
An Efficient Unified Approach for the Numerical
Solution of Delay Differential Equations

Hossein ZivariPiran and Wayne Enright
Department of Computer Science, University of Toronto

Toronto, ON, M5S 3G4, Canada

{hzp, enright}@cs.toronto.edu

Abstract

In this paper we propose a new framework for designing a delaydiffer-
ential equation (DDE) solver which works with any supplied initial value
problem (IVP) solver that is based on a standard step-by-step approach, such
as Runge-Kutta or linear multi-step methods, and can provide dense output.
This is done by treating a general DDE as a special example of adiscontinu-
ous IVP. Using this interpretation we develop an efficient technique to solve
the resulting discontinuous IVP. We also give a more clear process for the
numerical techniques used when solving the implicit equations that arise on
a time step, such as when the underlying IVP solver is implicit or the delay
vanishes.

The new modular design for the resulting simulator we introduce, helps
to accelerate the utilization of advances in the different components of an ef-
fective numerical method. Such components include the underlying discrete
formula, the interpolant for dense output, the strategy forhandling disconti-
nuities and the iteration scheme for solving any implicit equations that arise.

1 Introduction

Differential equations are one of the most frequently used tools for mathematical
modeling in engineering and life sciences. Delay differential equations (DDEs) are
a class of differential equations that have received considerable recent attention and
been proven to model many real life problems, traditionally formulated as systems
of ordinary differential equations (ODEs), more naturally and more accurately.
Several DDE solvers have been implemented during the past twenty years,based
on the extension or modification of traditional ODE techniques such as those based
on Runge-Kutta or linear multi-step formulas ([2], [4], [9], [11], [17],[20], [21]).
The implementations of these solvers are usually based on adapting an existing
initial value problem (IVP) solver. These DDE solvers use the provision for dense
output, which is a key component of most modern IVP solvers, as the base and
add some strategies for handling discontinuities and vanishing delays. During this

1

process, special properties of the underlying IVP solvers are usuallyexploited to
make the overall technique more efficient.

There are some drawbacks associated with this approach for developingDDE
solvers. First, it usually takes a long time for an IVP solver to be recognizedand
subsequently identified as a candidate for modification for use as a DDE solver.
Therefore, it is difficult to have a timely investigation of the effectiveness of pro-
posed new underlying formulas (used in IVP solvers), for DDEs. Second, when
some or all added components of a DDE solver, such as stepsize selection strat-
egy and discontinuity handling, rely on the underlying IVP formula, they need to
be redeveloped and recoded for every new DDE solver. This results ina lot of
redundancy during the analysis and the coding, since many concepts involved in
developing these components are common.

In this paper we propose a structure for a DDE solver which is independent
of the underlying IVP solver, with the only interactions between the two being
through a common interface. We consider a general step-by-step IVP solver that
finds continuous numerical approximations to problems of the general form

y′(t) = f (t,y(t)), for t0 ≤ t ≤ tF
y(t0) = y0,

(1)

wherey and f are vector-valued functions. The resulting DDE solver that we
develop can be applied to approximate the solution of a system of retarded delay
differential equations (RDDE),

y′(t) = f (t,y(t),y(t −σ1), . . . ,y(t −σν)), for t0 ≤ t ≤ tF
y(t) = φ(t), for t ≤ t0

(2)

or a system of neutral delay differential equations (NDDE)

y′(t) = f (t,y(t),y(t −σ1), . . . ,y(t −σν),

y′(t −σν+1), . . . ,y
′(t −σν+ω)), for t0 ≤ t ≤ tF

y(t) = φ(t), y′(t) = φ ′(t), for t ≤ t0

(3)

whereφ , thehistory, is a vector-valued function andσi = σi(t,y(t))≥0, i = 1,2, . . . ,ν +
ω , are scalar functions (which can in general be time and state dependent).

There are two major complications that can cause numerical difficulties in con-
ventional approaches for solving DDEs: First, discontinuities may occur invarious
derivatives of the solution. Second, a delay may vanish,i.e. σ → 0. When a delay
vanishes, we call it avanishing delay.

The first difficulty is due to the presence of the delay terms. In general atthe
initial point, the right-hand derivativey′(t0)+, evaluated usingf , does not equal the
left-hand derivativeφ ′(t0)−. Furthermore,φ may have discontinuities. A discon-
tinuity can therefore arise and propagate from both the initial time and the history
function. In general, the order of a derivative discontinuity (when it is propagated)
increases witht for RDDEs, but this is not the case for NDDEs.

2

The second complication is important because it may cause a DDE solver to
fail by forcing it to choose a sequence of very small steps.

In the remainder of this paper we first review the techniques used in the numer-
ical solution of discontinuous IVPs and show that a general DDE can be treated
as a special example of a discontinuous IVP. In Section 5 we develop the details
of a DDE solver based on this view and also the required interface with an IVP
solver. In Section 6 we report on some numerical experiments with a DDE solver
developed using this approach.

