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Abstract

In this paper we propose a new framework for designing a ddifésr-
ential equation (DDE) solver which works with any suppliadial value
problem (IVP) solver that is based on a standard step-lgyegiproach, such
as Runge-Kutta or linear multi-step methods, and can peog@&hse output.
This is done by treating a general DDE as a special examplelistantinu-
ous IVP. Using this interpretation we develop an efficienhtéque to solve
the resulting discontinuous IVP. We also give a more cleacgss for the
numerical techniques used when solving the implicit equistithat arise on
a time step, such as when the underlying IVP solver is implicthe delay
vanishes.

The new modular design for the resulting simulator we intice] helps
to accelerate the utilization of advances in the differembponents of an ef-
fective numerical method. Such components include thenlyidg discrete
formula, the interpolant for dense output, the strategyhtordling disconti-
nuities and the iteration scheme for solving any implicit&ipns that arise.

1 Introduction

Differential equations are one of the most frequently used tools for matfeaina
modeling in engineering and life sciences. Delay differential equation&d)Bre

a class of differential equations that have received consideral@strattention and
been proven to model many real life problems, traditionally formulated assgste
of ordinary differential equations (ODEs), more naturally and more rately.
Several DDE solvers have been implemented during the past twenty paaesi

on the extension or modification of traditional ODE techniques such as these b
on Runge-Kutta or linear multi-step formulas ([2], [4], [9], [11], [1120], [21]).
The implementations of these solvers are usually based on adapting an existing
initial value problem (IVP) solver. These DDE solvers use the provisionlénse
output, which is a key component of most modern IVP solvers, as the base a
add some strategies for handling discontinuities and vanishing delays.gDhisn



process, special properties of the underlying IVP solvers are usexgilpited to
make the overall technique more efficient.

There are some drawbacks associated with this approach for devel@piag
solvers. First, it usually takes a long time for an IVP solver to be recogrired
subsequently identified as a candidate for modification for use as a DDE&r.solv
Therefore, it is difficult to have a timely investigation of the effectivendgsro-
posed new underlying formulas (used in IVP solvers), for DDEs. &dcehen
some or all added components of a DDE solver, such as stepsize selgéctton s
egy and discontinuity handling, rely on the underlying IVP formula, theydrniee
be redeveloped and recoded for every new DDE solver. This resu#tddhof
redundancy during the analysis and the coding, since many concepligehvo
developing these components are common.

In this paper we propose a structure for a DDE solver which is indepénde
of the underlying IVP solver, with the only interactions between the two being
through a common interface. We consider a general step-by-step IVEr duat
finds continuous numerical approximations to problems of the general form

y(t) = f(t,y(t), for to <t <te

1
Y(to) = Yo. @)

wherey and f are vector-valued functions. The resulting DDE solver that we
develop can be applied to approximate the solution of a system of retartdgd de
differential equations (RDDE),

y/(t) f(tvy(t)7y(t - 01)7 cee vy(t - UV))7 fOI’ 1:0 S t S tF
y(t) = @(t), for t <to

or a system of neutral delay differential equations (NDDE)

y,(t) = f<t7y(t)7y(t_al)7"'7y(t_UV)7
Y(t—0yi1),..,Y(t—0viw)), for to <t <tr (3)
y(t) = (), Y(t)=¢/(t), for t<to

whereg, thehistory, is a vector-valued function ar@ = ci(t,y(t)) > 0,i=1,2,...,v+
w , are scalar functions (which can in general be time and state dependent).

There are two major complications that can cause numerical difficulties in con-
ventional approaches for solving DDESs: First, discontinuities may ocotarious
derivatives of the solution. Second, a delay may vanishg — 0. When a delay
vanishes, we call it ganishing delay.

The first difficulty is due to the presence of the delay terms. In genetheat
initial point, the right-hand derivativg (to)*, evaluated usind, does not equal the
left-hand derivativep/ (top) ~. Furthermoregp may have discontinuities. A discon-
tinuity can therefore arise and propagate from both the initial time and theyhistor
function. In general, the order of a derivative discontinuity (when itippgated)
increases with for RDDESs, but this is not the case for NDDEs.
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The second complication is important because it may cause a DDE solver to
fail by forcing it to choose a sequence of very small steps.

