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Abstract. Tikhonov regularization replaces a linear discrete ill-posed problem by a penalized
least-squares problem, whose solution is less sensitive to errors in the data and round-off errors
introduced during the solution process. The penalty term is defined by a regularization matrix and
a regularization parameter. The latter generally has to be determined during the solution process.
This requires repeated solution of the penalized least-squares problem. It is therefore attractive to
transform the least-squares problem to simpler form before solution. The present paper describes
a transformation of the penalized least-squares problem to simpler form that is faster to compute
than available transformations in the situation when the regularization matrix has linearly dependent
columns and no exploitable structure. Properties of this kind of regularization matrices are discussed
and their performance is illustrated.
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1. Introduction. We are concerned with the solution of least-squares problems

min
x∈Rn

‖Ax − b‖, A ∈ R
m×n, x ∈ R

n, b ∈ R
m, m ≥ n,(1.1)

with a matrix whose singular values “cluster” at the origin. In particular, A is severely
ill-conditioned and may be singular. This kind of minimization problems are com-
monly referred to as discrete ill-posed problems. They arise when discretizing ill-posed
problems, such as Fredholm integral equations of the first kind with a smooth ker-
nel. The vector b represents data and typically is contaminated by an unknown error
e ∈ R

m, which may be due to measurement inaccuracies or discretization. We will
refer to the vector e as “noise.” Let b̂ ∈ R

m denote the unknown error-free vector
associated with b. Thus,

b = b̂ + e.(1.2)

We will assume that a bound

‖e‖ ≤ ε

is available, and that the linear system of equations with the unknown error-free
right-hand side,

Ax = b̂,(1.3)

is consistent. However, the methods discussed also can be applied when these condi-
tions are violated. Throughout this paper ‖ · ‖ denotes the Euclidean vector norm.

Let x̂ denote the solution of minimal norm of the unknown consistent system
(1.3). We would like to determine an approximation of x̂ by computing a suitable
approximate solution of the available discrete ill-posed problem (1.1). It is well known
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that due to the severe ill-conditioning of A, the solution of minimal norm of (1.1)
generally is not a meaningful approximation of x̂. A common approach to remedy
this difficulty is to replace the least-squares problem (1.1) by a nearby problem, whose
solution is less sensitive to the error e. One of the most popular approaches to achieve
this, known as Tikhonov regularization, replaces (1.1) by a penalized least-squares
problem of the form

min
x∈Rn

∥∥∥∥
[

A
µL

]
x −

[
b

0

]∥∥∥∥ .(1.4)

Here L ∈ R
p×n is referred to as the regularization matrix and the scalar µ ≥ 0 as the

regularization parameter; see, e.g., Engl et al. [11] and Hansen [15] for discussions on
Tikhonov regularization.

Common regularization matrices L are the identity matrix I and finite difference
matrices such as

L :=




−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1


 ∈ R

(n−2)×n.(1.5)

The minimization problem (1.4) is said to be in standard form when L = I and
in general form otherwise. Many examples of regularization matrices can be found in
[3, 4, 7, 16, 18]. Typically, p, the number of rows of L, is smaller than or equal to n,
but regularization matrices with p > n also find application.

The matrix L is assumed to be chosen so that

N (A) ∩N (L) = {0}.(1.6)

Then the Tikhonov minimization problem (1.4) has the unique solution

xµ := (AT A + µ2LT L)−1AT b(1.7)

for any µ > 0. Here and below the superscript T denotes transposition.
We apply the discrepancy principle to determine a suitable value of µ. It pre-

scribes that µ > 0 be chosen so that the associated solution (1.7) satisfies

‖Axµ − b‖ = ηε(1.8)

for a user-supplied parameter η > 1, which usually is chosen to be fairly close to
unity. Detailed discussions on the discrepancy principle can be found in [11, 15]. We
can find a value µ > 0 so that the associated solution (1.7) of (1.4) satisfies (1.8) by
applying a zero-finder to the nonlinear function

φ(µ) := ‖b − Axµ‖2 − η2ε2, µ > 0.(1.9)

This function is a strictly increasing and, therefore, φ has a unique zero for ηε suffi-
ciently large; see Section 2 for details. The computation of this zero with a zero-finder
generally requires the evaluation of φ(µ) for several values of µ, and this makes it nec-
essary to solve (1.4) for xµ for several values of µ. The repeated solution of (1.4)
without initial simplification of the problem can be expensive when the matrices A
and L are fairly large. This paper discusses methods for transforming the least-squares
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problem (1.4) to simpler form that allows efficient evaluation of φ(µ) for a sequence of
µ-values. We are interested in problems that are large enough to make the transfor-
mation worthwhile, but small enough to allow factorization of the matrices involved.
This means typically matrices A and L of order from a few hundred to a few thousand.

