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Abstract A generalized Black-Scholes equation is considered on the semi-
axis. It is transformed on the interval (0, 1) in order to make the computa-
tional domain finite. The new parabolic operator degenerates at the both ends
of the interval and we are forced to use the Gärding inequality rather than the
classical coercivity. A fitted finite volume element space approximation is con-
structed. It is proved that the time θ-weighted full discretization is uniquely
solvable and positivity-preserving. Numerical experiments, performed to illus-
trate the usefulness of the method, are presented.
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1 Introduction

The famous equation, proposed by F. Black, M. Scholes and R. Merton, see
[7,14,20], is

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ r

(
∂V

∂S
− SV

)
= 0, S ∈ (0,∞), t ∈ [0, T ).

This is a typical example of a degenerate parabolic equation [15]. It is well
known [14,20,22] that it can be transformed to the heat equation that allows
us to overcome the degeneracy at S = 0. Many numerical methods, based on
classical finite difference schemes, applied to constant coefficients heat equa-
tions, are developed [1,16]. However, when the problem has space-dependant
coefficients σ and r one can not transform the Black-Scholes equation to a
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standard heat equation. Finite difference and finite element methods have been
applied in [2,3,4,5,6,8,9,11,17,22] in order to solve this type of generalized
Black-Scholes equations. In [12] cubic B-splines are implemented. Often, the
convergence of the full discretization is verified by numerical examples only.

An effective method, that resolves the degeneracy, is proposed by S. Wang
[21] for the Black-Scholes equation with Dirichlet boundary conditions. The
method is based on a finite volume formulation of the problem, coupled with a
fitted local approximation to the solution and an implicit time-stepping tech-
nique. The local approximation is determined by a set of two-point boundary
value problems (BVPs), defined on the element edges. This fitted technique
originates from one-dimensional computational fluid dynamics [13].

A modification of the discretization, originally presented in [21], was pro-
posed by L. Angermann [2] such that the method adequately treats the proper
(natural) boundary condition at x = 0. Similar space discretization is derived
in [6] for a degenerate parabolic equation in the zero-coupon bond pricing.

The domain of S is the half real line. For numerical computation it is
desirable to have a finite computational domain. The transformation in the
next section converts S ∈ (0,∞) to x ∈ (0, 1), decreasing significantly the
computational costs. Also, for a call option, the solution V (S, t) is not bounded
and from the numerical methods’ point of view the problem transformation
on a finite interval is better. The resulting equation has variable coefficients
but this is not an essential difficulty for the numerical computation. However,
the transformed equation degenerates at both ends of the finite interval.

The present paper deals with a degenerate parabolic equation, (5), derived
after transformation of the generalized Black-Scholes equation (1) to a finite
interval. The degeneration at the both ends of the interval does not allow the
use of the Poincaré-Friedrichs inequality and we are forced to investigate the
differential problem with the Gärding inequality rather than classical coerciv-
ity [10].

This paper is organized as follows. The model problem is presented in
Section 2, where we discuss our basic assumptions and some properties of the
solution. The space discretization method is developed in Section 3. Section 4
is devoted to the time discretization, where we show that the system matrix
on each time-level is an M -matrix so that the discretization is monotone.
Numerical experiments are discussed in the last section.

Some results, concerning the case of the transformed Black-Scholes equa-
tion above, are reported in [18].

2 The transformed problem

We consider the generalized Black-Scholes equation [14,20]:

∂V

∂t
+

1

2
σ2(t)S2 ∂

2V

∂S2
+(r(t)S−D(S, t))

∂V

∂S
−r(t)V = 0, (S, t) ∈ (0,∞)×(0, T ),

(1)
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where σ = σ(t) denotes the volatility of the asset, r = r(t) is the risk-free
interest rate, D = D(S, t) denotes the dividend of the dividend-paying asset.
We also introduce d = d(S, t) such that D(S, t) = Sd(S, t), where the dividend
rate d = d(S, t) is continuously differentiable with respect to S.

There are various choices for the final (payoff ) condition, depending on the
models. In the case of vanilla European option

V (S, T ) =

{
max(S − E, 0) for a call option,
max(E − S, 0) for a put option,

(2)

where E is the strike price. Another example is the bullish vertical spread
payoff, defined by

V (S, T ) = max(S − E1, 0)−max(S − E2, 0), (3)

where E1 and E2 are two exercise prices, satisfying 0 < E1 < E2. This repre-
sents a portfolio of buying one call option with exercise price E1 and issuing
one call option with the same expiry date but a larger exercise price E2. For
detailed discussion on this, we refer to [20].

We introduce the transformation [22]

x =
S

S + Pm
, u(x, t) =

V (S, t)

S + Pm
, τ = T − t. (4)

The constant Pm is called mesh parameter. It controls the distribution of the
mesh nodes w.r.t. S on the interval (0,∞). The higher the value of S, that
we are interested in, the higher value of Pm should be in order to obtain a
reasonable accuracy. In the case of a call option, because of the nature of the
terminal condition, Pm should be equal to E.

The inverse transformation is S = Pmx/(1−x) and after plugging it in the
Black-Scholes equation, (1), we obtain:

∂u

∂t
− 1

2
σ2(t)x2(1− x)2

∂2u

∂x2
− x(1− x)(r(t)− d(x, t))

∂u

∂x
+ ((1− x)r(t) + xd(x, t))u = 0, (x, t) ∈ ΩT = Ω × (0, T ), Ω = (0, 1).

(5)

We return to the original notation of the variable t for the sake of simplicity.
The initial data for a call option reads

u(x, 0) = u0(x) = max(2x− 1, 0). (6)

Being different from the classical parabolic equations, in which the principle
coefficient is assumed to be strictly positive, the parabolic equation (5) belongs
to the second-order differential equations with non-negative characteristic form
[15]. The main difficulty of such kind of equations is the degeneracy [19]. It
can be easily seen that at x = 0 and x = 1 (5) degenerates to

∂u

∂t

∣∣∣∣
x=0

= −r(t)u(0, t),
∂u

∂t

∣∣∣∣
x=1

= −d(1, t)u(1, t). (7)
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It is well known by the Fichera theory for degenerate parabolic equations
[15] that at the degenerate boundaries x = 0 and x = 1 the boundary condi-
tions should not be given.