In the remainder of this paper we first review the techniques used in thernume
ical solution of discontinuous IVPs and show that a general DDE canebgett
as a special example of a discontinuous IVP. In Section 5 we develop thiésde
of a DDE solver based on this view and also the required interface with Bn IV
solver. In Section 6 we report on some numerical experiments with a DDErsolv
developed using this approach.

2 Discontinuous IVPs and Hybrid Systems

Hybrid systems are mathematical models that exhibit both discrete and corgtinuou
behavior over the time interval of interest. The continuous behavior of thiehw
usually described by one or more ODEs, DDESs, or differential-algebrpiations
(DAESs). The discrete behavior, which occurs at particular points in timengs),
includes phenomena such as nonsmooth forcing, switching of the veddoarfie
jumps in the state. This is a new perspective, that can be compared with the trad
tional approach of formulating the model in terms of discontinuous vectossfield
(For more information and discussion of hybrid systems arising in mathematical
modeling see [1] or [8] and references therein.)
Consider a simple case of a hybrid system described using two sets of diffe

ential equations and a switching function,

S - {fla,y(t)), for g(t,y(t)) <0 @

fa(t,y(t)), forg(t,y(t)) >0

To simulate the system (4), one has to use an integration scheme along with a tran
sition handler. The integration is usually done by a Runge-Kutta method oraa line
multistep method. The transition handler is responsible for detecting events-and
cating switching points and changing the integration accordingly (transitfm).
important aspect of the transition handler is the correct detection of iamtigs
that may happen at a switching point, such as non-uniqueness or termiofatien
solution.

Suppose that the integration of the hybrid system (4) has redghdtere we
havey, ~ y(tn). The local solutiore,(t) over [ty tn+1] is defined by

2 1) = { L), forgtz(t) <0
fa(t,za(t)), forg(t,z(t)) >0 (5)

Zn(tn) =VYn.



3 Techniques for the Efficient Simulation of Discontinu-
ous IVPs

Suppose that a solver is trying to compute a numerical approximation to the solu-
tion of (4) by computing a continuous approximation on each step. All stdndar
solvers assume that the solution is continuous enough, over the entirdostep,
the underlying formulas to be applied with confidence. An accepted stretégy
detect and include the discontinuity points in the set of mesh points. For the suc
cessful application of this strategy, having an accurate discontinuity itchsng
point location is necessary.

For a state-dependent switching function, the location of discontinuitiestan
be computeda priori because their unknown locations depend implicitly on the
unknown solution.

When the solver wants to take a step frpnot, 1, and a switching/discontiniuity
is suspected to occur |ty, tn 1], approximations based on sufficient differentiabil-
ity of the solution become unreliable. Therefore, using the local continapus
proximation to the solution ifft,,t,.1] to locate the discontinuity may lead to an
inaccurate approximation (see Figure 1).

A common treatment of this difficulty uses an iterative method which in turn
computes the approximate solutignand the zero crossing function of an asso-
ciatedevent function g. Assuming that the iteration is convergent, the solution
and the location of the discontinuity become more accurate on each iteratien. Th
drawback of this method is the slow rate of convergence, which is linear lretbte
implementations.

Here we give details of a more efficient treatment introduced by Ellison [5].
The idea is to somehow reduce the effect of locating the zero crossimgrothe
computation ofy. This can be done by defining the functiapsandgy as follows.

z is defined as the solution of (5) when we eliminate the effect of the switching
pointA, by using a smooth extension of the local solutipft) afterA (see Figure
1), that is,zm is the solution of the local IVP,

z’[c}(t) = fi(t,zg(t)), for ty <t <thy1

Z)(th) = Y,
where the index is determined using the state of the system (controlleg) at,
and stays the same (eithet 1 ori = 2) fort, <t <tp,1.
Then,g|q is defined as the switching (zero crossing) function computed using

4q)s

(6)

9, (t) = g(t, zg (1)), @)
which is a function of onlyt, becausey (t) is defined as a usual IVP without any
switching functions ovejty, th;1].