While this paper focuses on the determination of µ by the discrepancy principle,
we note that also many other approaches to determine µ, including the L-curve cri-
terion, generalized cross validation, and extrapolation, require the evaluation of φ(µ)
for several values of µ; see, e.g., [5, 6, 15] for examples and discussions. The transfor-
mations discussed in this paper therefore also are attractive to apply in the context
of these parameter determination methods.

To reduce the expense of repeated solution of the penalized least-squares prob-
lem (1.4), one transforms the problem to simpler form before solution. Eldén [10]
introduced the A-weighted pseudoinverse of L, given by

L†
A := (I − (A(I − L†L))†A)L†,(1.10)

for this purpose. Here L† denotes the Moore-Penrose pseudoinverse of L. The pe-
nalized least-squares problem (1.4) can be transformed to standard form with the

aid of L†
A. This transformation reduces the computational effort required for each

evaluation of φ(µ); see Section 2 for details.

It is attractive to use the matrix L†
A when the pseudoinverse L† can be determined

inexpensively and N (L) is explicitly known. This is the case when L is given by (1.5).
We are interested in the situation when L does not have a structure that allows
inexpensive computation of L†. Section 2 discusses the computational effort required
to use L†

A under these circumstances.

A popular approach to simplifying (1.4) when L†
A is expensive to apply is to use

the generalized singular value decomposition (GSVD) of the matrix pair {A,L},

A = Udiag[σ1, σ2, . . . , σp, 1, 1, . . . , 1︸ ︷︷ ︸
n−p

]X,(1.11)

L = V
[
diag[ρ1, ρ2, . . . , ρp],0,0, . . . ,0︸ ︷︷ ︸

n−p

]
X,(1.12)

where the matrices U ∈ R
m×n and V ∈ R

p×p have orthonormal columns, X ∈ R
n×n

is nonsingular, and the scalars σj and ρj are ordered and scaled so that

0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σp ≤ 1, 0 ≤ ρp ≤ ρp−1 ≤ . . . ≤ ρ1 ≤ 1,

and

σ2
j + ρ2

j = 1, 1 ≤ j ≤ p;

see, e.g., [1, 12, 13, 15] for details. Substituting the decompositions (1.11)-(1.12) into
(1.4) gives an equivalent minimization problem with A and L replaced by diagonal
matrices. This simplified problem can be solved and φ(µ) can be evaluated in O(p)
arithmetic floating point operations (flops) for every value of µ > 0.

A reason why the GSVD of {A,L} is not always used for solving (1.4) is that
its computation can be quite expensive. Bai [1, Table 5.1] shows the leading term
in the flop counts for several GSVD algorithms when A,L ∈ R

n×n. The counts for
some algorithms depend on the number of sweeps, j, required. Typically, 2 ≤ j ≤ 10.
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When j is small, Paige’s algorithm has the smallest leading coefficient, (5.3 + 15j)n3,
which generally is at least 35.3n3 and could be much larger.

It is the purpose of this paper to present a reduction method that, similarly to
the GSVD, is well suited for the situation when L has linearly dependent columns
and no structure that can be exploited to simplify the computation of L†, and is
cheaper to apply than the GSVD. The method reduces the matrix pair {A,L} to
a pair of bidiagonal and diagonal matrices. It is described in Section 2, where also
reduction methods presented by Eldén [9, 10] are reviewed. Operation counts for
these reduction methods are compared. Section 3 discusses the construction of useful
regularization matrices L that are the product of two singular matrices, and for which
the computation of L† is expensive. Our reduction method is well suited for these
regularization matrices. Computed examples with these regularization matrices are
presented in Section 4. Concluding remarks can be found in Section 5.