2 Discontinuous IVPs and Hybrid Systems

Hybrid systems are mathematical models that exhibit both discrete and continuous
behavior over the time interval of interest. The continuous behavior of the model is
usually described by one or more ODEs, DDEs, or differential-algebraicequations
(DAEs). The discrete behavior, which occurs at particular points in time (events),
includes phenomena such as nonsmooth forcing, switching of the vector field and
jumps in the state. This is a new perspective, that can be compared with the tradi-
tional approach of formulating the model in terms of discontinuous vector fields.
(For more information and discussion of hybrid systems arising in mathematical
modeling see [1] or [8] and references therein.)

Consider a simple case of a hybrid system described using two sets of differ-
ential equations and a switching function,

y′(t) =

{

f1(t,y(t)), for g(t,y(t)) < 0

f2(t,y(t)), for g(t,y(t)) ≥ 0
(4)

To simulate the system (4), one has to use an integration scheme along with a tran-
sition handler. The integration is usually done by a Runge-Kutta method or a linear
multistep method. The transition handler is responsible for detecting events andlo-
cating switching points and changing the integration accordingly (transition).An
important aspect of the transition handler is the correct detection of irregularities
that may happen at a switching point, such as non-uniqueness or terminationof the
solution.

Suppose that the integration of the hybrid system (4) has reachedtn where we
haveyn ≈ y(tn). The local solutionzn(t) over[tn, tn+1] is defined by

z′n(t) =

{

f1(t,zn(t)), for g(t,zn(t)) < 0

f2(t,zn(t)), for g(t,zn(t)) ≥ 0

zn(tn) = yn.

(5)

3

3 Techniques for the Efficient Simulation of Discontinu-
ous IVPs

Suppose that a solver is trying to compute a numerical approximation to the solu-
tion of (4) by computing a continuous approximation on each step. All standard
solvers assume that the solution is continuous enough, over the entire step,for
the underlying formulas to be applied with confidence. An accepted strategyis to
detect and include the discontinuity points in the set of mesh points. For the suc-
cessful application of this strategy, having an accurate discontinuity or switching
point location is necessary.

For a state-dependent switching function, the location of discontinuities cannot
be computed̀a priori because their unknown locations depend implicitly on the
unknown solution.

When the solver wants to take a step fromtn to tn+1, and a switching/discontiniuity
is suspected to occur in[tn, tn+1], approximations based on sufficient differentiabil-
ity of the solution become unreliable. Therefore, using the local continuousap-
proximation to the solution in[tn, tn+1] to locate the discontinuity may lead to an
inaccurate approximation (see Figure 1).

A common treatment of this difficulty uses an iterative method which in turn
computes the approximate solutiony, and the zero crossing function of an asso-
ciatedevent function g. Assuming that the iteration is convergent, the solution
and the location of the discontinuity become more accurate on each iteration. The
drawback of this method is the slow rate of convergence, which is linear in thebest
implementations.

Here we give details of a more efficient treatment introduced by Ellison [5].
The idea is to somehow reduce the effect of locating the zero crossing ofg on the
computation ofy. This can be done by defining the functionsz[c] andg[c] as follows.
z[c] is defined as the solution of (5) when we eliminate the effect of the switching
point λ , by using a smooth extension of the local solutionzn(t) afterλ (see Figure
1), that is,z[c] is the solution of the local IVP,

z′[c](t) = fi(t,z[c](t)), for tn ≤ t ≤ tn+1

z[c](tn) = yn,
(6)

where the indexi is determined using the state of the system (controlled byg) at tn
and stays the same (eitheri = 1 or i = 2) for tn ≤ t ≤ tn+1.

Then,g[c] is defined as the switching (zero crossing) function computed using
z[c],

g[c](t) = g(t,z[c](t)), (7)

which is a function of onlyt, becausez[c](t) is defined as a usual IVP without any
switching functions over[tn, tn+1].

The governing systems of differential equations forzn(t) and z[c](t) are the
same before the switching point. Hence, we have,

zn(t) = z[c](t), for tn ≤ t < λ . (8)

4

Then, it is not hard to see that,

g[c](t) = g(t,zn(t)), for tn ≤ t < λ . (9)

Considering the limit case,

lim
tրλ

g[c](t) = lim
tրλ

g(t,zn(t)), (10)

or (using the continuity ofg[c]),

g[c](λ) = g(λ , lim
tրλ

zn(t)), (11)

which gives us,
g[c](λ) = 0, (12)

becauseλ is a switching point forzn(t).
Equation (12) defines another function that crosses zero atλ . However, there

is a big difference which makes Equation (12) very attractive. The difference is
thatg[c] is time dependent and also differentiable. This eliminates the possibility of
computing a false solution (see Figure 1), and gives us a direct way of computingλ ,
by first computingz[c] and then applying a root finding algorithm to the associated
g[c].

The differentiability ofg[c], which results from the differentiability ofz[c], en-
ables us to apply efficient root finding methods such as Newton’s method orits
variations.

