
ar
X

iv
:1

21
2.

60
37

v2
 [

m
at

h.
N

A
]

 2
5

Se
p

20
13

Space-time discretization of the heat equation

A concise Matlab implementation

Roman Andreev

September 26, 2013

Abstract A concise Matlab implementation of a stable parallelizable space-time
Petrov-Galerkin discretization for parabolic evolution equations is given. Emphasis
is on the reusability of spatial finite element codes.

Keywords heat equation · parabolic · space-time discretization · parallel ·
preconditioning · Matlab · implementation

1 Introduction

The spectrum of numerical methods for parabolic evolution equations is extremely
broad, which attests to the ubiquity and the relevance of such equations. With
the aim of developing reliable massively parallel algorithms, e.g. for optimization
problems constrained by parabolic evolution equations, several attempts have been
made to go beyond time-stepping methods, see [3, Section 5.1] for a modest at-
tempt of an overview. In this paper we give a concise Matlab implementation,
partly motivated by [2], of a specific space-time Petrov-Galerkin discretization for
parabolic evolution equations from [4,3], hoping to provide a basis for possible fur-
ther developments. Spanning just a few lines of Matlab code, it is parallelizable and
stable in the Petrov-Galerkin sense, which already distinguishes it from conven-
tional methods for parabolic evolution equations. Stability implies quasi-optimality
of the discrete solution in the natural solution spaces, and is an important property
in the resolution of nonlinear problems. Moreover, the implementation is modu-
lar with respect to the spatial discretization, admits time-dependent inputs and
nonuniform temporal grids. Since the algorithm is based on an iterative solution
of a single linear system, another significant advantage to conventional methods
is the ability to terminate the iteration at a specified global accuracy.

The model parabolic evolution equation under consideration is presented in
Section 2 and is restated in a variational formulation. The space-time Petrov-
Galerkin discrete trial and test spaces that will be used to discretize the variational

R. Andreev
RICAM, Altenberger-Str. 69, 4040 Linz, Austria
E-mail: roman.andreev@oeaw.ac.at

http://arxiv.org/abs/1212.6037v2

2 Roman Andreev

formulation are introduced in Section 3. In order to obtain stable algorithms we
develop in Section 4 a generalization of the usual variational framework for lin-
ear operator equations, called the minimal residual Petrov-Galerkin discretization.
Choosing bases on the discrete trial and test spaces, it leads to a linear system of
generalized Gauß normal equations along with a natural preconditioner. In that
framework, certain norm-inducing operators play an important role. Specifically
for the parabolic evolution problem, these are defined in Section 5. In Section
6 we detail the Kronecker product structure of the parabolic space-time operator
and the norm-inducing operators when assembled using space-time tensor product
bases, and comment on the data structures employed. In the solution process, the
inverses of the matrix representations (of norm-inducing operators) are required.
Their Kronecker product structure is discussed in Section 7.1. The assembly pro-
cedure for the space-time source is in Section 7.2. A generalization of the LSQR
algorithm of Paige and Saunders [15] for the iterative resolution of the linear sys-
tem is given in Section 7.3. With those preparations, the Matlab implementation
is presented in Section 8. Two numerical experiments are given in Section 9. We
conclude and point out some limitations in Section 10.

2 Model problem and its space-time variational formulation

Let D ⊂ R
n, n ∈ {1, 2, 3}, be a bounded connected domain with a polyhedral

boundary Γ = ∂D. If n = 1 then D is an open bounded interval; if n = 2 then
D is a polygon; if n = 3 then D is a polyhedron. We partition Γ into two disjoint
subsets Γ0 and ΓN such that Γ̄ = Γ̄0 ∪ Γ̄N . On Γ0 we will impose homogeneous
boundary conditions of Dirichlet type. For that reason, the Dirichlet boundary Γ0

is assumed to be of positive measure (with respect to the surface measure which
will subsequently be denoted by σ), i.e., it contains at least one endpoint if n = 1;
a curve of positive length if n = 2; or a surface of positive surface measure if n = 3.
Let J = (0, T), T > 0, denote the temporal interval.

The model for parabolic evolution equations that we consider is the heat equa-
tion:

∂tu(t, x)− div(a(x) gradu(t, x)) = f(t, x), (t, x) ∈ J ×D, (1)

u(t, x) = 0, (t, x) ∈ J × Γ0, (2)

a(x)
∂u

∂n
(t, x) = g(t, x), (t, x) ∈ J × ΓN , (3)

u(t, x) = h(x), (t, x) ∈ {0} ×D. (4)

Here, a, f , g and h are given scalar valued functions, while u is the unknown.
Further, div and grad denote the divergence and the gradient operator with respect
to the spatial variable x ∈ D. The derivative in the direction of the outward normal
at the Neumann part ΓN of the boundary is denoted by ∂u

∂n . The precise meaning of
the heat equation will be fixed by means of a well-posed space-time variational for-
mulation in the following. The time-independent operator “div(a(x) gradu(t, x))”
could be replaced by the time-dependent one “div(A(t, x) gradu(t, x))”, where
A ∈ L∞(J ×D;Rn×nsym), without affecting most considerations below (the techni-
cal reason why this is possible is given in [12, Lemma 4.4.1]). However, if A is
not a finite sum of separable functions, the implementation becomes significantly

Space-time discretization of the heat equation 3

less transparent, and we therefore discard this case from the onset on; on the
other hand, A being a finite sum of separable functions entails modifications of
secondary relevance to this exposition.