The governing systems of differential equations #gft) andz(t) are the
same before the switching point. Hence, we have,

Z(t) =z (1), for th <t <A. (8)
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Then, it is not hard to see that,
g (t) = g(t,z(t)), for th <t <A. 9)

Considering the limit case,

tll/n} gqt) = tly}\ g(t, za(t)), (10)
or (using the continuity ofy),
gg(A) = g2, im za(t)), (11)

which gives us,
9g(A) =0, (12)
becauseé is a switching point foz,(t).

Equation (12) defines another function that crosses zeko atowever, there
is a big difference which makes Equation (12) very attractive. The difiez is
thatgyg is time dependent and also differentiable. This eliminates the possibility of
computing a false solution (see Figure 1), and gives us a direct wayrgflingA ,
by first computingz,y and then applying a root finding algorithm to the associated
9g-
: The differentiability ofgy, which results from the differentiability of, en-
ables us to apply efficient root finding methods such as Newton’s methad or
variations.

Standard numerical methods for IVPs compute an accurate approximalyon on
for z(th1). Therefore, an IVP method which provides an accurate continuous
approximation is required for our root finding process. Those methaws lbeen
developed and are widely available. However, a numerical method usedtitice
only provideszg (t), an accurate approximation g, (t) over|ty,th,1]. As a result,
the function investigated by the root finder is actually

9 () = 9(t, Zg (1)) (13)

If g(t,y) is Lipschitz continuous anz(t) = z (t), then any discrepancy between
the computed roots @ (t) andgy (t) will be within the accepted numerical error.

A similar idea has been used by Park and Barton [14] for handling trarsition
in hybrid systems of differential algebraic equations.

4 DDEs as Discontinuous IVPs

Consider a simple state-dependent retarded delay differential equRIRIDE)
defined by

y(t) = f(t,y(t), y(a(t,y(1)))), for t >t
y(to) = Yo, (14)
y(t) = @(t), for t <t
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true local solution
‘‘‘‘‘ false computed solution
smooth extension of the solution
0 discontinuity(switching) point

\\\\\
L -

Figure 1: A typical situation for a state-dependent switching function.tfthelo-

cal solution refers to the exact solution of Equation (5); the false comotation
refers to the continuous approximate solution of Equation (5) (produgedstan-
dard IVP method); and smooth extension referg4¢t) (Equation (6)). Different
approximations to the switching functi@mare computed using the corresponding
solution approximations and are identified accordingly.



wherea(t,y(t)) =t — o(t,y(t)), and f(t,y,v) is sufficiently differentiable with
respect td, y andv.

With this assumption, the only discontinuities in the solution or its low order
derivatives will be associated with the propagation of discontinuities intediby
the initial function or at the initial point.

Now assume that jumps in one of the derivativeg(bf with respect td occur
at the points

<A <AL < Ag=tg <A <A< - (15)

whereAj, j <0, are discontinuities in the initial function. Then, artificial event
functions

git,yt)) =a(tyt)—4A, i=...,—-2,-1,0,1,2,... (16)

can be defined accordingly and used to write the equation characterizipga-
agation of a discontinuity ta,, r > 1,

Ar=min{A > A;_1: A is a root of odd multiplicity of;(t,y(t)), i <r—1}. (17)

In other wordsA,, r > 1, is the leftmost discontinuity of all propagated discontinu-
ities arising from{...,A_1,A0,A1,...,Ar_1} @and lying in(A;_1,+o). The roots of
gi(t,y(t)) with even multiplicity do not cause discontinuities and they do not need
to be identified, since the delay argumemt,y(t)), crosses a previous disconti-
nuity point only for roots which have odd multiplicity.

