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Abstract. We focus on the solution of discrete ill-posed problems to recover the
original information from blurred signals in the presence of Gaussian white noise
more accurately. We derive seminorms for the Tikhonov-Phillips regularization based
on the underlying blur operator H. In this way it is possible to improve the recon-
struction using spectral information of H. Reconstructions of numerous discrete
ill-posed model problems, arising both from realistic applications and examples
generated on our own, demonstrate the effect of the presented approach.
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1. Introduction

For discrete ill-posed problems, as they arise in signal or image recon-
struction, regularization techniques are important in order to recover
the original information. We consider the discrete linear model problem

x
blur−→ Hx

noise−→ Hx+ η = b (1)

where x ∈ Rn is the original signal or image, H ∈ Rn×n is the blur
operator, η ∈ Rn is a vector representing the unknown perturbations
such as noise or measurement errors, and b ∈ Rn is the observed signal
and image, respectively. Our aim is to recover x as good as possible.
Because H may be extremely ill-conditioned or even singular, and,
because of the presence of the noise η, the direct solution of (1) will
result in a useless reconstruction dominated by noise. Consequently, to
avoid this and solve (1) mainly on the signal subspace a regularization
technique has to be applied.

Based on a decomposition of H, like, for instance, the QR factoriza-
tion or the singular value decomposition (SVD) (Golub and Van Loan,
1996), direct regularization methods can be seen as a spectral filter
acting on the singular spectrum, diminishing the deterioration of the
solution by noise. Within this class we focus on the classical Tikhonov-
Phillips regularization (Phillips, 1962; Tikhonov, 1963) which can often
be improved by including minimization in a seminorm. Usually, the
seminorm is related to a smoothing operator like, for instance, the
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Laplacian. Here, we introduce seminorms based on the operator H
itself. In this way we restrict the regularization to the noise subspace
leaving the signal information unchanged.

The outline of the paper is the following: In Section 2 we will have a
closer look on the Tikhonov-Phillips regularization including smoothing
norms. Subsequently, in Section 3, we present our approach to improve
the reconstruction of regularization methods and derive seminorms de-
pending on H. Section 4 contains numerical results using the proposed
approaches for several test scenarios. We mainly focus on discrete ill-
posed problems from the package Regularization Tools (Hansen,
1994), but we consider artificial problems constructed on our own as
well. A conclusion with a short outlook closes the discussion in Section
6.

2. Tikhonov-Phillips Regularization Including
Smoothing-Norms

One of the classical regularization methods is the Tikhonov regulariza-
tion (Tikhonov, 1963) which solves

min
x

{
‖Hx− b‖22 + α2‖x‖22

}
⇔ (HTH + α2I)x = HT b (2)

instead of (1), for a fixed regularization parameter α ≥ 0. The weight
α has to be chosen such that both minimization criterions yield the
minimal value together: the computed solution x is as close as possible
to the original problem and sufficiently regular. Following (Hanke and
Hansen, 1993; Hansen, 2010; Hansen and Jensen, 2006), instead of using
the 2-norm as a means to control the error in the regularized solu-
tion, another possibility is to use discrete smoothing-norms of the form
‖Lx‖2 to obtain regularity. With L being a discrete approximation to a
derivative operator, the standard form problem (2) can be reformulated
as Tikhonov-Phillips regularization in general form via

min
x

{
‖Hx− b‖22 + α2 ‖Lx‖22

}
⇔ (HTH + α2LTL)x = HT b. (3)

Usually, the matrix L is an approximation to the first or second deriva-
tive operator, i.e.,

L1 :=

 −1 1
. . .

. . .

−1 1

 or L2 :=

 1 −2 1
. . .

. . .
. . .

1 −2 1

 (4)

with L1 ∈ R(n−1)×n and L2 ∈ R(n−2)×n, respectively, not taking any
boundary conditions into account. Consequently, rough oscillations
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caused by noisy components can be suppressed during the reconstruc-
tion and the regularized approximations will satisfy inherent smooth-
ness properties. Therefore, for problems where the exact signal x is
smooth, the solution of the general formulation (3), using a differential
operator, will be smoother and thus a more accurate reconstruction.