To motivate the space-time variational formulation of the heat equation, we
formally test the equation with a function v1 on J × D and integrate in space
and time; the initial condition is tested with v2 on D and integrated in space.
Integration by parts is performed in space only, and the two resulting conditions
(one “∀v1”, the other “∀v2”) are added together. The solution u will be sought in
the space X, and the test functions are combined to v = (v1, v2) ∈ Y := Y1 × Y2.
The spaces X and Y will be specified presently. We write (·, ·)D for the L2(D)
and the [L2(D)]d scalar product, while (·, ·)ΓN

is the scalar product on L2(ΓN) for
the boundary measure σ introduced above. Generally, we omit the dependence of
the integrands on the temporal variable t. In this way we obtain the continuous
space-time variational formulation

find u ∈ X such that B(u, v) = b(v) ∀v ∈ Y, (5)

where the system bilinear form B encoding the heat equation is

B(u, v) :=

∫

J

(∂tu, v1)Ddt+

∫

J

(a gradu, grad v1)Ddt+ (u(0, ·), v2)D (6)

and the load functional b supplying the source term, as well as boundary and
initial data, is

b(v) :=

∫

J

(f, v1)Ddt+

∫

J

(g, v1)ΓN
dt+ (h, v2)D. (7)

Integrating by parts also in time, as in e.g. [6,7], leads to an alternative space-
time variational formulation, which, however, will not be discussed below.

Let us introduce the abbreviations

V := H1
Γ0
(D), H := L2(D) and V ′ = [H1

Γ0
(D)]′, (8)

where H1
Γ0
(D) denotes the Sobolev space of functions in H1(D) with vanishing

trace on the Dirichlet boundary Γ0, and [H1
Γ0
(D)]′ its dual. We identify H with

its dual H′ by means of the Riesz isomorphism on H. Then the duality pairing on
V ×V ′ (or V ′ ×V) is the continuous extension of the H-scalar product on V ×V .
In this way we obtain a so-called Gelfand triple of separable Hilbert spaces

V →֒ H ∼= H′ →֒ V ′ (9)

with continuous and dense embeddings. In order for B : X × Y → R to be a
continuous bilinear form and for b : Y → R to be a continuous linear functional,
it is now natural to take

X := L2(J ;V) ∩H1(J ;V ′) and Y := L2(J ;V)×H. (10)

For the definition of the Bochner spaces L2(J ;V), H1(J ;V ′), and the like, we refer
to e.g. [11] or [14, Chapter 1]. Then (6)–(7) are well-defined for all (u, v) ∈ X × Y
whenever

f ∈ L2(J ;V ′), g ∈ L2(J ; [H1/2(ΓN)]′) and h ∈ L2(D), (11)

4 Roman Andreev

and

a ∈ L∞(D) with 0 < ess inf a ≤ ess sup a <∞. (12)

For the remainder of the article we assume f ∈ L2(J ;L2(D)). The spaces X and
Y are themselves Banach spaces for the norms ‖·‖X and ‖·‖Y that are given by

‖u‖2X := ‖u‖2L2(J;V) + ‖∂tu‖2L2(J;V ′), u ∈ X, (13)

‖v‖2Y := ‖v1‖2L2(J;V) + ‖v2‖2H , v = (v1, v2) ∈ Y. (14)

We recall from e.g. [11, Section 5.9.2] or [14, Chapter 1] that any (representant
of any) u ∈ X admits a modification on a negligible subset of J such that the
resulting function coincides with a unique continuous H-valued function defined
on the closed interval J̄ ; moreover, the C0 norm of the latter is controlled by the
X norm of the former. In other words, the following embedding is continuous

X = L2(J ;V) ∩H1(J ;V ′) →֒ C0(J̄;H), (15)

and in particular

∃C > 0 : ‖u(0)‖H ≤ C‖u‖X ∀u ∈ X. (16)

In this way, the initial value u(0) of any u ∈ X is well-defined in H.
With the above assumptions, the space-time variational problem (5) has a

unique solution u ∈ X and the solution depends continuously on the functional
b ∈ Y ′, see [16, Theorem 5.1] and the references therein. Hence, the solution u also
depends continuously on the input data f , g and h that define the load functional
b in (7).

3 Space-time tensor product discrete trial and test spaces

The continuous space-time variational formulation (5) will be discretized using
finite-dimensional discrete trial and test spaces Xh ⊂ X and Yh ⊂ Y built up
from finite-dimensional “univariate” temporal subspaces E ⊂ H1(J), F ⊂ L2(J),
and spatial subspaces Vh ⊂ V . These spaces assume the space-time tensor product
form

Xh := E ⊗ Vh and Yh := (F ⊗ Vh)× Vh. (17)

A key feature of this discretization and the implementation given below is the
modularity with respect to the spatial subspaces Vh.

To specify the temporal subspaces E and F we need to introduce some ter-
minology. A temporal mesh T is a finite set of points in J̄ = [0, T] containing
0 and T . The connected components of J \ T are called the elements of T . Let
max∆T denote the maximal “time-step”, i.e., the maximal length of an element
of T . For a temporal mesh T let T ⋆ denote the temporal mesh obtained from T
by a uniform refinement (each element is split into two smaller elements of equal
length). Concerning E on the trial side and F on the test side, we will restrict
ourselves to two types of pairs that differ in the choice of F .