Note that for the special case involving a single increasing delay arguandnt
a smooth history functionp(t); each discontinuity is caused by propagation from
the most recent previous discontinuity point, namely,

a(Ar,y(Ar)) =Ar—g, 1> 1 (18)

Using the explicit identification of all sources of non-smoothness, it is aat h
to see that the solution of the system (14) also satisfies the following system of
discontinuous IVPs,

y (1) = fr(t,y(t) = F(t,y(t),yp (a(t,y(1)))),

for Ar <a(t,y(t)) < /\r+1 (19)
y(to) = Yo,
where
a), forAr <a <A
Y (a) = ) . ' i (20)
smooth extension frofi;, Ar11), fora <A ora > Arig.

The value ofyj(a) outside[Ar, Ar11) is not required to be defined, as the right
hand side of (19) switches i@ goes outside this interval. Therefore, the smooth
extension in (20) is only defined and used to facilitate the root-finding psoce
during the numerical computations.



Now, using (16), Equation (19) can be rewritten in the standard forrdifer
continuous IVPs as

y(t) = fr(t,y(t)),
for gr(t,y(t)) = O andgr,1(t, y(t)) <0 (21)
y(to) = Yo.

While (21) defines the switching functions, due to the (possible) preswnce
aCY discontinuity (i.e. discontinuity in the value), the transition still needs to be
clarified when there are different choices for the value at a discontipaityt. In
a hybrid system, those discontinuities can come from jumps in the state which are
triggered by specially defined events. Traditionally, due to the correspme of
systems with real phenomena, @ discontinuities are considered as transitions in
state or control variables. Hence, the exact value of state or contiables at the
point of discontinuity is not important, and can be considered to be evalusitegl
left or right segments. In this view, a discontinuity point is mainly consideseal a
border between two continuous segments. Therefore, if a value ofedokaneeds
to be evaluated at a discontinuity poikt the segment used for the evaluation is
picked with respect to the underlying transition. This means thatsfapproached
from left(right) and we need the value before the (possible) transitiom, te
left(right) segment is used, and if the value after the (possible) transiticreau
then the right(left) segment is used.

5 Interfacing with IVP Integrators

Assume that an approximate solution has been computed using a step-byFstep
integrator overlto,t,] and now a step is to be taken framto tn 1. |If G[r](or)

is an associated accurate continuous approximatigp ta) (usually a piecewise
polynomial), (21) can then be numerically integrated using the associatedyzszt
IVP,

FEy(t), v (a(ty(1)))) 2= (6 y(), 6 (a (L, y(t))))- (22)

5.1 Explicit IVP Integrators and Small/Vanishing Delays

Preserving explicit structure of the underlying IVP formula requirestteatelay
value,y(a), be independent of the values introduced in the current[&tgR. 1].
The associateéxplicitness condition

a(t,y(t)) S tnv \V/t S [tnatn+l}v
can be monitored by introducing the local switching function,

ge(t,y(t)) = a(t,y(t)) —tn,



(where € denotes “explicit”) and can be added to the system, (21),

y () = fi (t,y(1)), for

G (ty1) >0, Galty(t) <0,
Bty (23)

) <
y(tn) = Yn.

This formulation when combined with the approach for handling switching-func
tions described in the previous section would impose the restriction that tisézstep
th+1 —tn be smaller than the minimum delay. In other wordsgifs triggered, say
atte, then the current step is partitionedgtand the next step startstat = te.

To avoid taking a series of extremely small steps in the case of a vanishing
delay, we add a constraint,

a(t,yt)) <t-e,

wheree is a lower bound for small delays. The associated transition function is
then,

av(ty(t) = a(ty(t)) —t+e, (24)
and can be used to rewrite (23) as,

0, (25)
0

If gu(t,y(t)) is triggered, continuing with the explicit integration is not numerically
feasible as it will result in an excessive nhumber of small steps. Therenare
possible strategies for resolving this difficulty: taking a few special stettstine
explicit integrator to pass the vanishing neighborhood or temporarily swgahin
an implicit integrator. Here we describe a possible approach for takingotuad
steps. Aftergy(t,y(t)) is triggered, replace (23) with,

y (1) = fr (t,y(t) = F(t,y(t), B (a(t,y(t)))), for
Or(t,y(t)) >0, grya(t,y(t) <O
av(t,y(t)) >0,

Y(ta) = Yn,

(26)

where the component @, in [ty,th,1], which is needed during the current step,
has not been computed yet. Considering the fact that this componeneegm b
proximated using the computgg we observe a potential loop. A common ap-
proach to terminate this loop is to treat it as a system of nonlinear equations. Fo
the numerical solution of the resulting system of nonlinear equations, fixied p



iterations or a modification of Newton-Raphson can be used. Here welgve
details of fixed point iterations. (Note that this iteration is similar to the Picard
iteration or the waveform relaxation iteration arising in the analysis of IVPs.)

