NOISE-REDUCING CASCADIC MULTILEVEL METHODS
FOR LINEAR DISCRETE ILL-POSED PROBLEMS

S. MORIGI*, L. REICHEL', AND F. SGALLARI*

Abstract. Cascadic multilevel methods for the solution of linear discrete ill-posed problems
with noise-reducing restriction and prolongation operators recently have been developed for the
restoration of blur- and noise-contaminated images. This is a particular ill-posed problem. The
multilevel methods were found to determine accurate restorations with fairly little computational
work. This paper describes noise-reducing multilevel methods for the solution of general linear
discrete ill-posed problems.
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1. Introduction. Many problems in science and engineering require the deter-
mination of the cause of an observed effect. These problems often can be formulated
as Fredholm integral equations of the first kind with a smooth kernel h,

(1.1) /h(s,t):c(t)dt = b(s), s €S.
s
This paper discusses solution methods for such integral equations. The methods
discussed are tailored for the situation when S is a bounded interval; however, the
methods also are applicable, mutatis mutandis, for more general compact sets S € R7.
The right-hand side function b represents the “observed effect” and is assumed to
be such that (1.1) has a solution, which represents the “cause.” The solution might not
be unique. Let Z denote the solution of minimal norm. The computation of Z is an ill-
posed problems, because & does not depend continuously on b. When S is a bounded
interval, this is a consequence of the Riemann-Lebesgue lemma. Nice treatments of
ill-posed problems and numerical methods for their solution are provided by Engl et
al. [14] and Hansen [18].
Discretization of (1.1) gives a linear system of equations

(1.2) Az = b, AeR™", beR"”,

with a matrix of ill-determined rank. In particular, the singular values of A “cluster”
at the origin. Therefore, the matrix A is severely ill-conditioned. Linear systems of
equations with a matrix of ill-determined rank commonly are referred to as linear
discrete ill-posed problems. We assume the linear system (1.2) to be consistent and
large enough to make the use of iterative solution methods attractive.

Let AT denote the Moore-Penrose pseudoinverse of A. We are interested in de-
termining the solution & of (1.2) of minimal Euclidean norm. It can be expressed as
& = A'b. Due to the severe ill-conditioning of A, the vector & is very sensitive to
perturbations in b.

The right-hand side b of (1.2) is obtained by discretizing the integral equation
(1.1), e.g., by a Nystrom method. However, since in applications the available right-
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hand side vector represents observations, it typically is contaminated by a measure-
ment error €® € R". We will refer to e’ as noise. Let b° denote the available
noise-contaminated approximation of b. Then

(1.3) b’ =b+e.

Thus, our computational task is to determine an accurate approximation of the
desired solution & of (1.2) by computing an approximate solution of the available
linear discrete ill-posed problem with the contaminated right-hand side b‘s7

(1.4) Az =b°.

This system might not be consistent. We remark that in view of the ill-conditioning of
A and the error €’ in b°, the vector ATb° typically is not a meaningful approximation
of &.

Throughout this paper we use weighted Euclidean vector norms of the form

" 1/2
1 N2
(1.5) |lz| = (— Z (:v(z)) ) , x=[zW 2@ . 2T R
n

i=1
We assume that a fairly accurate estimate of the norm of the noise,
10
(1.6) §:= e,

is available. This makes it possible to apply the discrepancy principle during the
solution process. We illustrate in Section 5 how, in situations when no estimate of
0 is known, a fairly accurate estimate can be determined by integrating a discrete
version of the nonlinear Perona-Malik diffusion equation for a few time-steps [25].

Tikhonov regularization and truncated iteration are the most popular approaches
to determining a meaningful approximate solution of large-scale linear discrete ill-
posed problems (1.4) with a noise-contaminated right-hand side; see, e.g., [14, 16, 18]
for discussions on these approaches. This paper describes multilevel methods, which
apply truncated iteration with a Krylov subspace method to compute an approximate
solution on each discretization level. For definiteness, consider the LSQR iterative
method discussed in, e.g., [24, 31]. This method is an implementation of the conjugate
gradient method applied to the normal equations associated with the linear system
of equations (1.4). Let the initial approximate solution be @y := 0. This choice of
initial vector is common and will be used for all Krylov subspace methods. Then the
fth approximate solution, x,, determined by LSQR satisfies

| Az, — b = min |Az — b)), @, € K(ATA, ATH),
€K, (AT A,ATHY)

where K, (AT A, ATb?) = span{ATb’ (ATA)ATH’,... (ATA)1ATH} is a Krylov
subspace. Here and below, we assume for ease of exposition that the dimension of a
Krylov subspace Ky(-,-) equals its index £. This requirement is satisfied in practice.
The computation of x, requires the evaluation of 2¢ matrix-vector products, ¢ of
which with A and ¢ with A”. We refer to the iterative solution of (1.4) by the LSQR
method as the one-level LSQR method in order to distinguish this method from the
LSQR-based multilevel method introduced below. Similar terminology will be used
for the other Krylov subspace methods considered.

2



The discrepancy principle prescribes that the iterations with LSQR be terminated
as soon as an approximate solution, xy,, such that

(1.7) | Az, — B < 0

has been determined, where ¢ > 1 is a user-specified constant independent of 4. Note
that ¢s increases as § decreases. Nemirovskii [23] and Hanke [16] have shown that in
an infinite-dimensional Hilbert space setting

1.8 li —z| =0.
(19) lim [z, — &

LSQR therefore is said to be a regularization method. It is straightforward to show
that (1.8) holds in finite dimensions.