Space-time discretization of the heat equation 5

Type 1 temporal subspaces. Given a temporal mesh TE , we define E as the
standard space of continuous piecewise affine functions, and F as the space of
piecewise constant functions on TF := TE .

Type 2 temporal subspaces. Given a temporal mesh TE , the space E is de-
fined as above. Let another temporal mesh, TF be obtained from TE by a
succession of uniform refinements, i.e., TF = [T 7→ T ⋆]n(TE) for some positive
n ∈ N. Then F is defined as the space of piecewise constant functions on TF .

In the first case the discrete variational formulation

find uh ∈ Xh such that B(uh, vh) = b(vh) ∀vh ∈ Yh (18)

is an example of continuous Galerkin time-stepping schemes [13,1]. In the second
case the dimension of Yh is larger than that of Xh, and the above discrete varia-
tional formulation is meaningless. A generalization based on residual minimization
is therefore introduced in Section 4. Concerning the stability of the resulting min-
imal residual Petrov-Galerkin method there is a fundamental difference between
Type 1 and Type 2 temporal subspaces. This is the subject of the following two
propositions that summarize the relevant main results from [3, Section 5.2.3]. Note
carefully that the present concept of stability, namely the validity of the discrete
inf-sup condition

γh := inf
uh∈Xh\{0}

sup
vh∈Yh\{0}

B(uh, vh)

‖uh‖X‖vh‖Y
> 0 (19)

(its role is discussed in Section 4) uniformly in the choice of the temporal dis-
cretization, is different from e.g. A-stability for time-stepping methods.

The following measure of self-duality for the spatial subspace Vh ⊂ V will be
needed:

κh := inf
χ′

h
∈Vh\{0}

sup
χh∈Vh\{0}

(χ′
h, χh)D

‖χ′
h‖V ′‖χh‖V

. (20)

Note that κh is bounded (independently of Vh) and necessarily positive for a
finite-dimensional Vh.

Proposition 1 Let {0} 6= Vh ⊂ V be a finite-dimensional subspace. Let E ⊂
H1(J) and F ⊂ L2(J) be of Type 2. Then there exists a constant γ⋆0 > 0 indepen-
dent of Vh, E and F , such that the discrete inf-sup condition (19) holds for the
discrete trial and test spaces (17) with

γh ≥ γ⋆0κh. (21)

We remark that γ⋆0 in (21), as a function of the number of refinements between
TE and TF , is monotonically increasing and saturates (exponentially quickly).

Type 1 temporal subspaces, on the other hand, do not lead to unconditional
stability of the form (21). To formalize this, we define the CFL number

CFLh := max∆TE sup
χh∈Vh\{0}

‖χh‖V
‖χh‖V ′

. (22)

6 Roman Andreev

Proposition 2 Let {0} 6= Vh ⊂ V be a finite-dimensional subspace. Let E ⊂
H1(J) and F ⊂ L2(J) be of Type 1. Then there exists a constant γ0 > 0 indepen-
dent of Vh, E and F , such that the discrete inf-sup condition (19) holds for the
discrete trial and test spaces (17) with

γh ≥ γ0κhmin{1,CFL−1
h }. (23)

In general, the dependence on the CFL number cannot be improved.

4 Minimal residual Petrov-Galerkin discretization

In this section we consider an abstract continuous bilinear form B : X × Y → R,
where X and Y are Hilbert spaces with norms ‖·‖X and ‖·‖Y . Let

‖B‖ := sup
w∈X\{0}

sup
v∈Y \{0}

|B(w, v)|
‖w‖X‖v‖Y

denote the norm of the bilinear form B. Further, let b be a linear continuous func-
tional of Y . For the remainder of the section, two finite-dimensional subspaces
Xh ⊂ X and Yh ⊂ Y are fixed. We aim at relaxing the discrete variational formu-
lation (18) to admit the case dimXh < dimYh. To guarantee well-posedness, the
discrete inf-sup condition of B on Xh × Yh will be essential (cf. Proposition 1):

γh := inf
wh∈Xh\{0}

sup
vh∈Yh\{0}

B(wh, vh)

‖wh‖X‖vh‖Y
> 0. (24)

We introduce norms |||·|||X and |||·|||Y on Xh and Yh that are induced by (positive
definite) linear continuous operators M : Xh → X ′ and N : Yh → Y ′ as follows:

|||wh|||2X := (Mwh)(wh), wh ∈ Xh, (25)

|||vh|||2Y := (Nvh)(vh), vh ∈ Yh. (26)

The operatorsM andN are moreover assumed to be symmetric, i.e., (Muh)(wh) =
(Mwh)(uh) for all wh, uh ∈ Xh, and similarly for N . The Gram matrices of the
operators M and N , defined below, will essentially act as preconditioners for the
discrete system, and should therefore be easy to invert approximately, cf. Section
7.1. Let 0 < dM ≤ DM <∞ and 0 < dN ≤ DN <∞ be constants such that

dM |||·|||X ≤ ‖·‖X ≤ DM |||·|||X and dN |||·|||Y ≤ ‖·‖Y ≤ DN |||·|||Y (27)

on Xh and Yh, respectively. We emphasize that the operators M and N , the
induced norms, and hence the constants in (27) may depend on h, but in this
section, the pair Xh × Yh is fixed to lighten the notation.