For theoretical analysis of our discrete problem as well as for the construc-
tion of a fitted finite volume mass-lumping discretization we need to consider
weak solutions of (5). We shall use the standard notations for the function
spaces Cm(Ω) and Cm(Ω) of which a function and it’s derivatives up to order
m are continuous on Ω (respectively Ω). The space of square-integrable func-
tions we denote by L2(Ω) with the usual L2-norm ‖ · ‖ and the inner product
(·, ·). We also use the function space L∞(Ω) with the norm ‖ · ‖∞. To handle
the degeneracy in (5), we introduce the following weighted L2

w-norm

‖v‖0,w := (

∫ 1

0

x2(1− x)2v2dx)1/2

with corresponding inner product (u, v)w. Using L2(Ω) and L2
w(Ω), we define

the weighted Sobolev space H1
w(Ω) := {v : v ∈ L2(Ω), v′ ∈ L2

w(Ω)}, where
v′ denotes the weak derivative of v. Let ‖ · ‖1,w be the functional on H1

w(Ω),
defined by ‖v‖1,w = (‖v‖20 +‖v′‖20,w)1/2. Then it is easy to see that ‖ · ‖1,w is a
norm on H1(Ω); it is called weighted H1-norm on H1

w(Ω). Furthermore, using
the inner products in L2(Ω) and L2

w(Ω), we define a weighted inner product on
H1
w(Ω) by (·, ·)H := (·, ·)+(·, ·)w and, consequently, the pair (H1

w(Ω), (·, ·)H) is
a Hilbert space. Also, H1

w(Ω) contains the conventional Sobolev space H1(Ω)
as a proper subspace.

We rewrite (5) in divergent form

∂u

∂t
− ∂

∂x

(
x(1− x)

(
a(x, t)

∂u

∂x
+ b(x, t)u

))
+ c(x, t)u = 0,

a(x, t) =
1

2
σ2(t)x(1− x), b(x, t) = r(t)− d(x, t) + σ2(t)(2x− 1),

c(x, t) = (2− 3x)r(t)− (6x2 − 6x+ 1)σ2(t)− (1− 3x)d(x, t)− x(1− x)
∂d

∂x
.

(8)

Let us introduce for w, v ∈ H1
w(Ω) the bilinear form

A(w, v; t) := (aw′ + bw, v′) + (cw, v) = (x(1− x)ρ(w), v′) + (cw, v).

Here the notation w′ = ∂w
∂x is used and the function ρ(w) = aw′ + bw is

the weighted flux density, associated with w. We are in position to state the
variational formulation of problem (5),(6):

Find u(t) ∈ H1
w(Ω), such that for all v ∈ H1

w(Ω)(
∂u(t)

∂t
, v

)
+A(u(t), v; t) = 0 a.e. in (0, T ) and u(·, 0) = u0. (9)

The following result provides the weak coercivity and continuity of the
bilinear form A(·, ·, t).
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Lemma 1 Let w, v ∈ C1([0, 1]). Then:

1. there exist constants C1 > 0 and C2 > 0 such that

|A(w, v, t)| ≤ C1‖w‖H1
w(0,1)‖v‖H1(0,1)

|A(w, v, t)| ≤ C2‖w‖H1(0,1)‖v‖H1
w(0,1)

for any t ∈ [0, T ];
2. (Gärding inequality) there exist constants α > 0 and γ > 0 such that

|A(v, v, t)| ≥ α‖v‖2H1
w(0,1) − γ‖v‖

2
L2(0,1),

uniformly with respect to t ∈ [0, T ].

Proof The proof is given in [10].

Owing to Lemma 1 one can prove the following assertion [10].

Theorem 1 Suppose that u0(x) ∈ H1
w(Ω). Then the problem (9) has an

unique solution.

Theorem 2 (Weak maximum principle) Let u ∈ L2
(
0, T ;H1

w(Ω)
)

be
such that

1. ∂u
∂t ∈ L

2 ((0, 1)× (0, T ));
2. the inequality(

∂u(t)

∂t
, v

)
+A(u(t), v; t) ≥ 0, ∀v ∈ C∞0 (0, 1) , v ≥ 0

holds for a.e. τ ∈ [0, T ];
3. u|t=0 ≥ 0.

Then u ≥ 0 a.e. in (0, 1)× (0, T ).

Proof The proof is given in [10].

3 Space discretization

In this section we describe the finite volume approximation of (8).
Let the intervalΩ = [0, 1] be subdivided intoN intervals Ii := (xi, xi+1), i =

0, . . . , N − 1, with 0 =: x0 < x1 < · · · < xN := 1. For each i = 0, . . . , N − 1
we set hi := xi+1 − xi and h := maxi=0,...,N−1 hi. We also denote xi+1/2 :=
xi + hi/2 for i = 0, . . . , N − 1, x−1/2 := x0 = 0, xN+1/2 := xN = 1 and
Ωi := [xi−1/2, xi+1/2] for i = 0, . . . , N . Finally, we define li := xi+1/2 − xi−1/2
for i = 0, . . . , N .

Integrating (8) over the control volumes Ωi we obtain N + 1 balance equa-
tions ∫

Ωi

u̇dx− [x(1− x)ρ(u)]
xi+1/2

xi−1/2
+

∫
Ωi

cudx = 0, i = 0, . . . , N.
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Multiplying the i-th equation with an arbitrary number vi and summing
up the results we get

N∑
i=0

∫
Ωi

u̇vidx−
N∑
i=0

[x(1− x)ρ(u)]
xi+1/2

xi−1/2
vi +

N∑
i=0

∫
Ωi

cuvidx = 0. (10)

For an arbitrary function v ∈ C(Ω) we define the mass-lumping operator
L : C(Ω)→ L∞(Ω) by Lhv|Ωi := v(xi), i = 0, . . . , N .