When A is symmetric, it is attractive to apply the MR-II iterative method instead
of LSQR. MR-II is a modification, described in [9, 16], of the standard conjugate
gradient method. The ¢th approximate solution, x;, determined by MR-II when
applied to (1.4) is characterized by

Az, —b°||= min [JAz —b°|, @ € Ko(4, AbY),
EGK@(A,AI)S)

where Ky(A, Ab®) = span{Ab°, A26° ... A’b°}. The determination of x; only re-
quires the evaluation of £ + 1 matrix vector products with A. Hanke [16] shows that
the iterates determined by MR-II satisfy (1.8) in a Hilbert space.

GMRES is a popular iterative method for the solution of linear systems of equa-
tions with a not too ill-conditioned nonsymmetric matrix A; see, e.g., [31]. The ¢th
iterate, ¢, determined by GMRES satisfies

Az, — b= min ||Az—b|, x; € Ky(A,b°),
mE]K@(A,bS)

where Ky(A,b%) = span{b®, Ab°, ..., A*"1b°}. The computation of &, requires the
evaluation of ¢ matrix-vector products with A. The property (1.8) is shown in [7] in
a Hilbert space setting under certain conditions.

We also will consider the Range Restricted GMRES (RRGMRES) method. The
lth iterate, xy, determined by RRGMRES is characterized by

Az, —b°| = min |[Az —b°||, @, € Ky(A, Ab°%).
€K, (A,Ab%)

Its computation demands £ + 1 matrix-vector product evaluations with A. The limit
(1.8) can be established in Hilbert space similarly as for GMRES. RRGMRES does not
propagate the error e’ in b’ into the iterates as quickly as GMRES. This is discussed
in [8] and it is also illustrated in the computed examples of Section 5.

Krylov subspace methods applied with the stopping criterion (1.7) seek to curb
the propagation of the noise €’ into the the computed approximate solutions @,
by restricting the number of iterations. When there is much noise in b, only few
iterations are carried out. This limits the resolution of the computed approximate
solution.

The present paper describes cascadic multilevel methods that use one of the
Krylov subspace methods discussed above as basic iterative method and apply noise-
reducing prolongation and restriction operators. The computations proceed from
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coarser to finer levels. An approximate solution is computed on each level with the
Krylov subspace method chosen. The iterations are terminated on each level by a
stopping criterion analogous (1.7). The multilevel methods so defined are regular-
ization methods in a well-defined sense; see Section 2 for details. The computations
are terminated as soon as an iterate in R™ that satisfies (1.7) has been determined.
The advantages of cascadic multilevel methods, when compared with one-level Krylov
subspace methods, include:

e (Cascadic multilevel methods require fewer iterations in R™ than the corre-
sponding one-level Krylov subspace methods. This depends on that cascadic
multilevel methods determine a fairly accurate initial approximation of the
solution in R™ by iterations on coarser levels, while the initial approximate
solution for all one-level Krylov subspace methods is &y = 0. For large-scale
problems, the dominant computational effort for the multilevel methods are
the iterations in R™, and specifically the evaluation of matrix-vector prod-
ucts with A and possibly A”. The computations required for coarse-level
iterations are negligible. Therefore the smaller number of iterations in R™ re-
quired by cascadic multilevel methods, when compared with one-level Krylov
subspace methods, translates into a smaller arithmetic effort for the former
methods.

e Multilevel methods allow the application of noise-reducing restriction and pro-
longation operators. This limits the propagation of the error e’ in the right-
hand side b° into the computed approximate solutions. The noise-reducing
restriction and prolongation operators help cascadic multilevel methods de-
termine better approximations of the desired solution & of the noise-free lin-
ear system (1.2) than the corresponding one-level Krylov subspace iterative
methods.

Restriction of the right-hand side b® from finer to coarser levels is carried out by
noise-reducing local weighted least-squares approximation. We compare two restric-
tion operators, one of which is an adaption of the restriction operator used in [21],
which, in turn, is inspired by a local least-squares method for noise-removal described
by Buades et al. [5]. The other restriction operator, which is believed to be new, is
well suited for the situation when the desired solution & represents a smooth function.
Details of these restriction operators are provided in Section 3.

Prolongation of the computed solution from coarser to finer levels is performed
by local piecewise linear interpolation followed by nonlinear smoothing. The latter is
achieved by time-integration of a discretized nonlinear Perona-Malik diffusion equa-
tion for a few time-steps [25]. The smoother is designed to remove noise, but preserve
edges. Here and throughout this paper “edge” refers to any rapid spacial transi-
tion. Time-integration is carried out by an explicit method. This makes application
of the smoother inexpensive. Further details are described in Section 4. Numerical
examples, presented in Section 5, show our cascadic multilevel methods to require
less computational work and yield more accurate approximations of & than the cor-
responding one-level Krylov subspace iterative methods. Concluding remarks can be
found in Section 6.

An important feature of noise-reducing cascadic multilevel methods is that they
interlace approximate solution of (1.4) and noise removal. This reduces the propa-
gation of the error e’ in b°, when compared with the solution by one-level Krylov
subspace methods or by cascadic multilevel methods without noise reduction [29].
Noise-reducing cascadic multilevel methods were first developed in [21, 22] for image
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deblurring and denoising and many illustrations of the performance of different noise-
reducing restriction and prolongation operators can be found in these references, as
well as in Section 5. We compared noise-reducing prolongation operators based on in-
tegrating the Perona-Malik diffusion equation or with prolongation operators based on
integrating a TV-norm-type operator in [22] and found the former to yield somewhat
higher accuracy. We therefore use Perona-Malik-based prolongation operators in the
present paper. However, the difference in performance was not very large and other
noise-reducing schemes may perform as well as the one used in this paper. Similarly,
other noise-reducing restriction operators also may yield good results; see Buades et
al. [6] for a review of denoising algorithms.