2. Reduction methods. We first review application of the A-weighted pseu-
doinverse of L, given by (1.10), to the reduction of the problem (1.4) to standard
form. This is described by Eldén [10] as well as in [15, Section 2.3]. We discuss
flop counts for the situation when A,L ∈ R

n×n and L† cannot be computed cheaply.
Subsequently, we describe a new approach to reducing (1.4) based on a GSVD-like
reduction of the matrix pair {A,L}, that is cheaper to compute than the GSVD and

also is cheaper to apply than L†
A when L has linearly dependent columns and no

exploitable structure.

2.1. Reduction based on L†
A. Eldén [10] showed that the problem (1.4) is

equivalent to the minimization problem in standard form,

min
y∈Rn

∥∥∥∥
[

AL†
A

µI

]
y −

[
b̄

0

]∥∥∥∥ ,(2.1)

where b̄ = P⊥
AN (L)b and P⊥

AN (L) is the orthogonal projector onto the complement of

AN (L). Let yµ denote the solution of (2.1). Then the solution xµ of (1.4) can be
computed from yµ via

xµ = L†
Ayµ + x0,(2.2)

where x0 = (APN (L))
†b. When N (L) is of small dimension and has an explicitly

known basis, x0 is inexpensive to compute. This is the case for the matrix (1.5).
Eldén [10] shows that

‖Axµ − b‖ = ‖AL†
Ayµ − b̄‖.(2.3)

Therefore, φ(µ) can be evaluated using the transformed problem (2.1).
We investigate the cost of transforming the minimization problem (1.4) to (2.1)

when the structure of L ∈ R
p×n, p ≤ n, does not allow efficient evaluation of L†. The

main computational cost then is the computation of L†. Let

L = Ũ
[
Σ̃,0,0, . . . ,0︸ ︷︷ ︸

n−p

]
Ṽ T(2.4)

be the singular value decomposition (SVD) of L with Ũ ∈ R
p×p and Ṽ ∈ R

n×n

orthogonal matrices and

Σ̃ = diag[σ̃1, σ̃2, . . . , σ̃p] ∈ R
p×p.
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The singular values σ̃j are ordered according to

σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃p−ℓ > σ̃p−ℓ+1 = . . . = σ̃p = 0.

The number of vanishing singular values, ℓ, is assumed to be small and independent
of p and n in our flop counts. It is clear from (1.4) that L can be replaced by

L̃ := ŨT L = Σ̃Ṽ T

without changing the solution of the problem. Therefore, only the matrices Σ̃ and Ṽ
in the SVD of L have to be computed. Their computation requires about 12n3 flops
when p ≈ n; see [12, p. 254].

We turn to the computation of the matrix AL†
A. Split Ṽ = [ṽ1, ṽ2, . . . , ṽn] into

Ṽ1 = [ṽ1, ṽ2, . . . , ṽp−ℓ], Ṽ0 = [ṽp−ℓ+1, ṽp−ℓ+2, . . . , ṽn].

Thus, the columns of Ṽ0 form an orthonormal basis for N (L). Compute the QR
factorization

AṼ0 = Q̃R̃,

where the matrix Q̃ ∈ R
m×(n+ℓ−p) has orthonormal columns and the matrix R̃ ∈

R
(n+ℓ−p)×(n+ℓ−p) is upper triangular. It follows from (1.6) that R̃ is nonsingular.

Since

A(I − L†L) = AṼ0Ṽ
T
0 = Q̃R̃Ṽ T

0 ,

we have

(A(I − L†L))† = Ṽ0R̃
−1Q̃T .

Substitution this expression into (1.10) and replacing the trailing matrix L† by L̃†

yields

L†
A = (I − Ṽ0R̃

−1Q̃T A)Ṽ Σ̃†,

AL†
A = (I − Q̃Q̃T )AṼ Σ̃†.

The dominating work for forming AL†
A is, besides the computation of the matrices

Σ̃ and Ṽ , the evaluation of the matrix-matrix product AṼ , which requires 2n3 flops
when m ≈ n. We note that the product (I − Q̃Q̃T )(AṼ Σ̃†) can be evaluated in only

O(n2) flops since the number of columns of Q̃ is independent of n and p (and is small).

Thus, the flop count for determining AL†
A is about 14n3. In addition, Householder

bidiagonalization of AL†
A, without explicitly forming products of the Householder

matrices involved, requires about 22
3n3 flops, see [12, p. 252], giving a total count of

about 162
3n3 flops.