Instead of the usual discrete variational formulation we now introduce the
discrete (functional) residual minimization problem

uh := argmin
wh∈Xh

Rh(wh), (28)

where

Rh(wh) := sup
vh∈Yh\{0}

|B(wh, vh)− b(vh)|
|||vh|||Y

, wh ∈ Xh, (29)

is the (functional) residual. The following can be shown [4].

Space-time discretization of the heat equation 7

Theorem 1 Let the discrete inf-sup condition (24) hold. Then there exists a
unique uh ∈ Xh for which

Rh(uh) ≤ Rh(wh) ∀wh ∈ Xh (30)

holds. Moreover, uh satisfies the quasi-optimality estimate

‖u− uh‖X ≤ Ch inf
wh∈Xh

‖u− wh‖X with Ch =
‖B‖
γh

DN
dN

(31)

for any u ∈ X such that B(u, v) = b(v) for all v ∈ Y .

Proof (Sketch) Invoking the open mapping theorem, one can show that the the
mapping b 7→ uh is well-defined, linear and continuous, and its norm is dominated
by 1

γh

DN

dN
. Thus the composition u 7→ Bu 7→ uh is a continuous projection with

norm not exceeding Ch given in (31). An application of [18, Lemma 5] finishes the
argument.

Let us describe a computable algebraic equivalent of the somewhat nonstan-
dard variational definition (28) of the discrete solution. To that end let Φ ⊂ Xh and
Ψ ⊂ Yh be bases for the respective discrete spaces. Having fixed the pair Xh×Yh,
the possible dependence on h is again omitted. The algebraic representants of the
system bilinear formB, of the load functional b and of the norm-inducing operators
N and M , are defined with respect to the chosen basis in the usual way,

B := B(Φ, Ψ), b := b(Ψ), N := (NΨ)(Ψ), M := (MΦ)(Φ), (32)

or in componentwise notation Bψφ = B(φ, ψ), bψ = b(ψ), Nψ′ψ = (Nψ)(ψ′),
Mφ′φ = (Mφ)(φ′) for φ, φ′ ∈ Φ and ψ,ψ′ ∈ Ψ . The basis functions are used to
index the components of matrices and vectors. Similarly, RΦ will denote vectors
of real numbers indexed by φ ∈ Φ. The matrix B is injective if and only if the
discrete inf-sup condition (24) holds; further, N and M are symmetric positive
definite matrices due to the analogous properties (27) of the operators N and M .

Thus, ‖w‖M :=
√
wTMw, w ∈ R

Φ, defines a norm, and we use similar notation
for other matrices.

With these definitions, the discrete functional residual minimization (28) can
be seen to be equivalent to the discrete algebraic residual minimization

u := argmin
w∈RΦ

‖Bw− b‖N−1 . (33)

A vector u is a stationary point of (33) if and only if it satisfies the first order
optimality conditions, namely the generalized Gauß normal equations

BTN−1Bu = BTN−1b. (34)

If the discrete inf-sup condition (24) holds, the matrix BTN−1B is symmetric
positive definite; then, the Gauß normal equations (34), and therefore also the
discrete minimization problem (33), have a unique solution. Finally, the matrices
M and BTN−1B are spectrally equivalent with the bounds [3, Section 4.1]

γhdMdN‖w‖M ≤ ‖w‖BTN−1B ≤ ‖B‖DMDN‖w‖M ∀w ∈ R
Φ. (35)

Therefore, M is a preconditioner for the Gauß normal equations (34). By the
estimate (35), the quality of this preconditioner is controlled by the discrete inf-
sup constant γh in (24) and the norm equivalence constants in (27), and does not
depend on the choice of the basis.

8 Roman Andreev

5 Parabolic space-time preconditioners

In Section 4 we admitted general norm-inducing operators M and N on the fixed
pair of finite-dimensional discrete trial and test spaces Xh × Yh. For the space-
time variational formulation (5) several practical choice are available [3, Chapter
6]. Here, to simplify the exposition, we will only use the canonical choice of the
Riesz mappings defined (on all of X and Y) by

(Mw)(w) := ‖w‖2X = ‖w‖2L2(J;V) + ‖∂tw‖2L2(J;V ′), w ∈ X, (36)

and

(Nv)(v) := ‖v‖2Y = ‖v1‖2L2(J;V) + ‖v2‖2H , v = (v1, v2) ∈ Y. (37)

These definitions extend to the off-diagonal by the imposed symmetry of M and
N . In these formulas, the V = H1

Γ0
(D) and the V ′ = [H1

Γ0
(D)]′ norms are taken

to be the “energy norms”:

‖σ‖2V := (agradσ, gradσ)D, σ ∈ V, (38)

‖ϕ‖2V ′ := (ϕ,A−1ιϕ)D, ϕ ∈ H = L2(D). (39)

Here, A is the operator A : V → V ′, σ 7→ (a gradσ, grad ·)D, where a is the
heat conduction coefficient from (1) satisfying the bounds (12), and ιϕ ∈ V ′ is
the functional on V defined by ιϕ := (ϕ, ·)D, ϕ ∈ H. For β ∈ V ′, the definition
extends to ‖β‖2V ′ := β(A−1β).