Several multilevel methods for ill-posed problems have been described in the lit-
erature; see, e.g., [22, 29] for references. However, only few of them are applied to
the solution of (1.4) without Tikhonov regularization. Recently, Donatelli and Serra-
Capizzano [12, 13] described such multigrid methods, which are not cascadic; they
use full V- or W-cycles. These methods are shown in [13] not to be regularization
methods, though the computed results are nice. Scherzer [32] analyzed a cascadic
Landweber iteration-based multilevel method for nonlinear ill-posed problems. How-
ever, Landweber iteration-based methods tend to converge slowly. Cascadic multilevel
methods for image restoration, related to the methods of the present paper are de-
scribed in [21, 22]. The solution of general linear ill-posed problems by cascadic
multilevel methods is discussed in [29], where restriction is carried out by downsam-
pling and prolongation by piecewise linear interpolation. These multilevel are not
noise-reducing. They determine approximate solutions of about the same quality,
but with less computational effort, than the corresponding one-level Krylov subspace
methods.

2. Cascadic multilevel methods. Let
WicWyC---CW,

be a sequence of nested subspaces of R” with dim(W;) =n; andny <ng < ... <mng=
n. We refer to the subspaces W; as levels, with W; being the coarsest and W, = R”
the finest level. Each level is equipped with a weighted least-squares norm; level W;
has a norm of the form (1.5) with n replaced by n;.

Let A; € R™*™ be a representation of the integral operator (1.1) on level W;.
This defines implicitly the restriction operators R; : R — W, and @Q; : R" — W;,
such that

(2.1) A; = RiAQ?.

Here Q; denotes the adjoint of @);. For some discretizations Q7 = R;. We define
Re=Q,=1.

The choice of restrictions R; and @; is in our experience less crucial for achieving
accurate approximations of the desired solution & of the noise-free system (1.2) than
the choice of restriction operators R; : R* — W; for reducing the available noise-
contaminated right-hand side b° in (1.4). Let

(2.2) b= R,  1<i<l{,

where the R; are determined by repeated local weighted averaging. Section 3 de-
scribes two such restriction operators and discusses their noise-reducing properties.
For notational simplicity, we define Ry, = I.
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Assume that a sufficiently accurate approximate solution has been computed on
level 4 — 1 with ¢ < n. The nonlinear prolongation operator P; : W;_; — W; then
determines an approximate solution on level ¢. It is defined by piecewise linear in-
terpolation followed by integration of the Perona-Malik convection diffusion equation
over a short time-interval; see Section 4 for details. The operators P;, 1 < i < /, are
designed to be noise-reducing and edge-preserving. The choice of the P; is impor-
tant for the performance of the multilevel method. We compare in Section 5 results
achieved with the nonlinear prolongation operators P; and with linear prolongation
operators L; : W;_1 — W,;, 1 < i </, defined by piecewise linear interpolation.

The multilevel method first computes an approximate solution in Wy of the small-
est linear system of equations Ajx = b‘f, using one of the iterative methods GMRES,
LSQR, MR-II, or RRGMRES. We refer to the iterative method chosen as IM in Al-
gorithm 2.1 below. The iterations are terminated as soon as an iterate that satisfies a
stopping rule related to the discrepancy principle has been determined; see below for
a discussion of this stopping criterion. The prolongation P> maps this iterate from Wy
into Ws, and the mapped iterate is corrected in Wy with the chosen iterative method.
Again, the iterations are terminated by a stopping rule related to the discrepancy
principle. The approximate solution in Wy computed in this manner is mapped into
W3 by P3. The computations are continued in this fashion until an approximation
of & has been determined in W, = R™. The computations are summarized by the
following algorithm.

ALGORITHM 2.1. Multilevel Algorithm
Input: A, b, 6, 0>1 (number of levels);
Output: approzimate solution T € W, of (1.2);
Determine A; and b from (2.1) and (2.2), respectively, for 1 < i < {;
o = 0,’
fori:=1,2,...,¢ do
;0= Pxi_1;
Ailti)mi = IM(AZ, bf — Aﬁl)@o),‘
Correction step: x; = x;0 + Axim,;
endfor
T = xy; O

In the algorithm Ax; ., = IM(A;, bf — Az, o) denotes the computation of the ap-
proximate solution Ax; ,,, of

(2.3) Aizi = b? — Ao

by m, iterations with the chosen iterative method.

Example 2.1. Consider the solution of (2.3) by MR-II when A; is symmetric or
by RRGMRES when A; is nonsymmetric. Define the residual vector r; := bf —Aixio
and use the initial approximate solution Ax;o = 0. Then the ¢th iterate, Ax; g,
determined by MR-II or RRGMRES solves the minimization problem

||AiA£Bi)g — ’l"l” = min HAizi — ’I“iH, zZ; € K@(Ai, Al’l"l)
2,€Ke(Ai,Air;)
O

Our stopping rule on each level is analogous to (1.7). We assume that there are
constants ¢; independent of 4, such that

(2.4) 160 = b|| < e,  1<i<d,
6



where § is defined by (1.6). The noise-reducing property of the restriction operators
R; suggests suitable choices for the coefficients ¢;; see Section 3.