The reduction of the matrix in Tikhonov regularization problems in standard form
to bidiagonal form, instead of to diagonal form via the SVD, was first proposed by
Eldén [9], where further details on the computations can be found. The determination

of AL†
A is suggested in [10]. Thus, the outlined scheme combines the approaches

in [9, 10]. The reduction described in [9] requires more computational effort when
adapted to the situation of the present paper.
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We remark that when the computations are carried out in MATLAB using the
function svd, all matrices in the SVD of L (2.4) are computed. This increases the
operation count for computing the SVD of L to about 22n3 flops, see [12, p. 254], and
the total number of flops required by the reduction method to about 262

3n3, which is
60% larger than for the bidiagonalization method described above.

Having reduced AL†
A to bidiagonal form, the function φ(µ) can be evaluated in

only O(n) flops for each value of µ by using the relation (2.3). Having determined
a zero µ > 0 of φ(µ), we compute xµ from (2.2). The latter computations can be
carried out in O(n2) flops if N (L) is of small dimension (independent of n) and has
an explicitly known basis. It follows that the dominating cost for the solution of (1.4)
by the method of this subsection is the 162

3n3 flops required for the formation and

reduction of AL†
A.

2.2. A GSVD-like reduction. This subsections describes an approach for re-
ducing the matrix pair {A,L} to a pair of simpler matrices that is cheaper than
computing the GSVD and is well suited for use in Tikhonov regularization. Our ini-
tial computations are identical with those of several algorithms for computing the
GSVD of {A,L}. A thorough discussion of such algorithms is provided by Bai [1]; see
also [2]. All flop counts are for the case when m = n = p.

The first step of many GSVD algorithms is to compute the QR factorization
[

A
L

]
= QR, Q =

[
Q1

Q2

]
, Q1 ∈ R

m×n, Q2 ∈ R
p×n, R ∈ R

n×n,(2.5)

where Q has orthonormal columns and R is upper triangular. It follows from (1.6)
that R is nonsingular. The computation of the QR factorization with Householder
matrices requires about 3 1

3n3 flops; see [12, Section 5.2.1]. This yields Q in factored
form. We will need elements of the matrix Q1, but not of Q2. Given Q in factored
form, the entries of Q1 can be determined in about 31

3n3 flops by computing them
from bottom up.

Many GSVD algorithms proceed by determining the SVD of Q1. We will instead
reduce Q1 to bidiagonal by using Householder matrices, because this is cheaper. Let

Q1 = U1B1V
T
1 ,

where B1 ∈ R
m×n is upper bidiagonal, and U1 ∈ R

m×m and V1 ∈ R
n×n are orthog-

onal. The evaluation of this decomposition, with U1 and V1 represented in factored
form, can be carried out in 22

3n3 flops when m ≈ n; see [12, Section 5.4.3]. We obtain
the decomposition

Q =

[
Q1

Q2

]
=

[
U1 0
0 Ip

] [
B1

Q2V1

]
V T

1 ,(2.6)

where Ip denotes the p × p identity matrix. The computation of the decomposition
(2.6) requires about 91

3n3 flops (for the evaluation of the QR factorization (2.5), the
formation of the matrix Q1, and Householder bidiagonalization of Q1). This is the
dominating work for the reduction method of this subsection.

The orthonormality of the columns of Q yields

In = BT
1 B1 + V T

1 QT
2 Q2V1.(2.7)

Substituting (2.5) and (2.6) into (1.4) gives the least-squares problem

min
y∈Rn

∥∥∥∥
[

B1

µQ2V1

]
y −

[
UT

1 b

0

]∥∥∥∥ , y = V T
1 Rx.
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Using (2.7), the associated normal equations can be expressed as

(
µ2In + (1 − µ2)BT

1 B1

)
y = BT

1 UT
1 b.(2.8)

It is generally advantageous, because it may yield a computed approximate solu-
tion of higher accuracy, to solve a least-squares problem rather than the associated
normal equations. We therefore calculate the solution yµ of (2.8) by solving the
least-squares problem

min
y∈Rn

∥∥∥∥
[

δB1

µIn

]
y −

[
1
δ UT

1 b

0

]∥∥∥∥ , δ :=
√

1 − µ2.(2.9)

Eldén [9] described an algorithm for solving this kind of least-squares problem in
O(n) flops by applying a judiciously chosen sequence of Givens rotations. In typical
applications, the desired value of the regularization parameter µ is much smaller than
unity. If this is not the case for the problem at hand, then (1.1) can be rescaled to
achieve this. Therefore, δ is about unity and can be computed with high relative
accuracy. We remark that the matrix U1 does not have to be stored; the factors of
UT