Therefore, using the operator Lh, equation (10) can be written as follows:

(u̇(t), Lhv) +Ah(u, v; t) = 0, ∀v ∈ C(Ω),

Ah(w, v; t) := −
∑N
i=0 [x(1− x)ρ(w, x, t)]

xi+1/2

xi−1/2
Lhv|Ωi + (c(t)w,Lhv).

The spatial discretization starts from this equation. Applying the mid-point
quadrature rule to all terms except the second one we obtain for all v ∈ C(Ω)

(u̇(t), v)h −
∑N
i=0 [x(1− x)ρ(u(t), x, t)]

xi+1/2

xi−1/2
Lhv|Ωi + (c(t)u, v)h = 0,

(w, v)h := (Lhw,Lhv) =
∑N
i=0 wivili, w, v ∈ C(Ω).

Clearly, we now need to derive approximations of the continuous weighted
flux density x(1−x)ρ(u(t), x, t), defined above, at the midpoints xi+1/2 of the
intervals Ii for i = 0, . . . , N − 1.

Case 1 Approximation of ρ at xi+1/2 for 1 ≤ i ≤ N − 2.
Let us consider the following two-point boundary value problem for x ∈ Ii

(ai+1/2x(1− x)v′ + bi+1/2v)′ = 0; v(xi) = ui, v(xi+1) = ui+1,

where ai+1/2 = a(xi+1/2), bi+1/2 = b(xi+1/2, t).
Following considerations, similar to those in [6,18], we obtain

ρi(u) = bi+1/2

(
xi+1

1−xi+1

)αi
ui+1 −

(
xi

1−xi

)αi
ui(

xi+1

1−xi+1

)αi
−
(

xi
1−xi

)αi , i = 1, . . . , N − 2, (11)

where αi =
bi+1/2

ai+1/2
and ρi(u) provides an approximation to ρ(u) at xi+ 1

2
.

Case 2 Approximation of ρ at x1/2.
Now we write the flux in the form

ρ(u) := ax
∂u

∂x
+ bu, a = a(x) =

σ2

2
(1− x).

Note that the analysis in Case 1 can not be applied here because the flux
degenerates at x = 0. To solve this difficulty, following [2,6,18,21], we will
reconsider the flux ODE with an extra degree of freedom in the following form
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(a1/2xv
′ + b1/2v)′ = C in (0, x1), v(0) = u0, v(x1) = u1,

where C is an unknown constant to be determined. We obtain

v(x) =

xu1−u0

h0
+ u0, α0 ≥ 0,(

x
h0

)−(1+α0)

xu1−u0

h0
+ u0, α0 < 0,

ρ0(v) :=

{
a1/2(1 + α0)xu1−u0

h0
+ b1/2u0, α0 ≥ 0,

b1/2u0, α0 < 0.
(12)

Case 3 Approximation of ρ at xN−1/2.
We write the flux in the form

ρ(u) :=
=
aN−1/2 (1− x)

∂u

∂x
+ bN−1/2u,

=
a (x) =

σ2

2
x.

The situation is symmetric to Case 2. We can not apply the arguments in Case
1 to the approximation of the weighted flux density on IN−1 = (xN−1, xN )
because equation (5) degenerates at x = xN = 1. However the considerations,
given in Case 2, should be modified in order to formulate an appropriate two-
point BVP. Again, we consider the flux ODE with an extra degree of freedom

in the following form (recall αN−1 = bN−1/2/
=
aN−1/2)

((1− x)v′ + αN−1v)′ = C0, x ∈ IN−1, (13)

v(xN−1) = uN−1, v(xN ) = uN , (14)

where C0 is an unknown constant to be determined. Integration of (13) yields
the first-order linear equation

(1− x)v′ + αN−1v = C0x+ C1, x ∈ IN−1, (15)

where C1 denotes an additive constant. Afterwards we multiply (15) by (1 −
x)−αN−1−1

(
(1− x)−αN−1v

)′
= C0(1− x)−αN−1−1x+ C1(1− x)−αN−1−1. (16)

Case 3.1 αN−1 > 0, αN−1 6= 1.
Integrating (16) from xN−1 to x ∈ IN−1 results in

(1− x)−αN−1v(x)− (1− xN−1)−αN−1v(xN−1)

= C0
(1−s)−αN−1+1

−αN−1+1

∣∣∣x
xN−1

− (C0 + C1) (1−s)−αN−1

−αN−1

∣∣∣x
xN−1

.

Multiplying both sides of the equation by (1− x)αN−1



8 Radoslav Valkov

v(x) = (1−x)αN−1

(1−xN−1)
αN−1 v(xN−1) + C0

1−x
−αN−1+1 − C0

(1−xN−1)
−αN−1+1(1−x)αN−1

−αN−1+1

−(C0 + C1) 1
−αN−1

+ (C0 + C1) (1−xN−1)
−αN−1 (1−x)αN−1

−αN−1
.

Letting x → xN = 1 and making use of (14) we arrive at v(xN ) = uN =
C0+C1

αN−1
and finally

v(x) =
(1− x)αN−1

(1− xN−1)αN−1
(uN−1 − uN ) + uN

+
ω

−αN−1 + 1
(1− x)

(
1− (1− x)αN−1−1

(1− xN−1)αN−1−1

)
,

(17)

where ω = C0 ∈ R is a free parameter. Therefore

ρN−1(v) :=
=
aN−1/2(x− 1)ω + bN−1/2uN .

Case 3.2 αN−1 = 1.
Now we solve the following ODE(

v

1− x

)′
= C0(1− x)−2x+ C1(1− x)−2.