STOPPING RULE 2.2. Let § and the ¢; be the same as in (2.4) and denote the
iterates determined by the IM iterative method applied to the solution of (2.3) with
initial iterate Ax; o = 0 by Azx; ,, m =1,2,... . Terminate the iteration on level i
as soon as an iterate Ax; .. that satisfies

(2.5) 1b; — Aixio — AAT; b, || < ¢

has been determined, where m; = m; s denotes the termination index. This index
depends on §.

The multilevel methods so defined can be shown to be regularization methods
under various restrictions; see [21, 22, 29]. Linear regularization operators can be used
as right preconditioners. These regularization operators change the solution subspace.
Suitably chosen operators can improve the quality of the computed approximation of
&; see, e.g., [2, 20, 30] for discussions on the choice and use of linear regularization
operators.

3. Noise-reducing restriction operators. The choice of restriction operators
depends on the space dimension of the set S in (1.1). This section discusses restriction

operators that are applicable when S is a bounded interval. Let :vl(-j ) denote the jth
component of the vector x; € W;. We assume the discretization to be monotonic,
ie., 27 ()
€., el

;. corresponds to the solution of the integral equations (1.1) at a point ¢

1 <j < mnj, with tE]) < tEjH) for all j. We remark that when S is a square, restriction
operators developed for the restoration of two-dimensional images can be applied; see
[21, 22] for examples of such restriction operators.

This section introduces two noise-reducing restriction operators, the first of which
is inspired by the “staircasing”-reducing method by Buades et al. [5]. Our second
restriction operator is simpler, but may smooth edges more. It is well suited for linear
discrete ill-posed problems, whose desired solution is the discretization of a smooth
function.

Our first restriction operator is based on solving weighted local least-squares
problems using a window consisting of three neighboring entries a:z(-J ). This is similar
to the method proposed by Buades et al. [5]. Introduce the weight function

j . N\ 2
(3.1) wz@)(s) := exp (_7 (xgzﬁs) _ x§2j)> ) 7
with v a positive constant, and consider the least-squares problem
; 2 )
(3.2) min § : (Iz('2]+5) — (a0 + a15)) wZ@J)(s)
ap,a1
s€{0,+1}

for the coefficients {ag, a1} of the linear function. Denote the solution by {ao, a1}
(7

and let z;”’; := G¢. The least-squares problems (3.2) are solved for all 1 < j < mn;_;.

This determines the vector @;_1 = [a:z(.l_)l,:zrz(.z)l, e xz(-fil’l)]T and defines the mapping

Mi : Wi — Wz’—l-

The number of arithmetic floating point operations required to solve (3.2) for all
entries of @; 1 is proportional to n;_; and therefore modest. The solution of each
least-squares problem can be computed by determining a modified QR-decomposition
of a 3 x 2 matrix based on modified Householder transformations; see [15] for details.
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Application of the mappings M, for k= €,0+1,...,i+1, in order, defines the
restriction operators

(33) Ri : R — W,, Rl = Mi+1Mi+2...Mg, 1<i<d.

Since least-squares approximation implies smoothing and the noise in b° contains
a significant high-frequency component, the restrictions bf of b°, for i < ¢, defined by
(2.2) typically contain less noise than b9. This is illustrated by the following result.

PROPOSITION 3.1. Let v = 0 in (3.1) and assume that the entries egj) of the
noise-vector €9 = b° — b are uncorrelated random variables with zero mean. Let

lled||? denote the average variance of the entries, i.e.,

1 &
= — Z Var(ey))
Ny “
j=1

Assume that the solution is periodic, so that boundary effects can be ignored. Let

1

(34) Ng—1 = ing
and

eg_l = R[_le(g.
Then

V2

5 5
led_yllv < = ||6e||V, ler_illv > ?Hee“V-

Proof. For i = £, the least-squares problem (3.2), with w(/) =1 for all 5, can be
expressed as

3.5 in |Ha — y
(3.5) ;rgRgH a—yY|,

where

a= [ao,al]T e R?,

() = [p5-1) (2D LIHD)T ¢ 3,

Yy
Denote the solution of (3.5) by @ = [ao,a1]T. Since H has orthogonal columns, we
obtain
G s 1 (2j+s)
x| = ao = 3 Z z,7 .
se{0,£1}

The component GE , of the vector e)_, represents the error (noise) in ZC(J ) and is the

average of the errors e§ 7+%) in the three entries :c§ It ), e {0,£1}. Therefore,
2 +s
Var( el 1) Z Var(e,” ))

56{0 +1}
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and it follows that

Mne—1

1 .
(3.6) lez_1 11} = p— > Var(e”))
-1 =
1 Neg—1 ( )
_ 2j+s
(3.7) v Z Z Var(e, )
Jj=1 se{0,£1}
(3.5) < 2 S Var(el?) = 3 Var(el) = el
' T Ongq 4 ¢ Iy 4 ¢ gl eV
j=1 j=1
The inequality (3.8) is a consequence of the fact that some errors efj +9) contribute

to two errors ey_) 1- Moreover, no entry of e, contributes to more than two entries of
e;—1. The equality on the left in (3.8) follows from (3.4).
Every entry of e, contributes to at least one entry of e;_;. We therefore obtain

analogously to (3.6)-(3.8) the inequality

1 Ne—1 .
lef -l =g—— > D Var(ef”™)
=1 537 sefot1}
IR . y_ 2 N Gy _ 2802
= 90, ;Var(ee ) = Oy ;Var(ee ) = §Hee|\v-

This establishes the proposition. O
COROLLARY 3.2. Let the conditions of Proposition 3.1 hold and assume further
that

Var(ey)) =17, 1 <5< ny

Then

1
lef-alv = —zleflv.

