algorithm without reorthogonalization requires 101 Lanczos bidiagonalization steps.

The right-hand side graph of Figure 5.3 displays the error e(u) (thick curve) as
well as the error estimates 72 (1) and 73(u). The minima of these curves are marked
by circles. The curves show the minimum of 7j3(u) to provide a better approximation
of the minimum of e(y) than the minimum of 73 (1). We found in numerous numerical
examples the minimum of at least one of the error estimates 72 (1) and 73 (1) to furnish
a useful value of the regularization parameter.
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Fia. 5.5. Desired and approximate solutions determined by the L-curve criterion and our method.

The final example compares our method to the L-curve criterion. The latter is
a popular approach to determining p when no estimate of the norm of the noise is
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available. A thorough discussion of the L-curve criterion and many illustrations are
provided by Hansen [17]. We consider a discretization of the integral equation Phillips
described in [22] and use MATLAB code from [16] to determine A € R200%200 apd
b € R290 A noise-vector e of the same type as above, with noise-level Kk = 1- 1075,
is added to b to give the vector b in (1.1). Figure 5.5 shows the desired solution
& (thick curve) and the approximate solution «, determined by our method based
on determining upper and lower bounds for ns(x) (thin continuous curve). This
approach yields g = 1-107°. The thick and thin curves are indistinguishable; we have
|z, — | =2.1-1073.

Let «,, and r,, be the solution (1.6) of the Tikhonov equation and the associated
residual vector (1.11), respectively. The L-curve criterion determines the point on the
curve

p— {log|[rpll,loglleull},  p>0,

where the curvature is of largest magnitude. The L-curve often looks like the letter
“L”, and the desired p-value, which we refer to as py, corresponds to the point at the
“vertex.” The choice u = pur, seeks to balance the sizes of ||x,|| and |r,||; see [17] for
details.

In order to be able to compute py, by publicly available and tested software, we
first determine the singular value decomposition of A. The MATLAB code I_corner
from [16] applies this decomposition to determine the location of the vertex. The
value of the regularization parameter determined in this manner is gy = 1- 10711,
The dashed graph of Figure 5.5 shows the associated solution «,,, . It is clear from this
graph that s, is too small; we have ||x,, — | = 1.0. This example illustrates that
for some problems our method yields a more appropriate value of the regularization
parameter than the L-curve criterion.

6. Conclusion. A new method for determining a suitable value of the regular-
ization parameter in Tikhonov regularization when no information about the norm
of the noise is available is described. Computed examples show the method to give
meaningful approximate solutions for a few discrete ill-posed problems. The method
also has performed well in numerous other computed examples.
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