Integrating over (xN−1, x), x ∈ IN−1, we obtain

v(x) = 1−x
1−xN−1

v(xN−1) + C0(1− x)(ln(1− x)− ln(1− xN−1))

+(C0 + C1)
(

1
1−x −

1
1−xN−1

)
(1− x).

Letting x→ xN = 1 one gets

v(xN ) = uN = C0 + C1 =
C0 + C1

αN−1
,

v(x) =
1− x

1− xN−1
(uN−1 − uN ) + uN + ω(1− x) ln

1− x
1− xN−1

.

Since 1 − x > 0 we can conclude that this is the result of the limiting
process αN−1 → 1, performed on (17). The flux in both cases 3.1 and 3.2 can
be written in the form

ρN−1(v) =
=
aN−1/2(x− 1)ω + bN−1/2uN .

Case 3.3 αN−1 = 0.
Integrating over (xN−1, x), x ∈ IN−1, the following ODE

v′ = C0(1− x)−1x+ C1(1− x)−1
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we arrive at

v(x) = v(xN−1)− C0(x− xN−1)− (C0 + C1)(ln(1− x)− ln(1− xN−1)).

The function v(x) is bounded for x → xN when C0 + C1 = 0. Therefore
C0 = uN−1−uN

1−xN−1
and

v(x) = uN + (uN−1 − uN )
1− x

1− xN−1
.

The flux has the following form

ρN−1(v) =
=
aN−1/2(1− αN−1)(1− x)

uN − uN−1
hN−1

+ bN−1/2uN ,

where we used that αN−1 = bN−1/2 = 0.
Case 3.4 αN−1 < 0.
This time we integrate (16) from x to xN = 1 and obtain

v(x) = C0
1− x

1− αN−1
+ (C0 + C1)

1

αN−1

and using the boundary conditions

C0 =
uN−1 − uN
1− xN−1

(1− αN−1), C1 = αN−1uN −
uN−1 − uN
1− xN−1

(1− αN−1).

Therefore

v(x) =
1− x

1− xN+1
(uN−1 − uN ) + uN ,

ρN−1(v) =
=
aN−1/2(1− αN−1)(1− x)

uN − uN−1
hN−1

+ bN−1/2uN

and these are exactly the same results as in Case 3.3. Finally, a reasonable
choice of the free parameter ω is 0 and

v(x) =

{
uN + 1−x

1−xN−1
(uN−1 − uN ), αN−1 ≤ 0,

uN + (1−x)αN−1

(1−xN−1)
αN−1 (uN−1 − uN ), αN−1 > 0,

ρN−1(v) =

{
=
aN−1/2(1− αN−1)(1− x)uN−uN−1

hN−1
+ bN−1/2uN , αN−1 ≤ 0,

bN−1/2uN , αN−1 > 0.

(18)
Let us introduce the finite element space Vh by specifying it’s basis {φi}Ni=0.

Following [6,18] we introduce the functions



10 Radoslav Valkov

φi(x) =


(

1
xi−1

−1
)αi−1−( 1

x−1)
αi−1(

1
xi−1

−1
)αi−1−

(
1
xi
−1

)αi−1 , x ∈ (xi−1, xi),(
1

xi+1
−1

)αi−( 1
x−1)

αi(
1

xi+1
−1

)αi−( 1
xi
−1

)αi , x ∈ (xi, xi+1).

On the intervals (0, x1) and (xN−1, 1) we define the linear functions

φ0(x) =

{
1− x

x1
, x ∈ (0, x1)

0, otherwise;
, φN (x) =

{ x−xN−1

1−xN−1
, x ∈ (xN−1, 1),

0, otherwise.

Next we define the linear functions φ1(x) and φN−1(x) on the intervals
(0, x2) and (xN−2, 1)

φ1(x) =


1− x

x1
, x ∈ (0, x1),(

1
x2
−1

)α1−( 1
x−1)

α1(
1
x2
−1

)α1−
(

1
x1
−1

)α1 , x ∈ (x1, x2);

0, otherwise;

φN−1(x) =


(

1
xN−2

−1
)αN−2−( 1

x−1)
αN−2(

1
xN−2

−1
)αN−2−

(
1

xN−1
−1

)αN−2 , x ∈ (xN−2, xN−1),

(1− x)/(1− xN−1), x ∈ (xN−1, 1);
0, otherwise.

Then, for any vh ∈ Vh, we have the representation vh(x) =
∑N
i=0 vhiφi,

where vhi := vh(xi). Associated with vh, we introduce the natural interpolation
operator Ih : C(Ω)→ Vh by

Ihvh(xi) := vh(xi) = vhi, i = 0, . . . , N.

Furthermore, using the flux approximations (11),(12),(18), obtained in
Cases 1, 2 and 3 respectively, we define by ρh(u) an approximation to ρ(u)|Ii :=
ρi(u), i = 0, . . . , N−1. Coming back to (9), this motivates the following semi-
discretization of (8) in the space Vh:

(u̇h(t), vh)h +Ah(uh(t), vh; t) = 0 ∀vh ∈ Vh,
Ah(wh, vh; t) := −

∑N
i=0 [x(1− x)ρh(wh, x, t)]

xi+1/2

xi−1/2
Lhvh(xi) + (c(t)wh, vh)h.

As usual, from (9) an equivalent ODEs system is obtained by setting suc-
cessfully vh = φi, i = 0, . . . , N :

u̇hi(t)li − xi+1/2(1− xi+1/2)ρh(uh(t), xi+1/2, t)

+xi−1/2(1− xi−1/2)ρh(uh(t), xi−1/2, t) + ci(t)uhi(t)li = 0, ci(t) := c(xi, t).
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The complete set of equations forms an (N + 1)× (N + 1) system of linear
ODEs w.r.t. uh(t) := (uh0(t), . . . , uhN (t))T :

Mhu̇h(t) +Ah(t)uh(t) = 0,

where
Mh := ((φj , φi)h)

N
i,j=0 = diag(l0, . . . , lN ),

Ah(t) := (Ah(φj , φi; t))
N
i,j=0 = (aij(t))

N
i,j=0 .