Proof. The result follows from (3.6)-(3.7). O
Approximating |l€l v by ||e|| for k = ¢ —1,¢, we obtain from Corollary 3.2 that

1
V3

s s
ezl = —=llecl-

This suggests the choice of the coefficients

—i
(3.9) = (%) c, 1<e<d,

in (2.5), where ¢ > 1 is a user-specified constant. Generally, c is chosen close to unity
when the available estimate of the norm of the noise is accurate.

The following simpler averaging scheme for the restriction operator can be at-
tractive when the desired solution & is known to represent a smooth function on the
interval S. Define the mappings M; : W; — W,_1, for 2 <i < ¢, by
(3.10) :Cgi)l = wlxgzjfl) + wor'®) 4y 2D

i i 1§j§ni—17
9



with

1 V2
wy = —, Wy 1= ————.
TN T a4
Let the restriction operators R; be determined by these M; according to (3.3).

PROPOSITION 3.3. Assume that the entries egj) of the noise-vector eg = b’ —b are

uncorrelated random variables with zero mean. Let (3.4) hold. Assume the solution
to be periodic, so that boundary effects can be ignored. Let

& 5, [
€y_1 = R[_leg

with Ry defined as above. Then

1
3.11 e =————|l€d|lv.
(3.11) et = T leflv

where || - ||v is defined in Proposition 3.1.
Proof. Tt follows from (3.10) that

Var(e?,) = wiVar(ef ) + wiVar(ef)) + wiVar(ef? ).

Therefore, using (3.4), we obtain

Ne—1

Heg—1||%/ = Z Var( ee 1
wQWA (2j-1) (25+1)) - @)
=1 (Var 7Y 4 var(el2 ! ) Var(e 2
z ) v ) S
2w Neg—1 Te—1 )
i 2; 1) 2;
= Var(e Var(e
> Z
=1
2W2 (J) 4 5112
= Var(e;)) = —————| €|},
Z )= Gl

which shows (3.11). O
Property (3.11) suggests that the coefficients

1 L—1
3.12 = —F , 1<i <Y,
( ) c <1+1/\/§> c 7

be used in (2.5) when the mappings M; are determined by (3.10).

4. Edge-preserving nonlinear prolongation operators. We describe the
nonlinear edge-preserving prolongation operators P; used in the computed examples.
They have previously been applied in [22] in the context of image restoration. Here
we discuss their application to the solution of linear discrete ill-posed problems (1.4),
with a matrix obtained by discretizing the integral operator (1.1) with S a bounded
real interval.

The prolongation operators are made up of two parts: first the approximate solu-
tion x;_1 € W;_; determined by the correction step of Algorithm 2.1 is mapped into
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W; by piecewise linear interpolation. This defines the linear operator L;. Subsequently
L;x;—; is smoothed by solving an initial-boundary value problem for a discretized
Perona-Malik nonlinear diffusion equation. Consider for the moment z; := L;x;_1 a
continuous function. Then, roughly, we integrate

Jdx 0 (10 %\ o
. - = >
(4.1) or  0Os (w ( s ) (9530) 7 = =aln9), €5 T=0

over a short 7-interval in order to remove noise while preserving rapid spacial transi-
tions, such as edges. We use the initial function (0, s) = z;(s), s € S, and Neumann
boundary condition zero. The function ¢’ is the Perona-Malik diffusivity,

Vi) =

where p is a positive constant; see [25]. The differential equation (4.1) is designed
to determine an element in W; that has edges close to those of x;_; and is smooth
elsewhere.

Space-discretization of (4.1) by finite differences and time-integration by Euler’s
method yields

(kt1,3) _ po(ks0) (k,3) 4 p(ksd)
x x pl +p ; i
— A = E (2RI — gk

(4.2) JEN(%)
z*) ~ x(kAT,s;), $; = sg + 1As,
where the set N(i) contains the indices of neighboring mesh points; if z® ) is an

interior mesh-point, then N(i) = {i — 1,7+ 1}, while if z(*% is a boundary point, then
N(z) only contains one index. The parameter As is the mesh size and

. . 2
e plkitl) _ o (kii=1)
' 2As ’

is a second order approximation of 1)’ (’ %x} ) at (" by finite difference discretiza-

tion. We carry out about 10 integration steps A7. For reason of stability, we let
0 < A7 < 1/3. The small number of steps avoids difficulties due to numerical insta-
bility and keeps the computational effort required for integration negligible. We note
that nonlinear diffusion filtering models, similar to (4.1), are applied successfully in
PDE-based methods for image processing problems; see, e.g., [11, 33].

5. Numerical examples. This section illustrates the application of Algorithm
2.1 to the solution of linear discrete ill-posed problems. We compare the performance
of Algorithm 2.1 for piecewise linear and nonlinear prolongation operators. Piecewise
linear prolongation previously has been applied in [29]. We also illustrate the denoising
process used in the nonlinear prolongation operators P; described in Section 4.