Standard numerical methods for IVPs compute an accurate approximation only
for z[c](tn+1). Therefore, an IVP method which provides an accurate continuous
approximation is required for our root finding process. Those methods have been
developed and are widely available. However, a numerical method used in practice
only provides ¯z[c](t), an accurate approximation toz[c](t) over[tn, tn+1]. As a result,
the function investigated by the root finder is actually

ḡ[c](t) = g(t, z̄[c](t)). (13)

If g(t,y) is Lipschitz continuous and ¯z[c](t) ≅ z[c](t), then any discrepancy between
the computed roots of ¯g[c](t) andg[c](t) will be within the accepted numerical error.

A similar idea has been used by Park and Barton [14] for handling transitions
in hybrid systems of differential algebraic equations.

4 DDEs as Discontinuous IVPs

Consider a simple state-dependent retarded delay differential equation (RDDE)
defined by

y′(t) = f (t,y(t),y(α(t,y(t)))), for t ≥ t0
y(t0) = y0,

y(t) = φ(t), for t < t0

(14)

5

t

t

y

g

tn
tn+1λ

true local solution
false computed solution
smooth extension of the solution
discontinuity(switching) point

Figure 1: A typical situation for a state-dependent switching function. Thetrue lo-
cal solution refers to the exact solution of Equation (5); the false computedsolution
refers to the continuous approximate solution of Equation (5) (produced by a stan-
dard IVP method); and smooth extension refers toz[c](t) (Equation (6)). Different
approximations to the switching functiong are computed using the corresponding
solution approximations and are identified accordingly.

6

whereα(t,y(t)) = t − σ(t,y(t)), and f (t,y,v) is sufficiently differentiable with
respect tot, y andv.

With this assumption, the only discontinuities in the solution or its low order
derivatives will be associated with the propagation of discontinuities introduced by
the initial function or at the initial point.

Now assume that jumps in one of the derivatives ofy(t) with respect tot occur
at the points

· · · < λ−2 < λ−1 < λ0 = t0 < λ1 < λ2 < · · · (15)

whereλ j, j < 0, are discontinuities in the initial function. Then, artificial event
functions

gi(t,y(t)) = α(t,y(t))−λi, i = . . . ,−2,−1,0,1,2, . . . (16)

can be defined accordingly and used to write the equation characterizing the prop-
agation of a discontinuity toλr, r ≥ 1,

λr = min{λ > λr−1 : λ is a root of odd multiplicity ofgi(t,y(t)), i≤ r−1}. (17)

In other words,λr, r ≥ 1, is the leftmost discontinuity of all propagated discontinu-
ities arising from{. . . ,λ−1,λ0,λ1, . . . ,λr−1} and lying in(λr−1,+∞). The roots of
gi(t,y(t)) with even multiplicity do not cause discontinuities and they do not need
to be identified, since the delay argument,α(t,y(t)), crosses a previous disconti-
nuity point only for roots which have odd multiplicity.

Note that for the special case involving a single increasing delay argumentand
a smooth history function,φ(t); each discontinuity is caused by propagation from
the most recent previous discontinuity point, namely,

α(λr,y(λr)) = λr−1, r ≥ 1. (18)

Using the explicit identification of all sources of non-smoothness, it is not hard
to see that the solution of the system (14) also satisfies the following system of
discontinuous IVPs,

y′(t) = fr(t,y(t)) = f (t,y(t),y[r](α(t,y(t)))),

for λr ≤ α(t,y(t)) < λr+1

y(t0) = y0,

(19)

where

y[r](α) =

{

y(α), for λr ≤ α < λr+1

smooth extension from[λr,λr+1), for α < λr or α ≥ λr+1.
(20)

The value ofy[r](α) outside[λr,λr+1) is not required to be defined, as the right
hand side of (19) switches ifα goes outside this interval. Therefore, the smooth
extension in (20) is only defined and used to facilitate the root-finding process
during the numerical computations.

7

Now, using (16), Equation (19) can be rewritten in the standard form fordis-
continuous IVPs as

y′(t) = fr(t,y(t)),

for gr(t,y(t)) ≥ 0 andgr+1(t,y(t)) < 0

y(t0) = y0.

(21)

While (21) defines the switching functions, due to the (possible) presenceof
a C0 discontinuity (i.e. discontinuity in the value), the transition still needs to be
clarified when there are different choices for the value at a discontinuitypoint. In
a hybrid system, those discontinuities can come from jumps in the state which are
triggered by specially defined events. Traditionally, due to the correspondence of
systems with real phenomena, allC0 discontinuities are considered as transitions in
state or control variables. Hence, the exact value of state or control variables at the
point of discontinuity is not important, and can be considered to be evaluatedusing
left or right segments. In this view, a discontinuity point is mainly considered as a
border between two continuous segments. Therefore, if a value of a variable needs
to be evaluated at a discontinuity pointλ , the segment used for the evaluation is
picked with respect to the underlying transition. This means that ifλ is approached
from left(right) and we need the value before the (possible) transition, then the
left(right) segment is used, and if the value after the (possible) transition is needed
then the right(left) segment is used.