4 Full discretization

Let 0 =: t0 < t1 < · · · < tNt := T be a subdivision of the time interval [0, T ]
with the step sizes 4tm := tm+1 − tm > 0, m ∈ {0, . . . , Nt − 1}. The fully
discrete method with parameter θ ∈ [0, 1] for (8) reads as follows:

Find a sequence U1, . . . , UNt ∈ Vh such that for m ∈ {0, . . . , Nt − 1}(
Um+1−Um
4tm , vh

)
+Ah(θUm+1 + (1− θ)Um, vh; tm+θ) = 0 ∀vh ∈ Vh,

U0 = u0h,

where tm+θ := θtm+1 + (1 − θ)tm = tm + θ4tm and u0h ∈ Vh is an approxi-
mation to u0. By representing the elements Um in terms of the basis {φi}N−1i=0

of Vh and choosing vh = φj , j = 0, . . . , N we get the algebraic form

Mhu
m+1
h −Mhu

m
h

4tm
+ θAm+θ

h um+1
h + (1− θ)Am+θ

h umh = 0, Am
h := Ah(tm).

(19)
The initial condition u0

h is obtained from the representation of u0h by
means of the basis of Vh.

We will show, Theorem 3, that the system matrix Eh = {ei,j}N,Nti,j=0 =

Mh/4tm + θAm+θ
h can be reduced to an M -matrix by excluding the first

two and the last two equations in (19). Therefore, the above problem (19) is
uniquely solvable and our method preserves the positivity, Theorem 2 (maxi-
mum principle), of the numerical solution in time. Let us introduce the nota-
tions

ϕαii :=

(
xi

1− xi

)αi
, ∆αi

i :=
1

ϕαii+1 − ϕ
αi
i

,

ai±1/2 := a(xi±1/2), bm+θ
i±1/2 := b(xi±1/2, t

m+θ), cm+θ
i±1/2 := c(xi±1/2, t

m+θ)

and write down the elements of the system matrix:
for i = 0 if α0 < 0 then

e0,0 =
l0
∆tm

+ θx1/2(1− x1/2)(−bm+θ
1/2 ) + θl0c

m+θ
0 , e0,1 = 0

F0 = umh0

(
l0
∆tm

− (1− θ)
(
x1/2(1− x1/2)(−bm+θ

1/2 ) + l0c
m+θ
0

))
,
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and if α0 ≥ 0 then

e0,0 =
l0
∆tm

+ θx1/2(1− x1/2)0.5(a1/2 − bm+θ
1/2 ) + θl0c

m+θ
0 ,

e0,1 = −θx1/2(1− x1/2)0.5(a1/2 + bm+θ
1/2 ),

F0 = umh0

(
l0
∆tm

− (1− θ)
(
x1/2(1− x1/2)0.5(a1/2 − bm+θ

1/2 )

+ l0c
m+θ
0

))
+ umh1(1− θ)

(
x1/2(1− x1/2)0.5(a1/2 + bm+θ

1/2 )
)

;

for i = 1 if α0 < 0 then

e1,1 =
l1
∆tm

+ θxi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i ∆

αi
i + θl1c

m+θ
1 ,

e1,0 = −θx1/2(1− x1/2)(−bm+θ
1/2 ),

e1,2 = −θxi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i ,

F1 = umh1

(
l1
∆tm

− (1− θ)
(
xi+1/2(1− xi+1/2)bm+θ

i+1/2φ
αi
i ∆

αi
i

+l1c
m+θ
1

))
+ umh0(1− θ)x1/2(1− x1/2)(−bm+θ

i+1/2)

+umh2(1− θ)xi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i

and if α0 ≥ 0 then

e1,1 =
l1
∆tm

+ θxi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i ∆

αi
i

+θx1/2(1− x1/2)0.5(a1/2 + bm+θ
i+1/2) + θl1c

m+θ
1 ,

e1,0 = −θx1/2(1− x1/2)0.5(a1/2 − bm+θ
i+1/2),

e1,2 = −θxi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i ,

F1 = umh1

(
l1
∆tm

− (1− θ)
(
xi+1/2(1− xi+1/2)bm+θ

i+1/2φ
αi
i ∆

αi
i

+x1/2(1− x1/2)0.5(a1/2 + bm+θ
i+1/2) + l1c

m+θ
1

))
+umh0(1− θ)x1/2(1− x1/2)0.5(a1/2 − bm+θ

i+1/2)

+umh2(1− θ)xi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i ;

for i = 2, . . . , N − 2

ei,i =
li

∆tm
+ θxi+1/2(1− xi+1/2)bm+θ

i+1/2φ
αi
i ∆

αi
i

+θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i ∆
αi−1

i−1 + θlic
m+θ
i ,

ei,i−1 = −θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i−1 ∆
αi−1

i−1 ,
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ei,i+1 = −θxi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i ,

Fi = umhi

(
li

∆tm
− (1− θ)

(
xi+1/2(1− xi+1/2)bm+θ

i+1/2φ
αi
i ∆

αi
i

+xi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i ∆
αi−1

i−1 + lic
m+θ
i

))
+umhi−1(1− θ)xi−1/2(1− xi−1/2)bm+θ

i−1/2φ
αi−1

i−1 ∆
αi−1

i−1

+umhi+1(1− θ)xi+1/2(1− xi+1/2)bm+θ
i+1/2φ

αi
i+1∆

αi
i ;