Let the noise-level be defined by

5
I1B]1”

vV =

where the error § is given by (1.6). We assume that an accurate estimate of v is
available in all examples of this section, except in Example 5.5, and therefore choose
the parameter ¢ in (3.9) and (3.12) fairly close to unity.
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Fic. 5.1. Ezample 5.1: Denoising of a contaminated signal by integration the discretized
Perona-Malik equation (4.2) for 20 time steps. The unperturbed signal is a step function. (a)
Contaminated signal, with additive Gaussian noise of level 11071 (dashed curve), (b) denoised
signal (continuous curve).
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Fic. 5.2. Ezxample 5.1: Denoising of a contaminated signal by integration the discretized
Perona-Malik equation (4.2) for 10 time steps. The unperturbed signal is a step function. (a)
Contaminated signal, with additive Gaussian noise of level 11072 (dashed curve), (b) denoised
signal (continuous curve).

Example 5.1. We illustrate the denoising process described in Section 4. The
process is applied to three noise-contaminated “signals” v Figure 5.1(a) shows a
contaminated step function represented by a vector with 512 entries. The noise level is
10%. Figure 5.1(b) displays the denoised signal obtained by integrating the discretized
Perona-Malik equation (4.2). Figure 5.2 differs from Figure 5.1 in that the noise-level
is reduced to 1%. We remark that signals with high noise-levels may benefit from a
larger number of time steps, than signals corrupted by little noise.

Finally, Figure 5.3 shows a noisy and denoised smooth signal. The noise level is
1%. Denoising is achieved by application of 10 integration steps. The step size for all
computations for this example is A7 = 0.3. O

Example 5.2. This example compares the performance of multilevel methods
using nonlinear or piecewise linear prolongations, with the corresponding one-level
iterative methods. The methods are applied to the solution of the Fredholm integral
equation of the first kind,

/2
(5.1) /0 h(s,t)x(t)dt = b(s), 0<s<m,

with h(s,t) := exp(scos(t)) and b(s) := 2sinh(s)/s, discussed by Baart [1]. It has
the solution z(t) = sin(t). We use the MATLAB code baart from [19] to discretize
(5.1) by a Galerkin method with 512 orthonormal box functions as test and trial

12



(a) (b)

Fi1c. 5.3. Ezample 5.1: Denoising of a contaminated signal by integration the discretized
Perona-Malik equation (4.2) for 10 time steps. The unperturbed signal is a smooth function. (a)
Contaminated signal, with additive Gaussian noise of level 1 -1072 (dashed curve), (b) denoised
signal (continuous curve).

P; L;
¢ v lz— |/l | #iter | || —a|/[l&] | # iter
1[1-1072 ] 351-1072 3
211-1072 3.28.1072 31 3.41-1072 31
3]1-1072 3.17-1072 311 3.42-1072 311
5(1-1072 2.97-1072 32111 3.39-1072 32111
1]1-1073 3.53-1072 3
2(1-1073 3.36-1072 31 3.55-1072 31
3]1-1073 3.10-1072 321 3.54-1072 321
511-1073 1.94.1072 33221 3.46-1072 32221

TABLE 5.1

Ezxample 5.2: Errors in computed approximate solutions & of the problem baart and the compu-
tational effort required by Algorithm 2.1 using the RRGMRES iterative solver with nonlinear (P;) or
piecewise linear (L;) prolongation operators. The restriction operators determine weighted averages
(3.10).

-1073 1.57-1071 321 1.67-1071 321
-1073 7.97-1072 43221 1.20-1071 42221
TABLE 5.2
Ezxzample 5.2: Errors in computed approximate solutions & of the problem baart and the com-
putational effort required by Algorithm 2.1 using the LSQR iterative solver with nonlinear (P;) or

piecewise linear (L;) prolongation operators. The restriction operators determine weighted averages
(3.10).

P, L;
l v lz— ||/l | #iter | ||&—|/|[&] | # iter
1[11-1072] 1.67-1071 3
211-1072| 1.62-107t 31 1.67 - 1071 31
311-1072| 1.57-107* 311 1.67-101 311
5(1-1072| 130-107" |32111| 177-107' |32111
1[1-1073] 1.66-1071 3
211-1073| 1.62-107" 31 1.67 - 1071 31
311
511

functions. This yields the nonsymmetric matrix A € R%12*512, The code baart also
provides a scaled discrete approximation & € R52 of x(t). The noise-free right-hand
side of (1.2) is determined by b := A&. Adding normally distributed “noise” with
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P, L;

-1073 3.08-102 321 3.56 - 1072 321
-1073 2.00-102 32231 3.50- 102 32221
TABLE 5.3
Ezxzample 5.2: Errors in computed approximate solutions & of the problem baart and the com-
putational effort required by Algorithm 2.1 using the RRGMRES iterative solver with and nonlinear
(P;) or piecewise linear (L;) prolongation operators. The restriction operators solve weighted local
least-squares problems (3.2).

¢ v |2 —a|/ll2] | #iter | || —z|/|Z]| | 4 iter
1[1-1072] 351-102 3

2|1-1072 | 3.26-1072 31 3.41-1072 31
311-107%| 3.10-1072 311 3.41-1072 311
5/1-1072] 251-1072 |32111] 335-1072 |32111
I[1T-10°] 353102 3

2|1-107% | 3.34-1072 31 3.57-1072 31
301

5|1

zero mean, scaled to correspond to the noise-levels v = 1-1072 or v = 1- 1073, yields
the right-hand side b° of (1.4); cf. (1.3). We also use the code baart to generate the
matrices A; of size 16 - 2% x 16 - 2 for 1 < i < 5. These matrices, as well as Ay := A,
are numerically singular.