5 Interfacing with IVP Integrators

Assume that an approximate solution has been computed using a step-by-stepIVP
integrator over[t0, tn] and now a step is to be taken fromtn to tn+1. If θ[r](α)
is an associated accurate continuous approximation toy[r](α) (usually a piecewise
polynomial), (21) can then be numerically integrated using the associated perturbed
IVP,

f (t,y(t),y[r](α(t,y(t)))) ≅ f (t,y(t),θ[r](α(t,y(t)))). (22)

5.1 Explicit IVP Integrators and Small/Vanishing Delays

Preserving explicit structure of the underlying IVP formula requires thatthe delay
value,y(α), be independent of the values introduced in the current step[tn, tn+1].
The associatedexplicitness condition

α(t,y(t)) ≤ tn, ∀ t ∈ [tn, tn+1],

can be monitored by introducing the local switching function,

gn
e(t,y(t)) = α(t,y(t))− tn,

8

(where ‘e’ denotes “explicit”) and can be added to the system, (21),

y′(t) = fr(t,y(t)), for

gr(t,y(t)) ≥ 0, gr+1(t,y(t)) < 0,

gn
e(t,y(t)) ≤ 0,

y(tn) = yn.

(23)

This formulation when combined with the approach for handling switching func-
tions described in the previous section would impose the restriction that the stepsize
tn+1− tn be smaller than the minimum delay. In other words, ifgn

e is triggered, say
at te, then the current step is partitioned atte, and the next step starts attn+1 = te.

To avoid taking a series of extremely small steps in the case of a vanishing
delay, we add a constraint,

α(t,y(t)) < t − ε,

whereε is a lower bound for small delays. The associated transition function is
then,

gv(t,y(t)) = α(t,y(t))− t + ε, (24)

and can be used to rewrite (23) as,

y′(t) = fr(t,y(t)), for

gr(t,y(t)) ≥ 0, gr+1(t,y(t)) < 0,

gn
e(t,y(t)) ≤ 0,

gv(t,y(t)) < 0,

y(tn) = yn.

(25)

If gv(t,y(t)) is triggered, continuing with the explicit integration is not numerically
feasible as it will result in an excessive number of small steps. There aretwo
possible strategies for resolving this difficulty: taking a few special steps with the
explicit integrator to pass the vanishing neighborhood or temporarily switching to
an implicit integrator. Here we describe a possible approach for taking the special
steps. Aftergv(t,y(t)) is triggered, replace (23) with,

y′(t) = fr(t,y(t)) = f (t,y(t),θ[r](α(t,y(t)))), for

gr(t,y(t)) ≥ 0, gr+1(t,y(t)) < 0,

gv(t,y(t)) > 0,

y(tn) = yn,

(26)

where the component ofθ[r] in [tn, tn+1], which is needed during the current step,
has not been computed yet. Considering the fact that this component can be ap-
proximated using the computedy, we observe a potential loop. A common ap-
proach to terminate this loop is to treat it as a system of nonlinear equations. For
the numerical solution of the resulting system of nonlinear equations, fixed point

9

iterations or a modification of Newton-Raphson can be used. Here we givethe
details of fixed point iterations. (Note that this iteration is similar to the Picard
iteration or the waveform relaxation iteration arising in the analysis of IVPs.)

1. Choose an initial guess for the interpolantPn in [tn, tn+1].

2. Compute the solution using the interpolantPn as a part of the history.

3. Update the interpolantPn using the last computed solution.

4. If the sequence of updated interpolants has converged⇒ stop.

5. Continue with (2).

A good initial guess for the interpolant is usually obtained by extrapolation of
the interpolant from the previous step. If there is not a previous step associated
with the current step, or the previous step is not connected to the currentstep with
sufficient continuity, then using extrapolation may not be possible or may give a
poor result. In such cases an alternative is to treat the equations for the first iteration
as specified below,

y′(t) = f̃ (t,y(t)) = f (t,y(t),(1−ξ)y(tn)+ξ y(t)), for

gr(t,y(t)) ≥ 0, gr+1(t,y(t)) < 0,

gv(t,y(t)) > 0,

y(tn) = yn,

(27)

where

ξ =
α(t,y(t))− tn

t − tn
,

and then, after we computey, use it to define the initial guess forPn in [tn, tn+1]
and switch back to our original equations (26) for further iterations.

The first order approximation(1− ξ)y(tn) + ξ y(t), usually leads to a more
accurate starting approximation than the case when a constant approximationlike
y(tn) is used. This formula can be justified using backward error analysis in form
of the associated defect (assuming the Lipschitz continuity off) or, in other words,
by observing that the residual after the first iteration will be at worseO(h2

n).

5.2 Implicit IVP Integrators

Since implicit integrators are usually used when the system of ODEs is stiff, taking
large steps with these integrators is not unusual. Therefore, we may encounter the
case with an unknown interpolant for the current step arises on a large fraction of
the attempted steps. Furthermore, in this situation a vanishing delay need not be
treated as a special case. We can consider the interpolant on the current step to be
represented by the implicitly defined stages introduced on this step, and try to find
it in a similar way that we solve for the discrete solutionyn itself. Here we give

10

the details for Runge-Kutta (RK) methods and linear multistep methods (LMMs).
Since RK methods and LMMs are special cases of general linear methods (GLMs),
we use the standard formulation [3] for GLMs. The details for RK methods or
LMMs can be derived by standard translations from GLMs (see [3] fordetails).