6 Kronecker product structure of the discretized operators

6.1 The system bilinear form

Recall from Section 2 the definition of the system bilinear form

B(u, v) :=

∫

J

(∂tu, v1)Ddt+

∫

J

(a gradu, grad v1)Ddt+ (u(0, ·), v2)D

for the space-time variational formulation of the model parabolic evolution equa-
tion, where u ∈ X = L2(J ;V) ∩H1(J ;V ′) and v = (v1, v2) ∈ Y = L2(J ;V)×H.
As described in Section 3, we consider two types of discrete trial and test spaces.
In either case these have the form

Xh = E ⊗ Vh ⊂ X and Yh = (F ⊗ Vh)× Vh ⊂ Y, (40)

where E ⊂ H1(J) is the space of continuous piecewise affine functions on a tem-
poral mesh, F ⊂ L2(J) is the space of piecewise constant functions on the same
mesh (Type 1) or on its n-fold uniform refinement (Type 2), and Vh ⊂ V is a
finite-dimensional subspace.

For the remainder of the section we fix the spatial discretization Vh ⊂ V
with a basis Σ ⊂ Vh, and the temporal mesh TE = {0 = t0 < t1 < . . . <
tK = T}. Let TF = {0 = t′0 < t′1 < . . . < t′K′ = T} be either TE or any n-
fold uniform refinement of TE . Let E be as above, and let F denote the space

Space-time discretization of the heat equation 9

of piecewise constant functions with respect to the temporal mesh TF ⊇ TE ,
which possibly refines TE . As basis for E we take the usual hat functions Θ :=
{θk : k = 0, . . . ,K} ⊂ E defined by θk(tk̃) = δkk̃, where δkk̃ denotes the Kronecker
delta. In particular, the only function that does not vanish at t = 0 is θ0. As basis
for F we take the indicator functions Ξ := {ξk := χ(t′

k−1
,t′

k
) : k = 1, . . . ,K ′} on

the elements (t′k−1, t
′
k) of the temporal mesh TF ⊇ TE . These univariate bases are

first combined to the collections Φ ⊂ X and Ψ1 ⊂ Y1 as

Φ := {θ ⊗ σ : θ ∈ Θ, σ ∈ Σ}, Ψ1 := {ξ ⊗ σ : ξ ∈ Ξ, σ ∈ Σ}. (41)

These now yield bases

Φ ⊂ Xh and Ψ := (Ψ1 × {0}) ∪ ({0} ×Σ) ⊂ Yh (42)

for the discrete trial and test spaces Xh and Yh. Discretizing the bilinear form B
using these tensor product bases Φ and Ψ as described in abstract terms in Section
4 leads to

B =

(
CFE
t ⊗Mx +MFE

t ⊗Ax

eEt ⊗Mx

)
(43)

where a) the “temporal FEM” matrices CFE
t ,MFE

t ∈ R
Ξ×Θ and the row vector

eEt ∈ R
Θ, have the components

[CFE
t]ξθ =

∫

J

θ′(t)ξ(t)dt, [MFE
t]ξθ =

∫

J

θ(t)ξ(t)dt, [eEt]θ = δθ0θ, (44)

with the prime denoting the derivative with respect to t, and b) the usual “spatial
FEM” mass and stiffness matrices Mx,Ax ∈ R

Σ×Σ are given by

[Mx]σ̃σ =

∫

D

σ̃(x)σ(x)dx, [Ax]σ̃σ =

∫

D

a(x) grad σ̃(x) · gradσ(x)dx. (45)

Let us comment on the assembly of the temporal FEM matrices. First, if
TE = TF (Type 1) then [CFE

t]ξθ ∈ {1,−1, 0} and [MFE
t]ξθ ∈ { 1

2 |I|, 0} depending
on whether ξ and θ are both nonzero on the temporal element I of TE having length
|I|, and on the sign of θ′ there. Therefore, assume now that TF is obtained from TE
by a succession of uniform refinements (Type 2). Let T ⋆E denote the first uniform
refinement of TE , and let E⋆ be the space of continuous piecewise affine function
on T ⋆E with the hat function basis Θ⋆. Let CFE⋆

t and MFE⋆

t denote the matrices
as above, but with T ⋆E in place of TE . Consider now the embedding operator
SE : E → E⋆. Define the prolongation matrix [SEt]θ⋆θ by SEθ =

∑
θ⋆∈Θ⋆ S

E
θ⋆θθ

⋆,
θ ∈ Θ. Then

CFE
t = CFE⋆

t SEt and MFE
t = MFE⋆

t SEt . (46)

Moreover, denoting by tθ ∈ T the node for which θ(tθ) = 1, and similarly for
tθ⋆ ∈ T ⋆, we have “T ⋆E = SEt TE”, i.e.,

tθ⋆ =
∑

θ∈Θ

[SEt]θ⋆θtθ ∀θ⋆ ∈ Θ⋆. (47)

10 Roman Andreev

6.2 The norm-inducing operators

With the norms on V and V ′ taken to be (38)–(39), the discretized operators M
and N defined in Section 5 assume the form

M = ME
t ⊗Ax +AE

t ⊗ (MxA
−1
x Mx) (48)

with the “temporal mass and stiffness” matrices

[ME
t]θ̃θ =

∫

J

θ̃(t)θ(t)dt, [AE
t]θ̃θ =

∫

J

θ̃′(t)θ′(t)dt, (49)

and the block-diagonal matrix

N =

(
MF
t ⊗Ax 0
0 Mx

)
(50)

with the “temporal mass matrix”