for i = N − 1 if αN−1 > 0

eN−1,N−1 =
lN−1
∆tm

+ θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i ∆
αi−1

i−1 + θlN−1c
m+θ
N−1,

eN−1,N−2 = −θxN−1/2(1− xN−1/2)bm+θ
N−1/2,

eN−1,N = −θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i−1 ∆
αi−1

i−1 ,

FN−1 = umhN−1

(
l1
∆tm

− (1− θ)
(
xi−1/2(1− xi−1/2)bm+θ

i−1/2φ
αi−1

i ∆
αi−1

i−1

+xN−1/2(1− xN−1/2)bm+θ
N−1/2 + lN−1c

m+θ
N−1

))
+umhN−2(1− θ)xN−1/2(1− xN−1/2)bm+θ

N−1/2

+umhN (1− θ)xi−1/2(1− xi−1/2)bm+θ
N−1/2φ

αi−1

i−1 ∆
αi−1

i−1

and if αN−1 ≤ 0 then

eN−1,N−1 =
lN−1
∆tm

+ θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i ∆
αi−1

i−1

+θxN−1/2(1− xN−1/2)0.5(
=
a
m+θ

i−1/2 − bm+θ
i−1/2) + θlN−1c

m+θ
N−1,

eN−1,N = −θxN−1/2(1− xN−1/2)0.5(
=
a
m+θ

i−1/2 + bm+θ
i−1/2),

eN−1,N−2 = −θxi−1/2(1− xi−1/2)bm+θ
i−1/2φ

αi−1

i−1 ∆
αi−1

i−1 ,

FN−1 = umhN−1

(
lN−1
∆tm

− (1− θ)
(
xi−1/2(1− xi−1/2)bm+θ

i−1/2φ
αi−1

i ∆
αi−1

i−1

+xN−1/2(1− xN−1/2)0.5(
=
a
m+θ

i−1/2 − bm+θ
i−1/2) + lN−1c

m+θ
N−1

))
+umhN−2(1− θ)xi−1/2(1− xi−1/2)bm+θ

i−1/2φ
αi−1

i−1 ∆
αi−1

i−1

+umhN (1− θ)xN−1/2(1− xN−1/2)0.5(
=
a
m+θ

i−1/2 + bm+θ
N−1/2);

for i = N if αN−1 > 0 then

eN,N =
lN
∆tm

+ θxN−1/2(1− xN−1/2)bm+θ
N−1/2 + θlNc

m+θ
N , eN,N−1 = 0,

FN = umhN

(
lN
∆tm

− (1− θ)
(
xN−1/2(1− xN−1/2)bm+θ

N−1/2 + lNc
m+θ
N

))
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and if αN−1 ≤ 0 then

eN,N =
lN
∆tm

+ θxN−1/2(1− xN−1/2)0.5(
=
a
m+θ

N−1/2 + bm+θ
N−1/2) + θlNc

m+θ
N ,

eN,N−1 = −θxN−1/2(1− xN−1/2)0.5(
=
a
m+θ

N−1/2 − bm+θ
N−1/2),

FN = umhN

(
lN
∆tm

− (1− θ)
(
xN−1/2(1− xN−1/2)0.5(

=
a
m+θ

N−1/2

+bm+θ
N−1/2) + lNc

m+θ
N

))
+umhN−1(1− θ)xN−1/2(1− xN−1/2)0.5(

=
a
m+θ

N−1/2 − bm+θ
N−1/2).

Theorem 3 For any given m = 1, 2, . . . , Nt, if ∆tm is sufficiently small, the
system matrix of (19), Eh, is an M -matrix.

Proof Let us write down the scalar form of (19):

B0u
m+1
h0 + C0u

m+1
h1 = F0

A1u
m+1
h0 +B1u

m+1
h1 + C1u

m+1
h2 = F1

A2u
m+1
h1 +B2u

m+1
h2 + C2u

m+1
h3 = F2

...............................

Aiu
m+1
hi−1 +Biu

m+1
hi + Ciu

m+1
hi+1 = Fi,

...............................

ANu
m+1
hN−1 +BNu

m+1
hN = FN ,

for i = 3, 4, . . . , N − 1 and

B0 = h0

2∆tm
+ θe0,0, C0 = −θe0,1,

A1 = −θe1,0, B1 = l1
∆tm

+ θe1,1, C1 = −θe1,2,

Ai = −θei,i−1, Bi = li
∆tm

+ θei,i, Ci = −θei,i+1, i = 2, 3, . . . , N − 1,

AN = −θeN,N−1, BN = hN−1

2∆tm
+ θeN,N ,

F0 =
(

h0

2∆tm
− (1− θ)e0,0

)
umh0 + (1− θ)e0,1umh1,

F1 = (1− θ)e1,0umh0 +
(

l1
∆tm
− (1− θ)e1,1

)
umh1 + (1− θ)e1,2umh2,

Fi = (1− θ)ei,i−1umhi−1 +
(

li
∆tm
− (1− θ)ei,i

)
umhi + (1− θ)ei,i+1u

m
hi+1,

FN = (1− θ)eN,N−1umhN−1 +
(
hN−1

2∆tm
− (1− θ)eN,N

)
umhN .

Let us first investigate the off-diagonal entries of the system matrix Ai =
−θei,i−1 and Ci = −θei,i+1. From the formulas for ei,j from the above we have
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ei,j > 0, i, j = 1, 2, . . . , N − 1, i 6= j. That is because

bi+1/2

(
xi+1

1−xi+1

)αi(
xi+1

1−xi+1

)αi−( xi
1−xi

)αi = ai+1/2αi

(
xi+1

1−xi+1

)αi(
xi+1

1−xi+1

)αi−( xi
1−xi

)αi
= ai+1/2

αi
1−xαii

> 0, 0 < xi = xi
xi+1

1−xi+1

1−xi < 1

for each i = 1, 2, . . . , N − 1 and each bi+1/2 6= 0. We have used that 1 − xαii
has just the sign of αi and this is also true for bi+1/2 → 0. Now it is clear that
Ai = −θei,i−1 and Ci = −θei,i+1 are negative.