If (3) is to be solved via spectral decomposition, a generalized SVD
(GSVD) (Golub and Van Loan, 1996) of the matrix pair (H,L) has
to be applied. Using filter factors similarly to the TSVD and thus
truncating the GSVD to suppress the noise contribution is denoted
as truncated GSVD (TGSVD) (Hansen, 1994; Hansen, 1998; Hansen,
2010) in literature. Note that for using smoothing preconditioning with
L in an iterative regularization method like, for instance, CGLS, a
transformation to standard form has to be applied (Hansen, 2010).

3. Operator Dependent Seminorms

We introduce a new approach for regularization including a seminorm
by deriving operators which directly include H and thus use spectral
information of the given problem. The modified regularization method
allows larger values of the regularization parameter while improving
the reconstruction. A regularizing seminorm should have the property
that it leads to a regularizing effect for the noise subspace relative to
small eigenvalues, but behaves like zero on the signal subspace relative
to large eigenvalues. In the limiting case a seminorm should behave
like 1 on the noise part providing much emphasis on the penalty term
while it should tend to 0 for the signal part having most emphasis
on the model fit. Using the original operator H, we can define such
operator dependent seminorms ‖Lk,∗x‖2, where Kk,∗ := LTk,∗Lk,∗ is
positive semi-definite, in the following three different ways.

3.1. Seminorm ‖Lk,σx‖2

Let σmax be the maximum singular value supposed to be available from

H
SV D
= UΣV T or being an approximation resulting from a couple of

Arnoldi iterations. Then we set for k ∈ {1, 2, 3, . . .}

Kk,σ = LTk,σLk,σ :=

(
I − HTH

σ2max

)k
with 0 ≤ Kk,σ ≤ 1.

Kk,σ is a polynomial in HTH of the general form pk(x) = (1 − x)k

with 0 ≤ x ≤ 1. Via the power k, it is possible to steer the ”L”-shape
of pk(x) which is illustrated in Figure 1.a. For small x, corresponding
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to singular vectors relative to noise, the function pk(x) tends to 1, for
large k approaching the ordinate. For x > 0 and near 1, representing
the signal subspace, pk(x) is close to zero with a zero of order k at
x = 1. Including Kk,σ, we can modify the standard form Tikhonov
regularization (2) to the general representation

min
x

{
‖Hx− b‖22 + α2‖Lk,σx‖22

}
⇔[

HTH + α2

(
I − HTH

σ2max

)k]
x = HT b. (5)

Especially for k = 1, (5) can be written in the form[
HTH + α2

(
I − HTH

σ2max

)]
x =

[(
1− α2

σ2max

)
HTH + α2I

]
x = HT b,

equivalent to a standard Tikhonov regularization for a slightly modified
problem.

3.2. Seminorm ‖Lk,r,λx‖2

For symmetric indefinite operators H, where the smallest and largest
eigenvalue satisfy λmin � 0 and λmax � 0, respectively, it can be
helpful to use a seminorm ‖Lk,r,λx‖2 defined by the matrix

Kk,r,λ = LTk,r,λLk,r,λ :=[(
I − H

λmin

)(
I − H

λmax

)]k [
I +

k

r

(
1

λmin
+

1

λmax

)
H

]r
.

Kk,r,λ can be analyzed via the polynomial qk,r(x) =[(
1− x

λmin

)(
1− x

λmax

)]k [
1 +

k

r

(
1

λmin
+

1

λmax

)
x

]r
. (6)

Again k should be chosen out of {1, 2, 3, . . .} and r ∈ {0, 1, 2, 3, . . .}.
This definition makes sense only if the maximum or the minimum eigen-
value is not close to zero. The additional third term of Kk,r,λ, i.e., ([·]r),
ensures that the regularization is effective near zero. Furthermore, there
are conditions on k, r, λmin, and λmax in order to avoid negative or very
large values, and to avoid additional maxima of qk,r(x) in the interval
[λmin, λmax]. It turns out that the above requests can be satisfied with
the condition

r := d(s− 1)ke , with s := max

(∣∣∣∣λminλmax

∣∣∣∣ , ∣∣∣∣λmaxλmin

∣∣∣∣) . (7)
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a. Polynomial pk(x) = (1− x)k. b. Polynomial qk,r(x) (6).