[MF
t]ξ̃ξ =

∫

J

ξ̃(t)ξ(t)dt. (51)

6.3 Data structures

The Kronecker product structure of these matrices suggests regarding a vector
w ∈ R

Σ×Θ as a rectangular array with #Σ rows and #Θ columns. Let Vec(w)
denote the “vectorization” of such an array, i.e., its columns are collected one after
another into one column vector Vec(w) of length #(Σ × Θ). Now, if T ∈ R

Θ×Θ

and X ∈ R
Σ×Σ are matrices then

(T⊗X) Vec(w) = Vec(XwTT). (52)

In the implementation we will exclusively use the representation as rectangular
arrays. Moreover, load vectors derived from load functionals d ∈ Y ′ will be stored
as pairs d = (d1,d2) with d1 ∈ R

Σ×Ξ (rectangular array with #Σ rows and #Ξ
columns) and d2 ∈ R

Σ (column vector of length #Σ) in the form of a Matlab
structure {d1, d2}. To these, a formula analogous to (52) applies. In particular, we
never store the operators B, M and N (or its inverses) as matrices.

7 Implementational aspects

7.1 Inverses of the space-time parabolic preconditioners

Consider the matrix representations M and N of the space-time parabolic pre-
conditioners given in (48) and (50) in Section 6. In order to solve the generalized
Gauß normal equations (34) withM as preconditioner, we need to (approximately)
compute the inverses M−1 and N−1.

Space-time discretization of the heat equation 11

7.1.1 The test side

For N we simply use the block-diagonal representation

N−1 =

(
(MF

t)
−1 ⊗A−1

x 0
0 M−1

x

)
, (53)

which again has Kronecker product structure. For problems with a large number
of spatial degrees of freedom, the inverse A−1

x may replaced by an approximate
inverse, e.g. several cycles of a multigrid method.

7.1.2 The trial side

The representation of M−1 requires more discussion, as it is not (obviously) of
Kronecker product structure. We will obtain a simplified expression for M−1 by
diagonalizing ME

t and AE
t . For this discussion, let us drop the superscript (·)E.

Consider therefore the generalized eigenvalue problem of finding v ∈ R
Θ and λ ∈ R

such that Atv = λMtv (in place of Mt, one could use the mass-lumped version of
Mt, or simply the diagonal matrix that coincides with Mt on the diagonal). Let It
denote the identity matrix of the same size as Mt and At. Since At is symmetric
positive semi-definite and Mt is symmetric positive definite, all eigenvalues are
nonnegative and the eigenvectors may be chosen to form an Mt-orthogonal basis:
there exists a square matrix Vt collecting the eigenvectors in its columns, and a
diagonal matrix Dt containing the eigenvalues on the diagonal, such that

VT

tMtVt = It and AtVt = MtVtDt. (54)

Let us set Tt := MtVt. The first identity implies V−1
t = VT

tMt = TT
t , which

may be used to verify

Mt = TtT
T

t and At = TtDtT
T

t . (55)

Inserting these into the expression (48) for M we find

M = (Tt ⊗ Ix)(It ⊗Ax +Dt ⊗ (MxA
−1
x Mx))(T

T

t ⊗ Ix) (56)

and therefore

M−1 = (Vt ⊗ Ix)(It ⊗Ax +Dt ⊗ (MxA
−1
x Mx))

−1(VT

t ⊗ Ix). (57)

Let γθ be the square root of the entry of Dt on the diagonal in position θ, i.e.,
Dt = diag((γ2θ)θ∈Θ). Now, recall from Section 6 the convention that w ∈ R

Σ×Θ is
stored as a rectangular array with #Θ columns. Applying M−1 to such a vector
w will be done as follows

1. Compute w(1) := wVt.

2. For each column w
(1)
θ of w(1) compute the column w

(2)
θ of w(2) by

w
(2)
θ := (Ax + γ2θ(MxA

−1
x Mx))

−1w
(1)
θ . (58)

3. Compute w(3) := w(2)VT
t . Then M−1w = w(3).

12 Roman Andreev

The computation (58) can be done in parallel over the columns. We will further
make use of the following identity, valid when applied to a real vector as in (58),

(Ax + γ2θ (MxA
−1
x Mx))

−1 = Re ◦(Ax + iγθMx)
−1. (59)

The right-hand-side means the solution of the FEM discretization of the Helmholtz
operator (A + iγθ Id) with imaginary frequency iγθ, followed by taking the real
part. Interestingly, such Helmholtz problems appeared in the context of (parabolic)
evolution equations in [17,8], but in the present case only in the representation of
the preconditioner M−1. These may therefore be inverted approximately.

7.2 Assembly of the space-time load vector

As in the previous section, let F be the space of piecewise constant functions on
a temporal mesh TF ; let Ξ be the basis on F consisting of indicator functions on
the elements of TF ; finally, Σ ⊂ Vh is a basis for a finite-dimensional subspaces
Vh ⊂ V = H1

Γ0
(D). The load functional b(v1, v2) defined in Section 2 can be

rewritten as

b(v1, 0) + b(0, v2) =

∫

J

{(f, v1)D + (g, v1)ΓN
} dt+ (h, v2)D, (60)

for (v1, v2) ∈ Y = L2(J ;V) × H, where h ∈ H = L2(D), f ∈ L2(J ;H) and
g ∈ L2(J ;H1/2(ΓN)) are given functions. Accordingly, the load vector b that we
obtain as outlined in Section 4 consists of two parts, say, b1 ∈ R

Σ×Ξ and b2 ∈ R
Σ.