We should also note that Bi is always positive since ∆tm is small. The
situation is different for B0, C0, A1, B1, C1 and AN−1, BN−1, CN−1, AN ,
BN . From the first three equations we find

um+1
h0 = F0

B0
− C0

B0
um+1
h1 , um+1

h1 = 41

4 −
C1

4 u
m+1
h2 ,

4 = B1 − A1

B0
C0, 41 = F1 − A1

B0
F0,

B̃2u
m+1
h2 + C2u

m+1
h3 = F̃2,

B̃2 = B2 − A2C1

4 , F̃2 = F2 − 41

4 A2.

It is easily to see that when 4 > 0 and 4 = O
(

1
∆tm

)
then B2 = O

(
1

∆tm

)
for small ∆tm. Therefore B̃2 = O

(
1

∆tm

)
and B̃2 > |C2|.

In a similar way one can eliminate um+1
hN−1 and um+1

hN . As a result we obtain

a system of linear algebraic equations with unknowns um+1
h2 , . . . , um+1

hN−2 and
coefficients matrix that is an M -matrix.

While F3, ..., FN−3 are non-negative, we have to prove that F̃2 and F̃N−2
are also non-negative. From the formula for F̃2 it follows that when ∆tm is

small F̃2 is non-negative since F2 = O
(

1
∆tm

)
and 4,41 are of the same

order with respect to ∆tm. F̃N−2 is handled by the same way as F̃2 and also
considered non-negative.

Since the load vector (F̃2, F3, . . . , FN−3, F̃N−2) is non-negative and the
corresponding matrix is an M-matrix we can conclude that um+1

h2 , . . . , um+1
hN−2

are non-negative. Finally, using the formulas for um+1
h0 , um+1

h1 , um+1
hN−1, u

m+1
hN one

can easily check that they are non-negative too if ∆tm is small.

Remark 1 Theorem 3 shows that the fully-discretized system (19) satisfies the
discrete maximum principle and therefore the above discretization is mono-
tone. This guarantees the following: for a non-negative initial function u0(x)
the numerical solution umh , obtained via this method, is also non-negative as
expected, because the price of the option is a non-negative number.
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5 Numerical experiments

Numerical experiments, presented in this section, illustrate the properties of
the constructed method. We solve numerically various European Test Prob-
lems (TP) with different final (initial) conditions and different choices of pa-
rameters.

1. (TP1). Call option with final condition (2). Parameters: Smax = 700, T =
1, r = 0.1, σ = 0.3, d = 0.04 and E = 400.

2. (TP2). Call option with cash-or-nothing payoff V (S, T ) = H(S −E), S ∈
(0,∞), where H denotes the Heaviside function. Parameters: Smax = 700,
T = 1, r = 0.1, σ = 0.4, d = 0.04 and E = 400.

3. (TP3). Call option with final condition (2). Parameters: Smax = 700, T =
1, r = 0.1 + 0.02sin(10Tt), σ = 0.4, d = 0.06S/(S + E) and E = 400.

4. (TP4). A portfolio of options. Combinations of different options have step
final conditions such as the ’bullish vertical spread’ payoff, defined in (3).
In this example, we assume that the final condition is a ’butterfly spread’
delta function, defined by

V (S, T ) =

1, S ∈ (S1, S2),
−1, S ∈ (S2, S3),
0, otherwise,

which arises from a portfolio of three types of options with different exercise
prices [20]. Parameters: Smax = 100, T = 1, S1 = 40, S2 = 50, S3 = 60,
r = 0.1 + 0.02sin(10Tt), σ = 0.4, d = 0.06S/(S + E) and Pm = 50.

In the tables below are presented the computed C and L2 mesh norms of
the error E = uh − u by the formulas

‖E‖C = max
i
‖uNthi − u

Nt
i ‖, ‖E‖L2

=

√√√√ N∑
i=0

li

(
uNthi − u

Nt
i

)2
.

The rate of convergence (RC) is calculated using double mesh principle

RC = log2(EN/E2N ), EN = ‖uNh − uN‖,

where ‖.‖ is the mesh C-norm or L2-norm, uN and uNh are respectively the
exact solution and the numerical solution, computed at the mesh with N
subintervals. We choose the weight parameter with respect to the time variable
θ = 0.5.

In Table 1 we show the convergence and the accuracy of the constructed
scheme, where we numerically solve the model problem with the known exact
solution u(x, t) = exp(x − t) and initial data u0(x) = exp(x). We select this
function because it’s feature is similar to that of the exact solution to the call
option problem. The results, corresponding to problems TP1 and TP3 with
∆tm = 0.001,m = 0, . . . , Nt − 1, are listed in Table 1.
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Table 1

TP1 TP3

N EN
∞ RC EN

2 RC EN
∞ RC EN

2 RC

80 3.455e-3 - 2.801e-4 - 4.805e-3 - 3.914e-4 -
160 1.729e-3 0.998 9.914e-5 1.498 2.405e-3 0.998 1.385e-4 1.498
320 8.650e-4 0.999 3.507e-5 1.499 1.203e-3 0.999 4.900e-5 1.499
640 4.326e-4 0.999 1.240e-5 1.499 6.015e-4 0.999 1.733e-5 1.499

Figures 1-4 illustrate the numerical solution, computed with τ = 0.0001
on an uniform mesh N = 320 for TP1 and TP3, and the well-known solution
of the classical Black-Scholes equation, computed by the financial toolbox of
MATLAB, blsprice(Price, Strike, Rate, Time, Volatility). Comparison results
for TP3, where N = 40 and T = 1, are given in Figure 4, while the numerical
solution is visualized in Figure 3.

Fig. 1 Numerical Solution TP1 Fig. 2 Black-Scholes Solution TP1

Fig. 3 Numerical Solution TP3
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In Table 2 the results are obtained by computations on a power-graded
mesh for the same values of the parameters and exact solution. This mesh
takes into account the degeneration at the both ends of the interval (0, 1) and
is given by (in the current case p = 2)

xi+1 = xi +

(
i
(

2
∑N/2
i=0 i

p
)−1/p)p

, i = 1, . . . , N/2,

xi+1 = xi +

(
(N + 1− i)

(
2
∑N/2
i=0 i

p
)−1/p)p

, i = N/2 + 1, . . . , N.