The associated system of ODEs for[tn, tn+1] is

y′(t) = fr(t,y(t)) = f (t,y(t),y[r](α(t,y(t)))), for

gr(t,y(t)) ≥ 0, gr+1(t,y(t)) < 0,

y(tn) = yn.

(28)

After defining the equations for the unknown stage valuesYj, j = 1, . . . ,s, a mod-
ification of Newton-Raphson is usually used to solve for these unknown vectors.
This nonlinear iteration will involve the computations of

Fj = fr(t j,Yj), j = 1,2, . . . ,s (29)

and

∂Fj

∂Yk
, j = 1,2, . . . ,s

k = 1,2, . . . ,s
(30)

in an iterative scheme, attempting to converge to the solution of the nonlinear equa-
tions defining the unknown stage values. In the case of an unknown interpolant
(α(t,y(t)) > tn for somet in [tn, tn+1]), the theory of ODEs is not applicable di-
rectly. In the following we discuss a way to treat this case as a system of ODEs,
even when an unknown interpolant is introduced.

5.2.1 Simultaneous Iterative Improvement

Assume thatPn is the local polynomial interpolant (associated with the current
step fromtn to tn+1), which in the most general case has structural dependencies on
Yj , j = 1,2, . . . ,s and y[n]

i , i = 1,2, . . . ,q (input approximations), then

θ[r](α) =

{

independent ofY , for α < tn
Pn[Y,y[n]](α), for α ≥ tn

(31)

whereY = {Y1,Y2,Y3, . . . ,Ys} andy[n] = {y[n]
1 ,y[n]

2 , . . . ,y[n]
q } are used for convenience.

In the following (∂A

∂q) is used to indicate partial differentiation of a parametric mul-

tivariate functionA w.r.t. a parameter or variableq, and (dA

dq) is used to indicate
the total derivative of such a function.

Computing Fj : In either case of (31) the continuous approximationθ[r](α) is
computable at all required points, provided that all components ofY are
available. In our iterative improvement scheme, these values are determined
from the latest iteration or are as the initial guess for the first iteration.

11

Computing ∂Fj

∂Yk
: Differentiating (29) and using (19) and (22),

∂Fj

∂Yk
=

∂ f
∂y

(t j,Yj,θ[r](α(t j,Yj)))×δ jk+

∂ f
∂v

(t j,Yj,θ[r](α(t j,Yj)))×
dθ[r](α(t j,Yj))

dYk
,

(32)

whereδ jk denotes the Kronecker symbol.

Using (31),

dθ[r](α(t j,Yj))

dYk
=

{

θ ′
[r](α(t j,Yj))×

∂α
∂y (t j,Yj)×δ jk, for α(t j,Yj) < tn

dPn[Y,y[n]](α(t j,Y j))
dYk

, for α(t j,Yj) ≥ tn
(33)

whereθ ′
[r](α) =

dθ[r](t)
dt (α), and

dPn[Y,y[n]](α(t j,Yj))

dYk
= P

′
n[Y,y[n]](α(t j,Yj))×

∂α
∂y

(t j,Yj)×δ jk+

∂Pn

∂Yk
[Y,y[n]](α(t j,Yj))

= θ ′
[r](α(t j,Yj))×

∂α
∂y

(t j,Yj)×δ jk+

∂Pn

∂Yk
[Y,y[n]](α(t j,Yj)),

(34)

whereP ′
n[Y,y[n]](α) = dPn[Y,y[n]](t)

dt (α).

Combining (32), (33) and (34),

∂Fj

∂Yk
=

[

∂ f
∂y

(t j,Yj,θ[r](α [j]))

+
∂ f
∂v

(t j,Yj,θ[r](α [j]))×θ ′
[r](α [j])×

∂α
∂y

(t j,Yj)

]

×δ jk+

{

0, for α [j] < tn
∂ f
∂v (t j,Yj,θ[r](α [j]))× ∂Pn

∂Yk
[Y,y[n]](α [j]), for α [j] ≥ tn

(35)

whereα [j] = α(t j,Yj).

The first component of∂Fj

∂Yk
in (35) has the same structure as that arising

in the corresponding IVP problem, due to the presence ofδ jk. For delays
smaller than the step size, adding the second component of (35) results in a
different structure for the Jacobian. For an efficient implementation, usually
an approximation of this Jacobian is used. Therefore, one might ignore the
second component completely, or replace it with something with the same
structure (Hδ jk, for any, but usually a heuristically chosen, matrixH).

12

At present, we do not know of any mathematical or numerical evidence that
shows the safety of this replacement (i.e., not causing divergence of itera-
tions during the solution process). The second term represents the numerical
complexity inherited from the presence of delays in the model. We are cur-
rently seeking possible problems (i.e., stiff DDEs) that necessarily need this
second component for the convergence of the iterations. We are also looking
for techniques to incorporate this term efficiently in the computation pro-
cess, while respecting a generic interface (to be designed) between the DDE
solver and IVP solvers.