Choose an initial guess for the interpola# in [tn, th1].
Compute the solution using the interpolan} as a part of the history.
Update the interpolan¥’, using the last computed solution.

If the sequence of updated interpolants has convergstbp.

a ~ w0 npokE

Continue with (2).

A good initial guess for the interpolant is usually obtained by extrapolation of
the interpolant from the previous step. If there is not a previous steEiassd
with the current step, or the previous step is not connected to the categnivith
sufficient continuity, then using extrapolation may not be possible or mayayiv
poor result. In such cases an alternative is to treat the equations fasthifation
as specified below,

Y (1) = f(t,y(t)) = f(t,y(t),(1—&)y(ta) + Ey(1)), for

» Gl () <O, 7

where
¢ ALYD)
t—tqh ’
and then, after we compuge use it to define the initial guess faP, in [ty,th;1]
and switch back to our original equations (26) for further iterations.

The first order approximatiofl — &)y(tn) + &y(t), usually leads to a more
accurate starting approximation than the case when a constant approxifikation
y(tn) is used. This formula can be justified using backward error analysisnm for
of the associated defect (assuming the Lipschitz continuify of, in other words,
by observing that the residual after the first iteration will be at warge?).

5.2 Implicit IVP Integrators

Since implicit integrators are usually used when the system of ODEs is stifigtak
large steps with these integrators is not unusual. Therefore, we mayreacthe

case with an unknown interpolant for the current step arises on a lacf@h of

the attempted steps. Furthermore, in this situation a vanishing delay need not be
treated as a special case. We can consider the interpolant on the stegeto be
represented by the implicitly defined stages introduced on this step, and tngto fi

it in a similar way that we solve for the discrete solutignitself. Here we give
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the details for Runge-Kutta (RK) methods and linear multistep methods (LMMs).
Since RK methods and LMMs are special cases of general linear metBbisj,
we use the standard formulation [3] for GLMs. The details for RK methods or
LMMs can be derived by standard translations from GLMs (see [3jiébails).

The associated system of ODESs fprty 1] is

y(t) = fr(t,y(t) = f(t,y(t),yr(a(t,y(t)))), for
g (t,y(t)) =0, gra(t,y(t)) <O, (28)
y(tn) = Yn.
After defining the equations for the unknown stage valjeg = 1,...,s, a mod-

ification of Newton-Raphson is usually used to solve for these unknowionge
This nonlinear iteration will involve the computations of

Fj:fr(tj,Yj), ji=12,...,s (29)
and
0Fj .
—, j=12,...,s
AN (30)
k=12...,s

in an iterative scheme, attempting to converge to the solution of the nonlinesar equ
tions defining the unknown stage values. In the case of an unknownatdatp
(a(t,y(t)) >ty for somet in [ty,th11]), the theory of ODEs is not applicable di-
rectly. In the following we discuss a way to treat this case as a system o§0ODE
even when an unknown interpolant is introduced.

5.2.1 Simultaneous lterative Improvement

Assume that#, is the local polynomial interpolant (associated with the current
step fromt, tot,,1), which in the most general case has structural dependencies on

Y;,j=1,2,...,sand yin] ,i=1,2 ....q(input approximations), then

independent of, fora <t
ZalY,y"(a), for a > t,
whereY = {Yl,Yz,Y3, ., Ys} andy!™ {y[ln],y2 - ,yq]} are used for convenience.

In the following ( ) is used to indicate partial dlfferentlatlon of a parametric mul-

tivariate functlonﬂ w.r.t. a parameter or variabtg and (dq ) is used to indicate
the total derivative of such a function.