1 can be applied to b as soon as they are computed during bidiagonalization of Q1.
The function (1.9) can be expressed as

φ(µ) = ‖B1yµ − UT
1 b‖2 − η2ε2,(2.10)

where yµ solves (2.9). The evaluation of φ(µ) requires the solution of (2.9). Therefore
the evaluation for each value of µ > 0 can be carried out in only O(n) flops. Having
determined a zero of (2.10), and the associated solution yµ of (2.9), the corresponding
solution of (1.4) is given by

xµ = R−1V1yµ.(2.11)

We conclude this section with a discussion of some properties of the function
(2.10) that are of interest when choosing a zero-finder. In particular, we will see that
it may be more convenient to compute the zero of the function

ψ(ν) := φ(1/
√

ν) − η2ε2(2.12)

than of φ.
Proposition 2.1. Assume that BT

1 UT
1 b 6= 0. Then the function (2.12) is strictly

decreasing and convex for ν ≥ 1. With a suitable scaling of (1.1), the function ψ has
a unique zero, which is larger than unity.

Proof. The normal equations (2.8) yield

yµ = (µ2In + (1 − µ2)BT
1 B1)

−1BT
1 UT

1 b.

Substituting this expression into (2.10) and using the SVD of B1 shows that ψ is
convex and decreasing.

Multiplying A, b, and µ in (1.4) by a positive scalar does not change the solution
xµ. By choosing this positive scalar to be arbitrarily small, we can secure that the
regularization parameter µ > 0 that satisfies (1.8) is arbitrarily small. Therefore, the
zero of ψ can be made arbitrarily large by rescaling of (1.1).

The above proposition suggests that it may be convenient to apply the secant
method to determine the zero ν̆ of ψ with initial iterates 1 ≤ ν0 < ν1 < ν̆. Successive
iterates νj , j = 2, 3, . . . , then converge monotonically to ν̆.
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In summary, the computation of the matrices in (2.9) requires about 91
3n3 flops,

the evaluation of φ(µ) can then be done in only O(n) flops for each value of µ, and
having determined a value that satisfies the discrepancy principle, we can compute
the associated solution (2.11) in O(n2) flops.

We would like to emphasize that the flop counts of this and the previous subsec-
tions are for the situation when L does not have an exploitable structure and does not
have an explicitly known null space of low dimension. The following section provides
examples of such regularization matrices. When L is banded with a small bandwidth
and has an explicitly known null space of low dimension, it may be possible to speed
up the computations significantly. For instance, when L is given by (1.5), the matrix

AL†
A can be formed in only O(n2) flops.

3. Regularization matrices. The matrix A in discrete ill-posed problems (1.1)
typically has many “tiny” singular values. The problems then are numerically under-
determined. The purpose of the regularization matrix L is to define a least-squares
problem (1.4) that for µ > 0 that satisfies (1.8) has a solution xµ that is close to the
solution x̂ of (1.3). In particular, L should be chosen so that important features of
x̂ are not damped. One way to achieve this is to choose a regularization matrix L
with suitable N (L), because components of xµ in N (L) are not damped by L. We
remark that an appropriate choice of L may enhance the quality of the computed
approximation of x̂ significantly; see Section 4 as well as [3, 7, 16, 18] for examples.

The following proposition shows how “designer regularization matrices,” whose
null space contains a desired subspace, can be constructed from standard regulariza-
tion matrices such as (1.5).

Proposition 3.1. Let the matrix W = [w1,w2, . . . ,wℓ] ∈ R
n×ℓ, 1 ≤ ℓ < n,

have orthonormal columns. Let L′ ∈ R
p×n and define

L := L′(I − WWT ).(3.1)

Then

N (L) = R(W ) ∪N (L′
R(W )⊥),(3.2)

where R(W ) denotes the range of W and L′
R(W )⊥ is the restriction of L′ to the

orthogonal complement of R(W ).

Proof. The expression (3.2) is an immediate consequence of the definition (3.1).

We remark that generally there are no simple useful expressions for the Moore-
Penrose pseudoinverse of the product of two singular matrices, such as (3.1); see, e.g.,
[8, Section 1.4] for a discussion.