5.3 Neutral Problems

For a system of NDDEs (3), including a termy′(t −σ) or y′(α) as an argument
of f , will lead to modifications to some of our expressions. Here, we discuss the
important changes.

In the vanishing delay case for explicit formulas, if the vanishing delay appears
in a derivative term, the same process can be applied, withP ′

n playing a similar
role for y′(α) asPn did for y(α). However, if we have to use Equation (27), we
can use the approximation

y′(α(t,y(t))) ≈ y′(tn).

In this case,y′(tn) should be provided as an external value. We do not consider the
case of an NDDE with accumulated discontinuities at a vanishing delay, because
such problems can be mathematically ill-posed.

For delays appearing in derivatives, the second term in Equation (32) should
be changed to

∂ f
∂w

(t j,Yj,θ ′
[r](α(t j,Yj)))×

dθ ′
[r](α(t j,Yj))

dYk
,

where f = f (t,y,w), and also all instances ofθ[r] andPn should be replaced with
θ ′

[r] andP ′
n, respectively, in the subsequent Equations (33, 34, 35).

5.4 Extension to Multiple Delays

For a general system of DDEs with multiple delays (2), one must define corre-
sponding switching functions for each delay, separately. The implementationof
an effective DDE method becomes much more complex, since we have to monitor
multiple switching functions and find the first one that is triggered on each step.

The equations for the implicit solver can then be derived by taking the sum
over all delaysα of the term,

∂ f
∂vα

(t j,Yj,θ[r](α(t j,Yj)))×
dθ[r](α(t j,Yj))

dYk
,

appearing in (32).

13

6 Numerical Experiments

Based on the ideas presented here, we have developed an experimentalcode DDEM.
The code is currently able to use any explicit step-by-step IVP solver, which pro-
vides an accurate local interpolant. For our experiments we use the IVP method
CRK6X, which is an order 6 explicit continuous Runge-Kutta method with defect
control (developed and discussed in [6]).

6.1 Test Problems

The following problems are used to test the effectiveness of the proposed meth-
ods. “Test Problem 1” and “Test Problem 3” have state-dependent delays and were
chosen to test the discontinuity tracking strategy of our method. “Test Problem 2”
is an NDDE with many discontinuities and is used to test efficiency of the solver
when dealing with persisting discontinuities and also to show its applicability for
systems of DDEs. “Test Problem 4” and “Test Problem 5” have vanishing delays,
during the integration and at the starting point, respectively. They were chosen
to test the iterative scheme for handling vanishing delays. “Test Problem 6” is a
4-dimensional problem with two constant delays. For DDEM, we have considered
this problem a vanishing delay problem by setting the lower bound constant in
Equation (24) to be a value bigger than the smallest constant delay; otherwise forc-
ing the explicitness condition will require at least(tF − t0)/(the smallest delay) =
(350−0)/0.15≈ 2333 steps. All these problems are nonstiff.

Test Problem 1 [16]:
y′ = y(y(t)),

for t in [2,5.5]. The history function is

y = 0.5, for t < 2

and
y(2) = 1.

The C0 discontinuity of the solution atξ0 = 2 introduces break points at
ξ1 = 4 (C1) andξ2 = 4+2ln2≈ 5.386 (C2).

The exact solution to this problem is

y(t) =







t/2, for ξ0 ≤ t ≤ ξ1

2exp(t/2−2), for ξ1 ≤ t ≤ ξ2

4−2ln(1+ξ2− t) for ξ2 ≤ t ≤ 5.5

Test Problem 2. A neutral delay logistic Gause-type predator-prey system [12]:

14

y′1(t) = y1(t)(1− y1(t − τ)−ρy′1(t − τ))−
y2(t)y1(t)2

y1(t)2 +1
,

y′2(t) = y2(t)

(

y1(t)2

y1(t)2 +1
−α

)

,

whereα = 1/10, ρ = 29/10 andτ = 21/50, for t in [0,30]. The history
functions are

φ1(t) =
33
100

−
1
10

t,

φ2(t) =
111
50

+
1
10

t,

for t ≤ 0. The solution isC1 discontinuous at the starting point which prop-
agates asC1 andC2 discontinuities toy1(t) andy2(t), respectively, att = nτ
for n ≥ 1.
The exact solution of this problem is unknown.

Test Problem 3 [13]:

y′(t) =
y(t)y(ln(y(t)))

t
,

for t in [1,10]. The history function is

φ(t) = 1 for t ≤ 1.

The exact solution to this problem is

y(t) =



















t, for 1≤ t ≤ e
exp(t/e), for e ≤ t ≤ e2
(

e
3−ln(t)

)e
, for e2 ≤ t ≤ e3

not known, for e3 < t

wheree3 = exp(3−exp(1− e)).
Derivative jump discontinuities occur att = 1 (C1), t = e (C2), t = e2 (C3)
andt = e3 (C4).

Test Problem 4 [15]:
y′(t) = y(t − t−10),

for t in [1, 10]. The history function is

φ(t) = t for t ≤ 1.