Computed results are reported in Tables 5.1-5.3. Let & denote the approximate
solution determined by a multilevel or one-level method. The tables display the
relative errors || — 2||/||2|| and the number of iterations for the noise levels 1 - 1072
and 1-1073. The columns labeled “# iter” display the number of iterations on each
level. The f-tuples show, from left to right, the number of iterations for increasing
level index. Thus, the leftmost entry of each ¢-tuple shows the number of iterations
on the coarsest level, and the rightmost entry the number of iterations on the finest
level. The column labeled “¢” displays the number of levels used. Thus, the rows
labeled ¢ = 1 show results for the one-level method.

Tables 5.1 and 5.2 show results obtained with Algorithm 2.1, based on the RRGM-
RES and LSQR iterative solvers, respectively. The restriction operators uses weighted
averages (3.10). The RRGMRES-based multilevel method is seen to perform partic-
ularly well, with the relative error decreasing when the number of levels is increased.
Moreover, the nonlinear prolongation operators P; yield more accurate approxima-
tions of the desired solution than the linear prolongation operators L;. All multilevel
methods, with at least two levels, require only one iteration on the finest level. The
one-level method requires three iterations. The multilevel method therefore can be
faster for large problems, for which the evaluation of matrix-vector products with the
matrix A = Ay constitutes the dominant computational effort.

A comparison of restriction operators based on local weighted least-squares ap-
proximation (3.2) and weighted averaging (3.10) is provided by the Tables 5.3 and
5.1, respectively. The tables show weighted averaging to yield slightly higher accuracy.
This depends on that the desired solution & represents a smooth function. O

Example 5.3. Consider the Fredholm integral equation of the first kind

6
(5.2) /6 h(s,t)x(t)ds = b(s), —6 < s <6,
14



P; L;
l v lz— [/l | #iter | [[@—@|/|2] | # iter
1[1-1072| 2.35-1072 4
211-1072 ] 231-1072 51 2.32-1072 51
311-1072| 2.26-102 611 2281072 611
5(11-1072 | 2.01-1072 93111 2.23-1072 92111
111-1073] 9.56-10"3 7
211-107%| 9.08-1073 85 9.11-1073 85
3(1-1073| 6.77-1073 1011 6.84-1073 1011
511-1073| 653-107% | 118312 | 6.73-1073 | 118312

TABLE 5.4
Ezample 5.3: Errors in computed approzimate solutions & of the problem phillips and the
computational effort required by Algorithm 2.1 using the MR-II iterative solver with nonlinear (P;) or
piecewise linear (L;) prolongation operators. The restriction operators determine weighted averages
(3.10).

P; L;
l v lz— [/l | #iter | [[@—2|/|2] | # iter
111-1072] 2.35-1072 4
211-1072 | 2.30-1072 51 2.31-1072 51
3(1-1072] 2.10-1072 711 2.12-1072 711
511-1072| 4.11-1072 |107111| 471-1072 |107111
111-1073] 9.56-1073 7
211-1073| 9.35-1073 84 9.39.103 84
311-103| 6.72-1073 1012 6.81-1073 1011
511-1073| 1.19-1072 |126321 | 142-1072 | 123211

TABLE 5.5
Ezample 5.3: Errors in computed approzimate solutions & of the problem phillips and the
computational effort required by Algorithm 2.1 using the MR-II iterative solver with nonlinear (P;)
or piecewise linear (L;) prolongation operators. The restriction operators solve weighted local least-
squares problems (8.2).

discussed by Phillips [26]. Its solution, kernel, and right-hand side are given by

_ ) T+cos(3t), ift| <3,
o(t) = { 0, otherwise,

h(s,t) :=x(s —t),

1 s 9 . 7
bs) i= (6 = [s)(1 + 5 cos(5 ) + o sin( |s]),

respectively. We discretize the integral equation (5.2) using the MATLAB code
phillips from [19]. Discretization by a Galerkin method with 512 orthonormal
box functions as test and trial functions yields the symmetric indefinite matrix A €
R°12%512 " which is nearly singular; it has condition number x(A) := [|A|||A7}Y]| =
1.81 - 10%. The matrices A; of order 16 - 2%, 1 < 4 < 5, are all generated by the code
phillips. The right-hand side vectors b and b° of (1.2) and (1.4), respectively, as well
as the desired solution & of (1.2) are determined in the same fashion as in Example
5.2.

Tables 5.4 and 5.5 report the performance of Algorithm 2.1 based on the MR-IT
iterative solver with nonlinear or linear prolongation operators, P; and L;, for different
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Fic. 5.4. Ezample 5.4: Restoration of piecewise constant signal that has been contaminated
by blur and noise. (a) Blurred and noisy signal. (b) restored signal, determined by Algorithm 2.1
with three levels, using the MR-II iterative solver and nonlinear nonlinear prolongation operators
P; (continuous curve). The dotted curve displays the desired piecewise constant signal &.

restriction operators.

The row for £ = 1 displays results for the one-level MR-II method. We consider
the noise-levels 1-1072 and 1-1072. A comparison of the tables shows restriction
operators based on weighted averaging (3.10) to generally yield slightly smaller errors
than restriction operators based on weighted local least-squares approximation (3.2).
Nonlinear prolongation operators P; are seen to determine more accurate approxima-
tions of & than piecewise linear prolongation operators L;. O

P, L
& — || /|||l | # iter | |l& —||/||2] | # iter
1.02-10 1 1

8.70 - 1072 11 8.78 -1072 11
8.08 - 1072 411 8.88 1072 411

TABLE 5.6
Ezxample 5.4: Errors in computed approzimate solutions of the problem signal and the com-
putational effort required by Algorithm 2.1 using the MR-II iterative method with nonlinear (P;) or
piecewise linear (L;) prolongation operators. The restriction operators solve weighted local least-
squares problems (8.2).