Figure 1. Polynomials for increasing values of k. Figure 1.b shows qk,r(x) for the
model problem shaw from (Hansen, 1994) where all eigenvalues are located in
[λmin, λmax] = [−1.8567, 2.9933].

Figure 1.b shows qk,r(x) for increasing values of k for the spectrum of H
resulting from the model problem shaw from (Hansen, 1994). The shape
of qk,r(x) (6) slightly resembles a Gaussian bell curve. For increasing
values of k it falls towards the abscissa tending to the δ-function.

3.3. Seminorm ‖Lk,τx‖2

A third seminorm can be defined for the general nonsymmetric case
via

Kk,τ :=

[(
I − HT

τ

)(
I − H

τ

)]k
,

where we have to make sure that Kk,τ ≥ 0 in order to have a related
seminorm ‖Lk,τx‖2 with Kk,τ = LTk,τLk,τ . Furthermore, τ has to be
chosen in such a way that for the signal subspace the regularization is
turned off, while for the noise subspace it is turned on. Heuristically,
we can model the signal and noise subspace by probing vectors, like,

for example, eS = n−
1
2 (1, 1, ..., 1)T and eN = n−

1
2 (1,−1, 1,−1, ...)T ,

respectively, with τ chosen such that

‖Kk,τeS‖2 � 1 and ‖Kk,τeN − eN‖2 � 1. (8)

In other words, we suggest to choose τ such that the seminorm acts as
0 on the signal subspace and like the identity I on the noise subspace.

Compared to derivative operators L, like, for instance, L1 or L2 (4),
Lk,σ, Lk,r,λ, and Lk,τ are not restricted to smooth right-hand sides. We
provide a comparison between the introduced seminorms in Section 4.3.
To obtain higher degrees in the polynomials it is possible to use the
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scaling and squaring in the matrix power. Thus, degrees of 2k will only
require log2(2

k) = k multiplications.

4. Numerical Results

We focus on ill-posed problems from Regularization Tools (Hansen,
1994). Hence, we mainly examine Fredholm integral equations of the
first kind. The Matlab (The MathWorks Inc., 2010) functions in
(Hansen, 1994) provide discretizations H of the integral operators using
Galerking or quadrature methods and scaled discrete approximations
of the solution. We affect our right-hand sides with Gaussian white
noise of different order, and we perform all computations on normalized
values. Note that ξ ∈ R refers to the order of the white noise. Our direct
regularization method is the Tikhonov-Phillips regularization.

Concerning the regularization parameter α we illustrate the max-
imum obtainable improvement for a perfect estimator. Therefore, we
compute it via the Matlab function fminbnd which attempts to find
a local minimizer in a given interval. We only consider reconstructions
as reasonable where α ∈ [0, 103]. Thus we fade out reconstructions
for which fminbnd hits the interval boundary (α = 103) and highlight
them via †. We refine the search by setting the termination tolerance
to TolX = 10−9. Note that fminbnd is based on golden section search
and parabolic interpolation and may provide only a local solution (The
MathWorks Inc., 2010), i.e., the estimation may still not be optimal for
certain problems. Hence, we measure the quality of the reconstructions
via the relative reconstruction error (RRE) ‖x̃ − x‖2/‖x‖2, where x̃
denotes the reconstruction and x the exact signal. All our test prob-
lems have a fixed problem size n = 300. We emphasize reconstructions
from standard form Tikhonov regularization with values marked in bold
style.

4.1. The general case: test problems baart and heat

In our first examples we focus on the general nonsymmetric case and
thus on the seminorms ‖Lk,σx‖2 and ‖Lk,τ=σmaxx‖2. For the test prob-
lem baart we obtained degradation with smoothing-norms using deriva-
tive operators according to (4) and therefore do not use them as a
comparison in our results. In contrast to this, smoothing-norms yield
highly improved reconstructions for the test problem heat which mod-
els the inverse heat equation. Here, we choose kappa = 5. In both
examples we affect the right-hand side with white noise of order 10%,
5%, 1%, and 0.1%. Besides the results in the Tables II and III, we
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illustrate two additional informations for the two noise levels 1% and
5% in Figures 2 and 3. While fixing the polynomial degree at k = 16
we plot the regularization parameter α versus the RRE and show the
associated reconstructions for the optimal regularization parameter.
Note that any choice of α will provide an improved reconstruction using
the seminorms, as their curves remain below the one corresponding to
standard form Tikhonov-Phillips regularization.