The exact solution of this problem is unknown.
This DDE has a vanishing (but non-singular) lag (limt→+∞ t−10 = 0; how-
ever, depending on the precision used, the vanishing behavior will firstbe
recognized at some finite timet⋆ and persists for allt > t⋆).

15

Test Problem 5 [19]:

y′(t) = y(y(t))+(3+ µ)t(2+µ)− t(3+µ)2
,

for t in [0, 1]. The initial value is

y(0) = 0.

The exact solution to this problem is

y(t) = t(3+µ) for 0≤ t ≤ 1.

This is aninitial value DDE with no discontinuities.
We useµ = 0 in our experiments. The exact solution is a low degree poly-
nomial and any IVP method should have no trouble with this problem.

Test Problem 6. The SEIR epidemic model of Genik & van den Driessche [7]:

S′ = A−dS(t)−λ S(t)I(t)
N(t) + γI(t − τ)e−dτ ,

E ′ = λ S(t)I(t)
N(t) −λ S(t−ω)I(t−ω)

N(t−ω) e−dω −dE(t),

I′ = λ S(t−ω)I(t−ω)
N(t−ω) e−dω − (γ + ε +d)I(t),

R′ = γI(t)− γI(t − τ)e−dτ −dR(t),

where
N(t) = S(t)+E(t)+ I(t)+R(t),

andA = 0.33,d = 0.006,λ = 0.308,γ = 0.04,ε = 0.06,τ = 42,ω = 0.15,
for t in [0,350]. The history functions are

S = 15,
E = 0,
I = 2,
R = 3,

for t ≤ 0.
The exact solution of this problem is unknown.

6.2 Results

Here we present the numerical results for the chosen test problems. We include re-
sults for a new version [10] of RADAR5 (Guglielmi and Hairer [9]), and DDE SOLVER
(Thompson and Shampine [20]). We have set all absolute tolerances andthe rela-
tive tolerance to TOL with TOL=10−6,10−9 for all solvers. The analytic solution
or a very accurate approximation of it, obtained with a very small tolerance (TOL
= 10−11), was used for computing the reported endpoint accuracy. The statistics
we report in the tables are :

16

Table 1: Summary Statistics for Problems 1 to 6 (TOL = 10−6).

PROBLEM SOLVER STEPS REJECTS FCN ABSERR RELERR

DDE SOLVER 15 6 198 1.0·10−11 2.5·10−12

1 RADAR5 13 4 120 3.1·10−8 7.4·10−9

DDEM 7 0 80 1.4·10−7 3.4·10−8

DDE SOLVER 907 947 16884 1.4·10−7 4.4·10−7

2 RADAR5 369 130 4592 8.6·10−8 8.8·10−8

DDEM 135 23 1810 6.5·10−7 7.4·10−7

DDE SOLVER 31 12 405 9.9·10−8 2.4·10−9

3 RADAR5 28 1 225 1.0·10−5 2.7·10−7

DDEM 18 2 223 9.0·10−6 2.2·10−7

DDE SOLVER 118 10 2673 9.4·10−3 1.2·10−6

4 RADAR5 73 1 608 7.8·10−3 1.0·10−6

DDEM 64 4 792 7.7·10−4 1.0·10−7

DDE SOLVER 13 0 153 1.1·10−9 1.1·10−9

5 RADAR5 4 0 29 0.0 0.0
DDEM 12 3 172 2.0·10−7 2.0·10−7

DDE SOLVER 211 12 4923 6.8·10−8 5.8·10−7

6 RADAR5 119 1 1413 6.7·10−7 5.2·10−6

DDEM 417 0 4836 1.6·10−8 2.9·10−7

STEPS: The number of successful steps.

REJECTS: The number of rejected steps.

FCN: The total number of derivative evaluations.

ABS ERR: The global absolute error at the end point of integration (maximum
over all components for multidimensional problems).

REL ERR: The global component-wise relative error at the end point of integra-
tion (maximum over all components for multidimensional problems).

17

Table 2: Summary Statistics for Problems 1 to 6 (TOL = 10−9).