Computing Fj : In either case of (31) the continuous approximati@(a) is
computable at all required points, provided that all componentg afe
available. In our iterative improvement scheme, these values are determined
from the latest iteration or are as the initial guess for the first iteration.

11



Computing 0':' . Differentiating (29) and using (19) and (22),

oF; Of
0YJ 0y( Jleae[l’]( (tJ’YJ))) X 5Jk+

df 6y (a(t;,Y;))
ov (thYJae[l']( ( J’YJ))) X d—ka

(32)

wheredjx denotes the Kronecker symbol.

Using (31),
dé(a(t;,Y;) _ | O (alt,Yy)) x 5 (t.Y5) x 8, for a(t,Y)) <tn
aY, d %, [Yy;]\](i (tj, YJ>)7 for a(t;, ) 223)
whereb/,(a) = M(O{) and
[r] - dt !
d2Z.[Y, Y (a(t;,Y; da
ALY S vy, 3,)) x 4.9 = Bt
0%
0Ykn Y.y (a(t;, ;) -
34
Ja
= 6 (a(t;,Y;)) x oy L) X Ot
0%,

Y@,

2 [n|
whereZ![Y,y"](a) = W(G)-
Combining (32), (33) and (34),

oF; [of
5 =| 5568 aliD)

0f .. 0
o"' - (1,5, 6 (a [J]))Xe[r]( [J])ng(tjaYﬂ X Oj+ (35)

for afj] <ty
dv J7YJa9[r] J])) x %[Y7y[n]](a“])a for a[” >ty

wherea|[j] = a(t;,Y;).

The first component O;LYK in (35) has the same structure as that arising

in the corresponding IVP problem, due to the presencg;of For delays
smaller than the step size, adding the second component of (35) results in a
different structure for the Jacobian. For an efficient implementatiorallysu

an approximation of this Jacobian is used. Therefore, one might ignore the
second component completely, or replace it with something with the same
structure M ok, for any, but usually a heuristically chosen, matfix

12



At present, we do not know of any mathematical or numerical evidence that
shows the safety of this replacement (i.e., not causing divergence af iter
tions during the solution process). The second term represents theicalmer
complexity inherited from the presence of delays in the model. We are cur-
rently seeking possible problems (i.e., stiff DDES) that necessarily need this
second component for the convergence of the iterations. We are akénjoo

for techniques to incorporate this term efficiently in the computation pro-
cess, while respecting a generic interface (to be designed) betweebthe D
solver and IVP solvers.

5.3 Neutral Problems

For a system of NDDEs (3), including a tewf{t — o) or y'(a) as an argument
of f, will lead to modifications to some of our expressions. Here, we discuss the
important changes.

In the vanishing delay case for explicit formulas, if the vanishing delagargp
in a derivative term, the same process can be applied, #tplaying a similar
role fory'(a) as #, did for y(a). However, if we have to use Equation (27), we
can use the approximation

y(a(t,y)) =Y (t).

In this casey (t,) should be provided as an external value. We do not consider the
case of an NDDE with accumulated discontinuities at a vanishing delay, $ecau
such problems can be mathematically ill-posed.

For delays appearing in derivatives, the second term in Equation (@2)ds

be changed to
of de; (a(t;,Y)))
w38 (6,%))) x = G
wheref = f(t,y,w), and also all instances G[r] and 7, should be replaced with

G{r] and Z), respectively, in the subsequent Equations (33, 34, 35).

5.4 Extension to Multiple Delays

For a general system of DDEs with multiple delays (2), one must define-corr
sponding switching functions for each delay, separately. The implementation
an effective DDE method becomes much more complex, since we have to monitor
multiple switching functions and find the first one that is triggered on each step

The equations for the implicit solver can then be derived by taking the sum
over all delaysx of the term,

of doy (a(t,Yj))

Tva(tjanye[r](a(tszj))) X & ,

appearing in (32).
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6 Numerical Experiments

Based on the ideas presented here, we have developed an experanéa@2DEM.
The code is currently able to use any explicit step-by-step IVP solvechwiro-
vides an accurate local interpolant. For our experiments we use the [VRadneth
CRK®6X, which is an order 6 explicit continuous Runge-Kutta method withalefe
control (developed and discussed in [6]).