The second part is given in componentwise notation by

[b2]σ = (h, σ)D + (0, σ)ΓN
, σ ∈ Σ, (61)

which is the usual spatial FEM load vector for the function h ∈ L2(D) with
zero Neumann data. In the remainder of this section we describe how b1 may be
obtained from the usual spatial FEM load vectors. Observe first that, fixing an
indicator function ξ ∈ Ξ supported on the closed interval I, we may employ a
quadrature rule on I to define

[b1]σξ :=
∑

r∈N

wIr

{
(f(tIr, ·), σ)D + (g(tIr, ·), σ)ΓN

}
(62)

≈
∫

I

{(f, v1)D + (g, v1)ΓN
} dt, σ ∈ Σ, (63)

where tIr ∈ I are the quadrature nodes and wIr ∈ R are the quadrature weights
(equal to zero for r ∈ N large enough). Now, each term in the curly brackets {. . .}
is a load vector for the function f(tIr , ·) with Neumann data g(tIr, ·), which can
be assembled using standard spatial FEM routines. This presupposes sufficient
regularity of the functions t 7→ f(t, ·) and t 7→ g(t, ·) on the interval I. The com-
putation of individual columns of b (i.e., for each given ξ ∈ Ξ) can be performed
in parallel.

If TF = TE then using the trapezoidal rule on each temporal element I leads
to a system Bu = b that admits a unique solution, which on the nodes of TE
coincides with the solution obtained by the Crank-Nicolson time-stepping method
[13,1].

Space-time discretization of the heat equation 13

7.3 Generalized LSQR algorithm

In Section 4 the minimal residual Petrov-Galerkin discretization was shown to
lead to a system of generalized Gauß normal equations. One option to solve the
system is the LSQR algorithm of Paige and Saunders [15] applied directly to the

preconditioned equation B̃TB̃ũ = B̃Tb̃ with B̃ = N−1/2BM−1/2, ũ = M−1/2u,
b̃ = N−1/2b, where M−1/2 and N−1/2 denote their inverses of the square roots of
the (s.p.d.) matricesM and N. We reformulate the algorithm it in such a way that
only the inverses M−1 and N−1 need to be applied, but not the square roots, cf.
[9]. To compute an approximate solution ui⋆ ≈ u to the generalized Gauß normal
equations (34) using M as a preconditioner, the algorithm proceeds as follows:

1. Initialize
(a) d0 := 0
(b) (v̂0,v0, β0) := Normalize(b,N)
(c) (ŵ0,w0, α0) := Normalize(BTv̂0,M)
(d) ρ0 := ‖(α0, β0)‖2
(e) u0 := 0
(f) δ1 = α0, γ1 = β0

2. For i = 1, 2, . . . , i⋆ do the following steps (until convergence)
(a) di := ŵi−1 − (αi−1βi−1/ρ

2
i−1)di−1

(b) (v̂i,vi, βi) := Normalize(Bŵi−1 − αi−1vi−1,N)
(c) (ŵi,wi, αi) := Normalize(BTv̂i − βiwi−1,M)
(d) ρi := ‖(δi, βi)‖2,
(e) ui := ui−1 + (δiγi/ρ

2
i)di

(f) δi+1 := −δiαi/ρi, γi+1 := γiβi/ρi

Here, Normalize : (s,S) 7→ (ẑ, z, z), with S s.p.d., is the procedure:

1. Solve Sŝ = s for ŝ
2. Set z :=

√
sTŝ and (ẑ, z) := (z−1ŝ, z−1s)

As long as the order of the statements is unchanged, the subscripts (·)i, etc., can
be ignored in the implementation. In our implementation we will limit the number
of iterations and allow the iteration to exit when the normal equations residual
‖B̃TB̃ũ− B̃Tb̃‖2 = ‖BTN−1Bui −BTN−1b‖M−1 falls below a threshold. This
residual is available for each i = 0, 1, . . . as |δi+1|γi+1 following step (f). See [10]
for further discussion of stopping criteria for the LSQR algorithm.

8 Overview of the Matlab code

In the code, the naming convention parallels that of Sections 6 and 7. Thus, the
mesh TF is called TF, the matrix MFE

t is called MtFE, the vector u is called u, and
so on. The subroutines that are related to the temporal FEM are prefixed with
femT_, those related to spatial FEM with femX_. The only subroutine that mixes
temporal and spatial FEM is femTX_assemLoad for the assembly of the space-time
load vector b.

14 Roman Andreev

8.1 Main file

We provide the commented code for the main file. The code is embedded in a
Matlab function spacetime.

1 function spacetime

Initialize the spatial FEM (load the mesh, etc., here into global variables) and
compute the spatial FEM mass and stiffness matrices. The flag true indicates that
this is the first-time initialization.

2 femX_init (true)
3 [Mx , Ax] = femX_MA ();

Define a temporal mesh with K elements on the interval J = (0, T) with T = 20:

4 T = 20; K = 100;

5 TE = T * sort([0, rand(1, K-1) , 1]);

Determine the number of uniform refinements to go from TE to TF , see Section 6.
Setting use_mrpg = true amounts to one refinement.