PROBLEM SOLVER STEPS REJECTS FCN ABSERR RELERR

DDE SOLVER 21 11 297 6.6·10−12 1.5·10−12

1 RADAR5 24 5 207 5.6·10−9 1.3·10−9

DDEM 12 3 168 2.1·10−9 4.9·10−10

DDE SOLVER 1718 1577 29655 9.5·10−11 4.4·10−11

2 RADAR5 918 123 10063 3.8·10−10 1.1·10−9

DDEM 376 150 5858 6.3·10−10 2.8·10−10

DDE SOLVER 68 18 792 1.4·10−10 3.6·10−12

3 RADAR5 70 1 525 1.0·10−7 2.6·10−9

DDEM 47 3 553 1.5·10−8 3.7·10−10

DDE SOLVER 789 18 15453 3.5·10−5 4.5·10−9

4 RADAR5 201 2 1672 1.1·10−5 1.5·10−9

DDEM 144 6 1735 4.9·10−6 6.7·10−10

DDE SOLVER 16 6 243 3.2·10−11 3.2·10−11

5 RADAR5 4 0 29 0.0 0.0
DDEM 23 6 325 3.3·10−10 3.3·10−10

DDE SOLVER 447 14 9360 3.7·10−11 2.5·10−11

6 RADAR5 281 10 3146 3.5·10−9 6.4·10−8

DDEM 480 6 5627 2.1·10−9 3.8·10−8

18

6.3 Discussions and Conclusions

The numerical results clearly show that for these particular examples, the derived
DDE solver is competitive with a state of the art special purpose DDE solver.These
results are chosen from a more extensive investigation that we have performed
on different problems using standard DDE test sets [18], and confirm our claim
that the generality we have introduced does not cause a noticeable inefficiency
compared to specially designed DDE solvers. We are currently working onthe
details of the interface for implicit solvers and hope to find a design that preserves
this property. The code DDEM and several driver programs are available at the
address ‘http://www.cs.toronto.edu/∼hzp’.

References

[1] Barton, P.I. and Pantelides, C.C.: Modeling of combined discrete/continuous
processes. AIChE J., 40(6), 966-979 (1994)

[2] Bocharov, G.A. and Marchuk, G.I. and Romanyukha, A.A.: Numerical solu-
tion by LMMs of stiff delay differential systems modelling an immune response,
Numer. Math., 73, 131–148 (1996)

[3] Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd
Edition, J. Wiley, Chichester, (2008)

[4] Corwin, S. C. and Sarafyan, D. and Thompson, S.: DKLAG6: a code based
on Continuous imbedded sixth-order Runge-Kutta methods for the solution of
state-dependent functional differential equations, Appl. Numer. Math.,24, 319–
330 (1997)

[5] Ellison, D.: Efficient Automatic Integration of Ordinary Differential Equations
with Discontinuities, Math. Comput. Simut., 23(1), 12–20 (1981)

[6] Enright, W.H. and Yan L.: The Quality/Cost Trade-off for a Class of ODE
Solvers, Numerical Algorithms, DOI 10.1007/s11075-009-9288-x, (2009)

[7] Genik, L. and Van Den Driessche P.: An Epidemic Model with Recruitment-
Death Demographics and Discrete Delays. In: Ruan, S., Wolkowicz, G.S.K.
and Wu, J. (eds.) Differential Equations with Applications to Biology, Fields
Institute Communications, No. 21, 237–249, American Mathematical Society,
Providence, RI, (1999)

[8] Grossman, R.L., Nerode, A., Ravn, A.P., and Rischel, H.: Hybrid Systems.
Lecture Notes in Computer Science, Vol. 736, Springer-Verlag, New York,
(1993)

[9] Guglielmi, N. and Hairer, E.: Implementing Radau II-A methods for stiff delay
differential equations, Computing, 67, 1–12 (2001)

19

[10] Guglielmi, N. and Hairer, E.: Computing breaking points in implicit delay
differential equations, Advances in Computational Mathematics, 29(3), 229–
247 (2008)

[11] Hayashi, H.: Numerical solution of retarded and neutral delay differential
equations using continuous Runge-Kutta methods, PhD Thesis, Departmentof
Computer Science, University of Toronto, Toronto, Canada, (1996)

[12] Kuang, Y.: On Neutral Delay Logistic Gause-Type Predator-PreySystems,
Dynamics and Stability of Systems, 6, 173–189 (1991)

[13] Neves, K.W.: Automatic Integration of Functional Differential Equations: An
Approach, ACM Trans. Math. Soft., 1(4), 357–368 (1975)

[14] Park, T. and Barton, P.: State Event Location in Differential Algebraic Mod-
els, ACM Transactions on Modeling and Computer Simulation, 6(2), 137–165
(1996)

[15] Paul, C.A.H.: Runge-Kutta Methods for Functional Differential Equations,
PhD. Thesis. University of Manchester (1992)

[16] Paul, C.A.H.: Developing a Delay Differential Equation Solver, Appl. Nu-
mer. Math., 9, 403–414 (1992)

[17] Paul, C.A.H.: A user-guide to Archi: An explicit Runge-Kutta code forsolv-
ing delay and neutral differential equations and Parameter Estimation Prob-
lems, Technical Report, Department of Mathematics, University of Manchester,
Manchester, England, 283, (1997)

[18] Paul C.A.H.: A Test Set of Functional Differential Equations, Numerical
Analysis Report, Manchester Centre for Computational Mathematics, Manch-
ester, England, No. 243, (1994)

[19] Tavernini, L.: The Approximate Solution of Volterra Differential Systems
with State-Dependent Time Lags, SIAM J. Numer. Anal., 15 (5), 1039–1052,
(1978)

[20] Thompson, S. and Shampine, L.F.: A Friendly Fortran DDE Solver, Appl.
Numer. Math., 53(3), 503–516 (2006)

[21] Will é, D.R. and Baker, C.T.H.: DELSOL - A Numerical Code for The Solu-
tion of Systems of Delay-Differential Equations, Appl. Numer. Math., 9, 223–
234 (1992)

20