6.1 Test Problems

The following problems are used to test the effectiveness of the prdposth-

ods. “Test Problem 1" and “Test Problem 3” have state-dependdaysiand were
chosen to test the discontinuity tracking strategy of our method. “Testd?Pnady

is an NDDE with many discontinuities and is used to test efficiency of the solver
when dealing with persisting discontinuities and also to show its applicability for
systems of DDEs. “Test Problem 4” and “Test Problem 5” have vanistitays,
during the integration and at the starting point, respectively. They wearsech

to test the iterative scheme for handling vanishing delays. “Test Problesnab
4-dimensional problem with two constant delays. For DDEM, we haveidere

this problem a vanishing delay problem by setting the lower bound constant in
Equation (24) to be a value bigger than the smallest constant delay; otaéonds

ing the explicitness condition will require at ledt —tp) /(the smallest delay) =
(350—0)/0.15~ 2333 steps. All these problems are nonstiff.

Test Problem 1 [16]:
y =yy(t)),

fort in [2,5.5]. The history function is
y=05, fort<2

and
y(2) =1

The C° discontinuity of the solution afy = 2 introduces break points at
& =4 (CY andé =4+ 2In2~ 5.386 C?).

The exact solution to this problem is

t/2, for {o<t<é&
y(t) =14 2exat/2-2), for & <t<é&
4-2In(1+&—t) for &, <t<55

Test Problem 2. A neutral delay logistic Gause-type predator-prey system [12]:

14



e tya(t)?

Yi(t) =y1(t) (1= ya(t = 1) — pys (t — 7)) Vi)2+1’

2
V(0 =yelt) (220 ~a )

wherea = 1/10, p = 29/10 andt = 21/50, fort in [0,30]. The history
functions are
33 1

%():ﬁ)_f)’
=222 L
@V ="50 T10"

fort < 0. The solution iC! discontinuous at the starting point which prop-
agates a€' andC? discontinuities toy; (t) andys(t), respectively, at = nt
forn> 1.

The exact solution of this problem is unknown.

Test Problem 3 [13]:
y®)y(n(y(t)))
t )

y(t) =
fortin [1,10]. The history function is
pt)=1fort <1
The exact solution to this problem is
t, for1<t<e
explt/e), fore<t<e?
y(t) = (L)e, for € <t<e;

3-In(t)
not known, fores<t

wheree; = exp(3—exp(1—e)).
Derivative jump discontinuities occur ait= 1 (C1), t = e (C?), t = €? (C°)
andt = e3 (C%).

Test Problem 4 [15]:
y(t) =yt -t1),

fortin [1, 10]. The history function is
Qt)=t for t <1

The exact solution of this problem is unknown.

This DDE has a vanishing (but non-singular) lag {limet=° = 0; how-
ever, depending on the precision used, the vanishing behavior wilbfrst
recognized at some finite tint&é and persists for atl > t*).
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Test Problem 5 [19]:
Y (1) = y(y(t)) + (3+ p)t > —t @4,
fortin [0, 1]. The initial value is
y(0) =0.
The exact solution to this problem is
y(t) =tBH for 0<t< 1.

This is aninitial value DDE with no discontinuities.
We useu = 0 in our experiments. The exact solution is a low degree poly-
nomial and any IVP method should have no trouble with this problem.

Test Problem 6. The SEIR epidemic model of Genik & van den Driessche [7]:

s:A_qu—A%Q”+wa—mem,

[ —w)l (t— _

E— A S(lfl)tgt) _/\S(thEi_(;) )P dw—dE(t),
W) (t—w)

V:)\We 4o (y+e4d)l(t),

R=yl(t)—yi(t—1)e 9" —dR(t),
where
N(t) = St)+E(t)+1(t) + R(),

andA=0.33,d = 0.006,A =0.308,y =0.04,£ =0.06, 7 =42, w=0.15,
fort in [0,350. The history functions are

S=15,
E=0,
| =2,
R=3,

fort <O0.
The exact solution of this problem is unknown.