Theorem 3.2. Let the matrices L′ and W be defined as in Proposition 3.1. Then
(3.1) is the matrix closest to L′ in the Frobenius norm with R(W ) ⊂ N (L).

Proof. In order for the vector v ∈ R
n to live in the null space of a matrix

M ∈ R
p×n, each row of M has to be orthogonal to v. Let rT be a row of the matrix

L′. The orthogonal projector P⊥
W := I − WWT maps rT to the closest row that is

orthogonal to R(W ), i.e.,

‖rT P⊥
W − rT ‖ = min

r̃T
W=0

T

r̃∈R
n

‖r̃T − rT ‖.
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Application to every row of L′ shows that

‖L′P⊥
W − L′‖F = min

MW=0
M∈R

p×n

‖M − L′‖F ,

where ‖N‖F :=
√∑

i,j n2
i,j denotes the Frobenius norm of the matrix N = [ni,j ] ∈

R
p×n.

Example 3.1. Let n be even and assume that the desired solution x̂ of (1.3) is
known to have large slowly oscillatory and linear components. Let L′ be the regular-
ization matrix (1.5) and define the discretization of the function γ cos(t) on [−π, π],

w := γ[cos(−tn/2), cos(−tn/2−1), . . . , cos(−t1), cos(t1), . . . , cos(tn/2−1), cos(tn/2)]
T ,

where tj = 2j−1
n π, j = ±1,±2, . . . ,±n/2, and the constant γ is chosen so that w is of

unit length. Let L be given by (3.1) with W := w. Then N (L) = N (L′) ∪ span{w}.
The performance of the regularization matrix L is illustrated in Section 4. The role of
the matrix (1.5) is to provide damping of high-frequency components of the computed
solution without damping the linear component; we have

N (L′) = span








1
1
...
1


 ,




1
2
...
n








.

The factor I − WWT avoids damping of a slowly oscillatory component. 2

4. Computed examples. All computations were carried out on a desktop com-
puter using MATLAB with about 16 significant decimal digits. We first comment on
the relevance of the flop counts reported in Sections 1 and 2 for the different solution
methods. The leading term of the flop counts were determined under the assumption
that the matrices A and L are of size about n × n. We recall that the leading terms
for the methods of Subsections 2.1 and 2.2 are 162

3n3 and 91
3n3, respectively, and for

the GSVD generally at least 35.3n3. These terms dominate the flop count when n
is sufficiently large. It is interesting to investigate whether it is possible to choose n
large enough on a standard desktop computer so that the leading terms of the flop
counts, indeed, dominate. To shed light on this question, we timed the computation of
the GSVD of matrix pairs {A,L} with A,L ∈ R

n×n for n = 500, 1000, 1500, . . . , 4000,
using the MATLAB function gsvd and the MATLAB timing commands tic and toc.
We found that i) the required execution time as a function of n can be approximated
well by a cubic monomial, and ii) the computations were rapid enough to be feasible.
We therefore expect the method of Subsection 2.2, whose flop count has the smallest
leading coefficient, to be competitive for practical problems of moderately large size.

We remark that the execution time not only is affected by the flop count, but
also by the programming style, whether the code is interpreted or a compiled version
is executed, the computer architecture, in particular communication speed and the
amount of fast computer memory available, as well as the number of CPUs. Since
we presently do not have carefully designed MATLAB codes available for all methods
in our comparison, we refrain from reporting timings for the methods described in
Section 2.

The following example compares the computed approximate solutions of (1.1) de-
termined by Tikhonov regularization with the regularization matrices of Example 3.1,
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Regularization matrix ‖xµ − x̂‖/‖x̂‖
Example 3.1 3.26 · 10−3

(1.5) 8.76 · 10−3

I 2.02 · 10−2

Table 4.1

Example 4.1. Errors in approximate solutions computed by Tikhonov regularization with several
regularization matrices for the noise-level α = 1 · 10−3.

(1.5), and L = I. The “noise-vector” e in (1.2) has normally distributed pseudoran-
dom entries with mean zero and is normalized to correspond to a chosen noise-level

α :=
‖e‖
‖b̂‖

.

Here b̂ denotes the noise-free right-hand side vector in (1.3).
Example 4.1. Consider the Fredholm integral equation of the first kind

∫ 6

−6

κ(t, s)x(s)ds = g(t), −6 ≤ t ≤ 6,(4.1)

with the kernel and solution given by

κ(t, s) := x(t − s),

x(s) : =

{
1 + cos(π

3 s), if |s| < 3,
0, otherwise.