Among most of all our experiments we obtain improved results using
the seminorm ‖Lk,τx‖2 when the heuristic conditions (8) are satisfied.
However, this is not a necessary condition. See for instance the heat

example for ξ = 5%, where improvement is gained for the selected
measures according to Table I.

Table I. Regularization property for seminorm ‖Lk,τ=σmaxx‖2 according to (8) for
test problem heat with ξ = 5%.

XXXXXXXXXXNorm
Degree

k = 4 k = 8 k = 16

‖Kk,τ=σmax
eS‖2 0.0257 0.0224 0.0294

‖Kk,τσmax
eN − eN‖2 0.2762 0.6284 1.6517

4.2. The symmetric indefinite case: test problem shaw

We illustrate the behaviour of the seminorms ‖Lk,r,λx‖2 and ‖Lk,σx‖2
for the test problem shaw where the spectrum of H satisfies the nec-
essary conditions λmin = −1.86 � 0 and λmax = 2.99 � 0. See the
characteristics of the polynomial qk,r(x) for this problem in Figure 1.b.
The scenario setting is the same as in Section 4.1 except that we fix the
polynomial degree at k = 32 in Figure 4. Thus, we obtain better dis-
tinguishable plots. For large noise levels the seminorm ‖Lk,r,λx‖2 yields
improved results while it does not degrade the solution for small noise
levels. In comparison, the seminorm ‖Lk,σx‖2 yields similar behaviour
with slightly weaker improvement.

4.3. Further problems from Regularization Tools

Finally, we provide results on further examples from Regularization
Tools to give an overall summary. For some model problems we illus-
trate detailed results for ‖Lk,σx‖2, ‖Lk,τx‖2 and the noise levels 10%,
5%, and 1% in the Table V. For model problems with smooth right-hand
side we additionally provide results for the smoothing-norms (4).

In our last experiment, we are interested in the behaviour using
different right-hand sides for each model problem from Table VI. Be-
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Table II. RRE using Tikhonov regularization with optimal α to compute the
reconstruction x̃ of test problem baart.

XXXXXXXXXNorm
Noise

ξ = 10% ξ = 5% ξ = 1% ξ = 0.1%

‖Ix‖2 0.4638 0.4211 0.3535 0.1275

‖L1,σx‖2 0.4631 0.4201 0.3534 0.1275
‖L4,σx‖2 0.4562 0.4153 0.3528 0.1275
‖L8,σx‖2 0.4476 0.4095 0.3522 0.1275
‖L16,σx‖2 0.4320 0.3999 0.3510 0.1275
‖L32,σx‖2 0.4071 0.3826 0.3491 0.1275
‖L64,σx‖2 0.3764 0.3629 0.3469 0.1275

‖L1,τ=σmaxx‖2 0.4890 0.4839 0.3825 0.1401
‖L4,τ=σmaxx‖2 0.4887 0.4887 0.3119 0.1186
‖L8,τ=σmaxx‖2 0.4928 0.3744 0.1269 0.0639
‖L16,τ=σmaxx‖2 0.4928 0.3272 0.0837 0.0631
‖L32,τ=σmaxx‖2 0.4928 0.4895 0.0595 0.0646
‖L64,τ=σmaxx‖2 † † † †

a. RRE depending on α for ξ = 1%. b. Optimal reconstructions for ξ = 1%.

c. RRE depending on α for ξ = 5%. d. Optimal reconstructions for ξ = 5%.

Figure 2. Reconstruction of the test problem baart using the different seminorms
of degree k = 16. a,c illustrate the RRE depending on α for the noise levels ξ = 1%
and ξ = 5%. b,d show the corresponding optimally reconstructed signals.
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Table III. RRE using Tikhonov regularization with optimal α to compute the
reconstruction x̃ of test problem heat.