The time step∆tm is chosen such that∆tm = min0≤i≤N h(i),m = 0, . . . , Nt−1
with T = 0.1.

Table 2

TP1 TP3

N EN
∞ RC EN

2 RC EN
∞ RC EN

2 RC

20 7.154e-4 - 3.648e-4 - 6.263e-4 - 3.914e-4 -
40 1.880e-4 1.927 9.525e-5 1.947 1.650e-4 1.924 8.341e-5 2.230
80 4.818e-5 1.964 2.437e-5 1.966 4.226e-5 1.964 2.134e-5 1.966

160 1.220e-5 1.982 6.167e-6 1.982 1.970e-5 1.982 5.401e-6 1.982

We now compute the solutions of the original models TP2 and TP3. As
exact solution we use the numerical solution on a very fine uniform grid, i.e.
N = 5120 with ∆tm = 0.0001,m = 0, . . . , Nt − 1. The results are given in
Table 3. The numerical solutions of TP2 and TP4 for N = 640 are plotted in
Figures 5 and 6.

Table 3

TP2 TP3

N EN
∞ RC EN

2 RC EN
∞ RC EN

2 RC

80 2.914e-7 - 1.112e-7 - 2.681e-3 - 2.171e-4 -
160 9.914e-8 1.555 2.841e-8 1.968 1.321e-3 1.021 7.476e-5 1.538
320 5.047e-8 0.974 7.386e-9 1.943 6.393e-4 1.046 2.544e-5 1.554
640 2.545e-8 0.987 1.973e-9 1.904 2.984e-4 1.099 8.374e-6 1.603

1280 1.269e-8 1.003 5.42e-10 1.864 1.279e-4 1.222 2.534e-6 1.724

The convergence of the numerical solution, obtained by the method to the
solution of the classical Black-Scholes equation, transformed by (4), is given in
Table 4. The node xN = 1 is omitted in the calculations since it corresponds
to the case S = ∞. We use the test parameters in TP1 with d = 0 and
∆tm = 0.0001,m = 0, . . . , Nt − 1. In the columns 2-5 of Table 4 we show
the overall rate of convergence, while in the last column is given the rate of
convergence in the strong norm of the numerical solution in a random node
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Fig. 5 Test Problem 2 Fig. 6 Test Problem 4

of the mesh, i.e. the one, corresponding to S = 600. The experiments are
performed on an uniform mesh.

Table 4

TP1 S = 600

N EN
∞ RC EN

2 RC EN
∞ RC

80 3.7473e-4 - 6.7765e-5 - 1.8848e-5 -
160 1.8939e-4 0.985 2.0388e-5 1.733 4.7877e-6 1.977
320 9.5196e-5 0.992 6.4913e-6 1.651 1.2016e-6 1.994
640 4.7722e-5 0.996 2.1574e-6 1.589 3.0070e-7 1.999

1280 2.3892e-5 0.998 7.3723e-7 1.549 7.5196e-8 1.999

The benchmark of numerical methods in computational finance is the
Crank-Nicolson second-order centered space difference scheme (CSDS). It is
well known that it produces spurious oscillations [1,7,16] in the solution and
it’s spatial derivatives, i.e. ∆ = ∂V/∂S, that are financially unrealistic and are
not tolerable. The Figures 7 and 8 illustrate the problem for the vanilla call
option TP1, computed on an uniform mesh for τ = 0.0001 and parameters
Smax = 700, T = 1, r = 0.1, σ = 0.01, d = 0 and E = 400. We compare the
MATLAB function, blsdelta(Price, Strike, Rate, Time, Volatility), with the
first derivative of the numerical solution. In the Figures 9 and 10, generated
by the our difference scheme (ODS), no oscillations are observed.

A realistic situation in financial engineering occurs when the convection
and diffusion terms have opposite signs. For example, situations, similar to
r − d < 0, arise in the bond-pricing models, that are also of Black-Scholes
type [7,14,22], where the parameters are interpreted in different context. In
Figures 11 and 12 we show the numerical solutions, generated by our difference
scheme and by the second-order centered space difference scheme respectively,
applied to (5), for initial condition as in TP2 with parameters T = 2, σ =
0.1, r = 0, d = 0.4x and N = 40, τ = 0.001. In Figures 13 and 14 are
given the numerical solutions for initial condition as in TP3 with parameters
T = 2, σ = 0.1, r = 0, d = 2x and N = 40, τ = 0.001.
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Fig. 7 Black-Scholes price CSDS
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Fig. 8 Black-Scholes ∆ CSDS
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Fig. 9 Black-Scholes price ODS
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Fig. 10 Black-Scholes ∆ ODS
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Fig. 11 Black-Scholes price ODS

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

8

9
x 10

−4

x

S
ol

ut
io

n

Fig. 12 Black-Scholes price CSDS

As seen in Figures 11-14, monotonicity and stability are not guaranteed
for the centered space difference scheme if the convection and diffusion coeffi-
cients are of different signs. Simple calculations show that the discrete maxi-
mum principle is violated. We do not observe such problems in the numerical
solution, generated by our numerical method.
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Fig. 13 Black-Scholes price ODS
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Fig. 14 Black-Scholes price CSDS

6 Conclusion

In this article we present a fitted FVM for the generalized Black-Scholes equa-
tion (1). The method is applicable to more general Black-Scholes models, for
example when σ = σ(S, t) and r = r(S, t). We may also use any interval
(0, l), l > 0 (here we took l = 1 for simplicity) to solve the transformed prob-
lem. The main advantage of the developed numerical algorithm is reduction
of the computational costs as well as positivity-preserving.

The conducted experiments show first order of convergence of the pro-
posed scheme on a quasi-uniform mesh and second order of convergence on a
particular graded mesh. Moreover, they also indicate better stability and un-
conditional (w.r.t. to the space step) monotonicity in comparison with other
known schemes.

In a forthcoming paper we study the stability and the convergence of the
proposed finite volume method.
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