W N S

Example 5.4. We consider the determination of a discrete piecewise constant
signal & € R5!2 from a blurred and noisy version b° € R%'2 defined on a uniform
grid. We refer to this restoration problem as signal. The blurring is modeled by a
convolution with a Gaussian with mean zero and variance 0.6. The blurring operator
is a symmetric Toeplitz matrix A € R®'2%512 The blurred and noisy signal b is
generated similarly as in Example 5.2. The noise-level is 1 - 107",

The Toeplitz matrices A; of order 64-2%, i = 1,2, are defined similarly as Az := A.
The condition numbers for the matrices 4; grow rapidly with i; we have k(A1) =
3.53-10°, k(A2) = 9.20 - 10!, and x(A43) = 1.19 - 10'7. Thus, the latter matrix is
numerically singular.

Algorithm 2.1 is applied with the MR-II iterative method. Contaminated and
restored signals, as well as &, are shown in Figure 5.4. Relative errors and computa-
tional effort are reported in Table 5.6. The table illustrates the better performance
of the nonlinear prolongation operators. O

Example 5.5. We illustrated in Example 5.1 that integration of the Perona-Malik
differential equation for a short time interval, with the contaminated data b° as initial
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¢ v J | —z|/ll2|l | # iter
1[11-1072]289-10"2 ] 3.51-102 3
311-1072]2.89-1072| 3.10-1072 311
15-1073 | 1.44-1072 ] 3.39-1072 3
315-107%|1.44-1072 | 3.14-1072 311
1[1-1073]2.89-1073 | 3.53-102 3
311-1072%]289-1073| 3.08-10"2 321
TABLE 5.7

Ezxample 5.5: Errors in computed approximate solutions & of the problem baart and the com-
putational effort required by Algorithm 2.1 using the RRGMRES iterative solver with nonlinear
prolongation operators and restriction operators that compute weighted local least-squares (3.2).

4 v é [ —&[|/||2] | # iter
1[11-1072]255-1072 | 3.49-1072 3
311-1072]255-1072| 3.35-1072 311
1]5-1003]1.28-1072 | 3.40-102 3
315-1072]1.28-1072| 3.11-1072 311
1[11-1073]2.87-103 | 3.59-102 3
3011-107%|2.87-1073 | 3.25.1072 321
TABLE 5.8

Example 5.5: Estimates of the discrepancy, &, determined by integration of the discretized
Perona-Malik equation, and computed results obtained when using this estimate in Algorithm 2.1
instead of the exact discrepancy. The iterative method, prolongation and restriction operators are
the same as for Table 5.7.

values, reduces the noise in b‘s, without changing important features significantly. The
difference between the noisy and integrated vectors gives an estimate for the norm of
the noise, 8, in b%; cf. (1.6). We denote this estimate by §. This example discusses
the use of 0 instead of & in Stopping Rule 2.2 of Algorithm 2.1.

Consider the problem baart of Example 5.2 and determine the matrix A €
R512%512 and the vectors &,b,b° € R32 similarly as in Example 5.2. The use of
the exact discrepancy (1.6) in Algorithm 2.1 yields Table 5.7, which reports results
for an RRGMRES-based three-level method with nonlinear prolongation operators P;
and restriction operators defined by local weighted least-squares (3.2), as well as for
the RRGMRES method applied on the finest level only.

In order to determine an estimate of the discrepancy, we integrate the discretized
Perona-Malik nonlinear diffusion equation (4.2) for 10 time steps A7 = 0.2 with initial
value b°. This gives the (partially) denoised vector b and the computed estimate
6 := ||’ — b|| of the discrepancy.

We apply Algorithm 2.1 with the same iterative methods, restriction and pro-
longation operators as for Table 5.7, but with § replacing ¢ in Stopping Rule 2.2.
Table 5.8 shows results for three-level and one-level methods for several noise-levels.
Comparison of Tables 5.7 and 5.8 shows the solution methods to require essentially
the same number of iterations and determine approximations & of & of about the
same accuracy when ¢ is replaced by its estimate 6. The tables, as well as numerous
other computed examples, suggest that for linear discrete ill-posed problems (1.4),
for which no estimate for the noise-level is available, quite accurate estimates can be
computed by integrating the discretized Perona-Malik differential equations for a few
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time steps. The estimated discrepancy, g, can be used in Algorithm 2.1, as well as in
one-level iterative methods, instead of the exact discrepancy (1.6). O

6. Conclusion and extensions. This paper discusses an adaption of the multi-
level methods developed in [21] for image restoration problems to the solution of gen-
eral linear discrete ill-posed problems. The computed examples show the proposed
multilevel to yield higher accuracy than corresponding one-level iterative methods.
Moreover, the multilevel methods require fewer matrix-vector product evaluations on
the finest level than the corresponding one-level methods. These matrix-vector prod-
uct evaluations constitute the dominant computational work for large-scale problems.

For the problems considered, RRGMRES-based multilevel methods give more
accurate approximations of & than LSQR-based multilevel methods. This is different
from our experience for image restoration problems reported in [21]. The reason for
this is presently being investigated.

Numerical examples show that integration of the “data” b° with the nonlinear
Perona-Malik convection diffusion equations gives accurate estimates for the noise-
level in the data. Other approaches, of course, also can be used to estimate the
noise-level, including extrapolation methods [3, 4, 27], as well as the L-curve and
variants thereof [10, 17, 28].
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