XXXXXXXXXNorm
Noise

ξ = 10% ξ = 5% ξ = 1% ξ = 0.1%

‖Ix‖2 0.6041 0.4554 0.2042 0.0540

‖L1x‖2 0.3789 0.2416 0.0869 0.0197
‖L2x‖2 0.3545 0.2138 0.0771 0.0172

‖L1,σx‖2 0.5141 0.3847 0.1726 0.0462
‖L4,σx‖2 0.4261 0.2986 0.1270 0.0343
‖L8,σx‖2 0.3789 0.2456 0.0986 0.0269
‖L16,σx‖2 0.3373 0.2080 0.0812 0.0211
‖L32,σx‖2 0.3207 0.2013 0.0785 0.0179

‖L1,τ=σmaxx‖2 0.4661 0.3386 0.1483 0.0400
‖L4,τ=σmaxx‖2 0.3671 0.2358 0.0923 0.0251
‖L8,τ=σmaxx‖2 0.3388 0.2083 0.0780 0.0197
‖L16,τ=σmaxx‖2 0.3266 0.2100 0.0769 0.0172
‖L32,τ=σmaxx‖2 † † 0.0789 0.0171

a. RRE depending on α for ξ = 1%. b. Optimal reconstructions for ξ = 1%.

c. RRE depending on α for ξ = 5%. d. Optimal reconstructions for ξ = 5%.

Figure 3. Reconstruction of the test problem heat using the different seminorms of
degree k = 16. a,c illustrate the RRE depending on α for the noise levels ξ = 1%
and ξ = 5%. b,d show the corresponding optimally reconstructed signals.
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Table IV. RRE using Tikhonov regularization with optimal α to compute the
reconstruction x̃ of test problem shaw.

XXXXXXXXXNorm
Noise

ξ = 10% ξ = 5% ξ = 1% ξ = 0.1%

‖Ix‖2 0.2195 0.1878 0.1584 0.0990

‖L1,σx‖2 0.2182 0.1868 0.1582 0.0990
‖L4,σx‖2 0.2125 0.1836 0.1578 0.0990
‖L8,σx‖2 0.2064 0.1805 0.1574 0.0990
‖L16,σx‖2 0.1989 0.1766 0.1569 0.0990
‖L32,σx‖2 † 0.1721 0.1564 0.0990
‖L64,σx‖2 0.1829 0.1672 0.1558 0.0990

‖L1,r,λx‖2 0.2180 0.1862 0.1581 0.0990
‖L4,r,λx‖2 0.2069 0.1806 0.1574 0.0990
‖L8,r,λx‖2 0.1985 0.1762 0.1569 0.0990
‖L16,r,λx‖2 0.1900 0.1714 0.1563 0.0990
‖L32,r,λx‖2 0.1817 0.1665 0.1558 0.0990
‖L64,r,λx‖2 0.1793 0.1652 0.1556 0.0990

a. RRE depending on α for ξ = 1%. b. Optimal reconstructions for ξ = 1%.

c. RRE depending on α for ξ = 5%. d. Optimal reconstructions for ξ = 5%.

Figure 4. Reconstruction of the test problem shaw using the different seminorms of
degree k = 32. a,c illustrate the RRE depending on α for the noise levels ξ = 1%
and ξ = 5%. b,d show the corresponding optimally reconstructed signals.
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Table V. RRE of problems from (Hansen, 1994) using Tikhonov regularization.

Problem
XXXXXXXXXNorm

Noise
ξ = 10% ξ = 5% ξ = 1%

gravity(n,3,0,1, 1
4
)

‖Ix‖2 0.2243 0.1832 0.1185
‖L1,σx‖2 0.2074 0.1735 0.1179
‖L4,σx‖2 0.1863 0.1611 0.1173
‖L32,σx‖2 0.1419 0.1342 0.1193
‖L1,τ=σmaxx‖2 0.1845 0.1601 0.1179
‖L4,τ=σmaxx‖2 0.1512 0.1408 0.1201
‖L8,τ=σmaxx‖2 0.1414 0.1340 †
‖L16,τ=σmaxx‖2 † 0.1525 0.1219

foxgood(n)