6.2 Results

Here we present the numerical results for the chosen test problemschgeme-

sults for a new version [10] of RADARS (Guglielmi and Hairer [9]), anBE.SOLVER
(Thompson and Shampine [20]). We have set all absolute tolerancébearela-

tive tolerance to TOL with TOL=10°,10"° for all solvers. The analytic solution

or a very accurate approximation of it, obtained with a very small toleran®é& (T

= 1011), was used for computing the reported endpoint accuracy. The statistics
we report in the tables are :
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Table 1: Summary Statistics for Problems 1 to 6 (TOL =90

PROBLEM SOLVER STEPS REJECTS FCN AHBRR RELERR
DDE_SOLVER 15 6 198 D»-1011 25.1012
1 RADAR5 13 4 120 31-108% 7.4.10°
DDEM 7 0 80 14-107 34-10°8
DDE_SOLVER 907 947 16884 4-107 4.4.-10°7
2 RADAR5 369 130 4592 8-108 88-108
DDEM 135 23 1810 &-107 7.4-10°7
DDE_SOLVER 31 12 405 ®-108 24.10°
3 RADAR5 28 1 225 10-10° 27-10°7
DDEM 18 2 223 90-10% 22.10°7
DDE_SOLVER 118 10 2673 9.-10°% 12.-10°
4 RADAR5 73 1 608 B-103 1.0-10°
DDEM 64 4 792 77-10% 1.0-10°7
DDE_SOLVER 13 0 153 1n-10° 11.-10°

5 RADAR5 4 0 29 0 0.0
DDEM 12 3 172 20-107 20-10°7
DDE_SOLVER 211 12 4923 8-108 58.10°7
6 RADAR5 119 1 1413 &§-107 52.10°
DDEM 417 0O 4836 1-108 29.10°

STEPS: The number of successful steps.
REJECTS: The number of rejected steps.
FCN: The total number of derivative evaluations.

ABS_ERR: The global absolute error at the end point of integration (maximum
over all components for multidimensional problems).

REL _ERR: The global component-wise relative error at the end point of integra-
tion (maximum over all components for multidimensional problems).
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Table 2: Summary Statistics for Problems 1 to 6 (TOL =90

PROBLEM SOLVER STEPS REJECTS FCN AHBRR RELERR
DDE_SOLVER 21 11 297 ®-1012 15.1012
1 RADAR5 24 5 207 %-10° 1.3.10°
DDEM 12 3 168 21-10° 49.1010
DDE_SOLVER 1718 1577 29655 .9-10°1 44.101
2 RADAR5 018 123 10063 8-1019 11.10°
DDEM 376 150 5858 ®-1010 28.10°10
DDE_SOLVER 68 18 792 #4-1010 36.1012
3 RADAR5 70 1 525 10-107 26-10°
DDEM 47 3 553 15.-108 3.7.10°10
DDE_SOLVER 789 18 15453 3.-10° 45.10°
4 RADAR5 201 2 1672 1-10° 15.10°
DDEM 144 6 1735 M-10°% 6.7-1010
DDE_SOLVER 16 6 243 2.1011 32.101

5 RADAR5 4 0 29 0 0.0
DDEM 23 6 325 33.-1010 33.10°10
DDE_SOLVER 447 14 9360 3-101 25.1011
6 RADAR5 281 10 3146 3-10° 6.4-10°8
DDEM 480 6 5627 21-10° 38-10°%
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6.3 Discussions and Conclusions

The numerical results clearly show that for these particular examplesethived
DDE solver is competitive with a state of the art special purpose DDE sdltiese
results are chosen from a more extensive investigation that we hawarped
on different problems using standard DDE test sets [18], and confimclaim
that the generality we have introduced does not cause a noticeablei@meffic
compared to specially designed DDE solvers. We are currently workindpeon
details of the interface for implicit solvers and hope to find a design tha¢pres
this property. The code DDEM and several driver programs are alait the
address ‘http://www.cs.toronto.eduizp’.
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