The right-hand side g(t) is defined by (4.1). This integral equation is discussed by
Phillips [17]. We use the MATLAB code phillips in [14] to determine a discretization
A ∈ R

200×200 by a Galerkin method with orthonormal box functions. The code
phillips also provides a discretization of a scaled solution, x0 ∈ R

200. We add a
discretization of the function 1 + s/6 + cos(2π(1 + s/6)), −6 < s < 6, to the vector
x0 to obtain a slowly oscillatory and increasing solution x̂. The noise-free right-
hand side is given by b̂ = Ax̂. We generate a noise-vectors e corresponding to the
noise-level α = 1 · 10−3 and obtain the contaminated vector b in (1.1) from (1.2).
The regularization parameter µ is determined by the discrepancy principle with the
coefficient η in (1.8) set to 1.01.

Table 4.1 shows the regularization matrix of Example 3.1 to yield the best approx-
imations of x̂; the error achieved is smaller than for the other regularization matrices.
Figure 4.1 displays the computed solutions determined with the regularization matri-
ces of Table 4.1. The regularization matrix of Example 3.1 can be seen to yield better
boundary behavior of the computed solution than the other regularization matrices.
2

5. Conclusion and extension. The reduction of Tikhonov minimization prob-
lems (1.4) to simpler forms is investigated and a new approach that is well suited for
the situation when it is expensive to determine the Moore-Penrose generalized inverse
of the regularization matrix is proposed. This approach allows considerable flexibil-
ity in the choice of regularization matrix. Computations illustrate that this flexibility
can help us determine regularization matrices that give more accurate approximations
of the desired solution than standard regularization matrices, such as (1.5) and the
identity matrix.
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Fig. 4.1. Example 4.1: Approximate solutions xµ (continuous graphs) computed by Tikhonov
regularization with different regularization matrices and noise-level α = 1 ·10−3. The dashed graphs
depict the desired solution x̂.



12

Acknowledgement. We would like to thank a referee for comments.

REFERENCES

[1] Z. Bai, The CSD, GSVD, their applications and computation, IMA preprint 958, Institute for
Mathematics and its Applications, University of Minnesota, Minneapolis, MN, 1992.

[2] Z. Bai and J. W. Demmel, Computing the generalized singular value decomposition, SIAM J.
Sci. Comput., 14 (1993), pp. 1464–1486.

[3] C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, and S. Seatzu, Extrapolation techniques for
ill-conditioned linear systems, Numer. Math., 81 (1998), pp. 1–29.

[4] C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, and S. Seatzu, Multi-parameter regularization
techniques for ill-conditioned linear systems, Numer. Math., 94 (2003) 203–228.

[5] C. Brezinski, G. Rodriguez, and S. Seatzu, Error estimates for linear systems with application
to regularization, Numer. Algorithms, 49 (2008), pp. 85–104.

[6] C. Brezinski, G. Rodriguez, and S. Seatzu, Error estimates for the regularization of least squares
problems, Numer. Algorithms, 51 (2009), pp. 61–76.

[7] D. Calvetti, L. Reichel, and A. Shuibi, Invertible smoothing preconditioners for linear discrete
ill-posed problems, Appl. Numer. Math., 54 (2005), pp. 135–149.

[8] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Dover,
Mineola, 1991.

[9] L. Eldén, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17
(1977), pp. 134–145.

[10] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares
problems, BIT, 22 (1982), pp. 487–501.

[11] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dor-
drecht, 1996.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[13] P. C. Hansen, Regularization, GSVD and truncated GSVD, BIT, 29 (1989), pp. 491–504.
[14] P. C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms, 46 (2007),

pp. 189–194.
[15] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[16] S. Morigi, L. Reichel, and F. Sgallari, Orthogonal projection regularization operators, Numer.

Algorithms, 44 (2007), pp. 99–114.
[17] D. L. Phillips, A technique for the numerical solution of certain integral equations of the first

kind, J. ACM, 9 (1962), pp. 84–97.
[18] L. Reichel and Q. Ye, Simple square smoothing regularization operators. Electron. Trans. Nu-

mer. Anal., 33 (2009), pp. 63–83.