‖Ix‖2 0.1097 0.0727 0.0276
‖L1,σx‖2 0.1141 0.0744 0.0276
‖L4,σx‖2 0.1123 0.0728 0.0268
‖L16,σx‖2 0.1057 0.0668 0.0237
‖L64,σx‖2 0.0867 0.0488 0.0145
‖L1,τ=σmaxx‖2 0.1242 0.0834 0.0324
‖L8,τ=σmaxx‖2 0.2117 0.1640 0.0792
‖L32,τ=σmaxx‖2 0.3062 0.2988 0.2964

deriv2(n,3)

‖Ix‖2 0.1882 0.1483 0.0983
‖L1,σx‖2 0.1226 0.1209 0.1203
‖L4,σx‖2 0.1217 0.1179 0.0951
‖L8,σx‖2 0.1218 0.1182 0.0943
‖L32,σx‖2 0.1225 0.1205 0.0897
‖L1,τ=σmaxx‖2 0.2758 0.2059 0.1135
‖L4,τ=σmaxx‖2 0.8962 0.7636 0.3852
‖L8,τ=σmaxx‖2 † 1.0000 0.9977

i laplace(n,2)

‖Ix‖2 0.8297 0.8206 0.8116
‖L1x‖2 0.1771 0.1461 0.1248
‖L2x‖2 0.1491 0.1163 0.0954
‖L1,σx‖2 0.8306 0.8208 0.8116
‖L4,σx‖2 0.8306 0.8207 0.8116
‖L32,σx‖2 0.8308 0.8200 0.8114
‖L1,τ=σmaxx‖2 0.8976 0.8882 0.8820
‖L4,τ=σmaxx‖2 0.9222 0.9222 0.9222
‖L32,τ=σmaxx‖2 0.9900 0.9898 0.9915

phillips(n)

‖Ix‖2 0.2610 0.1787 0.0811
‖L1,σx‖2 0.2221 0.1566 0.0785
‖L4,σx‖2 0.1918 0.1399 0.0781
‖L32,σx‖2 0.1954 0.1358 0.1097
‖L1,τ=λmaxx‖2 0.1955 0.1417 0.0770
‖L4,τ=λmaxx‖2 0.1931 0.1358 0.0740
‖L32,τ=λmaxx‖2 † 0.2333 0.0533

wing(n, 1
3
, 2
3
)

‖Ix‖2 0.6165 0.6107 0.6048
‖L1,σx‖2 0.6165 0.6107 0.6048
‖L4,σx‖2 0.6163 0.6106 0.6048
‖L32,σx‖2 0.6143 0.6094 0.6045
‖L4,τ=λmaxx‖2 0.6637 0.6485 0.6333
‖L16,τ=λmaxx‖2 0.5956 0.5838 0.5739
‖L32,τ=λmaxx‖2 0.8388 0.8343 0.8312
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Table VI. Test problems from (Hansen, 1994) used in Figure 5.

No. Problem No. Problem

1 baart(n) 6 i laplace(n,[1,2,3,4])
2 deriv2(n,[1,2,3]) 7 phillips(n)

3 foxgood(n) 8 shaw(n)

4
gravity(n,[1,2],0,1,0.5) 9 spikes(n,2)

gravity(n,3,0,1,0.25) 10 wing(n,1/3,2/3)
5 heat(n,5)

sides those available from (Hansen, 1994) (x1) we additionally use the
following right-hand sides:

(x2)i := sin

(
iπ

n

)
,

(x3)i := sin

(
iπ

n

)
, (x3)i=100, i=200, i=300 = 10 · sin

(
iπ

n

)
,

(x4)i := i,

(x5)i :=

(
i−
⌊
n
2

⌋)2(⌈
n
2

⌉)2 ,

(x6)i :=
i

n
+ sin

(
π(i− 1)

n

)
,

(x7)i := (0, . . . , 0)T , (x7)i=100, i=200, i=300 = 5,

where i = 1, . . . , n. We plot the improvement obtained from the two
seminorms ‖Lk,σx‖2 and ‖Lk,τx‖2 for ξ = 1% in Figure 5. For ξ = 10%
we observed similar behaviour for both seminorms. As Regulariza-
tion Tools provides several right-hand sides for some model problems,
like, e.g., deriv2 or gravity (see Table VI), the overall number varies
in the plots. We choose τ = σmax and τ = λmax but only plot the
better result of both, even when the conditions (8) are violated. We
summarize the results seminorm dependently:

x ‖Lk,σx‖2: this seminorm provides the most robust behaviour, i.e.,
yields improvement for the most examples and operator spectra
while it does not destroy the reconstruction in the remaining prob-
lems. Nevertheless, the improvement might be small for certain
test problems or smaller compared to the other seminorms, like, for
example, for the baart or the shaw scenario. Note that even for the
indefinite spectrum of the latter problem we get an improvement
compared to Tikhonov regularization in standard form.
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Figure 5. Percental improvement using the seminorms ‖Lk,σx‖2 and ‖Lk,τx‖2 for
the polynomial degrees k = 8, k = 16 and the noise level ξ = 1%. Refer to Table
VI for the used model problems. The improvement is measured with reference to
standard form Tikhonov-Phillips regularization.

SemiNorms.tex; 30/11/2011; 18:12; p.13



14 Huckle Thomas and Sedlacek Matous

x ‖Lk,r,λx‖2: in case that H is symmetric, the more the indefinite
eigenspectrum is separated from zero, and the better −λmin ≈
λmax, the higher the improvement should be when applying this
seminorm. See the shaw test problem in Section 4.2, where the
usage of ‖Lk,r,λx‖2 leads to best results. As we always choose r
according to (7) the operator Kk,r,λ is well-defined. On the other
hand, the usage of ‖Lk,r,λx‖2 will eventually destroy the recon-
struction if λmin ≈ 0 or λmax ≈ 0.

x ‖Lk,τx‖2: for certain general operators, this seminorm may yield
better improvements than ‖Lk,σx‖2. However, one has to choose τ
with caution. For nonsymmetric H, τ has to be chosen such that
Kk,τ ≥ 0 and that it has a regularizing effect only on the noise sub-
space. For example, we achieved best results using Kk,τ=σmax for
the problems baart and heat. Here, Kk,τ=σmax ≥ 0. For heat both
the conditions ‖Kk,τ=σmaxeS‖2 � 1 and ‖Kk,τ=σmaxeN − eN‖2 �
1 are often satisfied. Though, for baart these conditions are not
satisfied for larger polynomial degress, we still observe much im-
provement. This reflects the heuristic choice of modeling the sub-
spaces by eS and eN . For symmetric H, like, for example, in the
model problems phillips or gravity 3, Kk,τ=λmax is well-defined
and yields improved results too.

x Smoothing norm ‖Lx‖2: for model problems containing a smooth
right-hand side this well-known seminorm provides highly improved
reconstructions. E.g., while reconstructing the i laplace(n,2) or
i laplace(n,4) model problems, none of the spectral dependent
seminorms provide improved results. Here, a smoothing-norm is
very effective.

5. Conclusion

We considered the impact of incorporating spectral information of H
and therewith use operator dependent seminorms in the Tikhonov-
Phillips regularization. Depending on the definiteness and the location
of the spectral values, an appropriate seminorm, corresponding to a
polynomial with certain properties, will have a regularizing effect on the
noise subspace but no action on the signal subspace. The improvement
of the solution can be enhanced by increasing values of the polynomial
degree. Here, the computation should be based on the scaling and
squaring according to the matrix power to keep it efficient. As a brief
summary we point out:
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x The seminorm ‖Lk,σx‖2 yields robust behaviour meaning that it
will not destroy the solution if not appropriate for an underlying
problem.

x For indefinite operators satisfying λmin � 0 and λmax � 0 the
seminorm ‖Lk,r,λx‖2 is an alternative to obtain improved recon-
structions.

x If τ is chosen carefully to satisfy the mentioned conditions, ‖Lk,τx‖2
will produce improved results for certain problems as well.

x If the signal is known to be smooth, smoothing norms will yield
distinct improvement.

Among several of our test problems we observed that the larger the
noise level, the more the improvement will be when applying the semi-
norms. Note that operator dependent seminorms rely on the assump-
tion that a priori knowledge of the extremal spectral values is available.
If not, however, approximations can be obtained via a couple of Arnoldi
iterations.
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