6 use_mrpg = true;

Compute the refined mesh TF and the temporal FEM matrices as described in
Section 6:

7 [MtFE , CtFE , TF] = femT_assemFE(TE , use_mrpg);

8 [MtE , AtE] = femT_assemE (TE);
9 MtF = femT_assemF (TF);

Define the function that computes w 7→ Bw using the matrix representation given
in Section 6:

10 function Bw = B(w)
11 Bw = { Mx * w * CtFE ’ + Ax * w * MtFE ’, Mx * w(:,1) };

12 end

Define the function that computes v 7→ BTv using the matrix representation given
in Section 6.

13 function Btv = Bt(v)
14 Btv = Mx’ * v{1} * CtFE + Ax’ * v{1} * MtFE;

15 Btv (:,1) = Btv (:,1) + Mx ’ * v{2};

16 end

Define the function that computes d 7→ N−1d with N−1 as in Section 7.1.1:

17 function iNd = iN(d)

18 iNd = { Ax \ (d{1} / MtF), Mx \ d{2} };
19 end

Define the function that computes w 7→ M−1w using the algorithm and formula
(59) given in Section 7.1.2. Two comments are in order. First, the symmetric
positive semi-definite matrix AE

t is singular, possibly leading to a small negative
approximately computed eigenvalue. Before taking the square root we therefore
round negative eigenvalues to zero. Second, the result of an application of (59) to
a real vector is again a real vector, which is enforced by taking the real part. This
truncates the round-off error accumulated in the imaginary part and reestablishes
the data type of reals. The loop can be performed in parallel.

Space-time discretization of the heat equation 15

20 [VtE , DtE] = eig (full(AtE), full(MtE));

21 gamma = sqrt(max (0, diag(DtE)));

22 function iMw = iM(w)

23 iMw = w * VtE;

24 parfor j = 1: length (TE)
25 iMw (:,j) = real((Ax + 1i * gamma (j) * Mx) \ iMw (:,j));

26 end

27 iMw = iMw * VtE ’;

28 end

Compute the space-time load vector b using a quadrature rule according to Section
7.2. The Matlab functions f, g and h are assumed to be available, e.g. as Matlab
files in the same directory. Further, QR_Trapz is the trapezoidal quadrature rule as
described in Section 8.2.

29 b = femTX_assemLoad(TF , @f , @g, @h , QR_Trapz ());

Set the tolerance and the maximal number of iterations for the generalized LSQR
algorithm from Section 7.3 and run it on the Gauß normal equations (34) with M
as preconditioner. The solver may provide additional diagnostic output parameters
that are ignored here.

30 tol = 1e -4; maxit = 100;

31 u = glsqr(@B , @Bt , b, tol , maxit , @iM , @iN);

Finally, plot several temporal snapshots (equispaced in time) of the numerical
solution. These are obtained by linear interpolation from the values at temporal
nodes to t = 0, 1, . . . , 5, and stored in the array U.

32 t = 0:5; U = interp1 (TE , u’, t) ’;

33 for k = 1: size(U,2)

34 subplot (1, size(U,2) , k); femX_show (U(:,k));
35 end

Here the Matlab function spacetime ends.

36 end

8.2 Assembly of the space-time load vector

The assembly of the space-time load vector b is performed in the Matlab function
femTX_assemLoad. It receives the mesh TF as a (row) vector TF, as well as function
handles f, g and h. The function handles f and g, when called with one argu-
ment, say tr, are expected to return function handles to functions that depend on
the spatial variable only and describe f(tr, ·) and g(tr, ·). The function handle h

describes the initial condition h(·). Finally, QuadRule is a function handle that re-
ceives a 2-component vector describing the endpoints of an interval I and returns
a quadrature rule on I in the form of a vector of nodes (tIr)r=1,...,R and a vector
of corresponding weights (wIr)r=1,...,R, as well as the number of nodes R.

1 function b = femTX_assemLoad(TF , f, g, h, QuadRule)

Assemble the part b2 of the load vector from the initial condition h(·).
2 b2 = femX_b (h, @(varargin)0);

Assemble b1 by iterating over the temporal elements defined by TF as described
in Section 7.2. The outer loop can be computed in parallel.

16 Roman Andreev

3 b1 = zeros (length (b2), length (TF) -1);

4 parfor k = 1: size(b1 ,2)

5 [tI , wI , R] = QuadRule (TF([k k+1]));

6 for r = 1:R

7 b1(:,k) = b1(:,k) + wI(r) * femX_b (f(tI(r)), g(tI(r)));
8 end

9 end

The assembled vectors b1 and b2 are combined into a Matlab structure.

10 b = {b1, b2};

Here the Matlab function femTX_assemLoad ends.

11 end

8.3 Assembly of the temporal FEM matrices 1

Let us comment in some detail on the computation of the temporal FEM matrices
CFE
t and MFE

t by means of the Matlab function femT_assemFE. It receives a tempo-
ral mesh T0 ⊇ TE and the number nref of uniform refinements to be performed on
T0 to obtain TF . If nref is interpreted as one or zero if it has the logical value true

or false, respectively. The output is CFE
t and MFE

t , and the nref-fold refinement
of T0 stored again in the variable T0.

1 function [MtFE , CtFE , T0] = femT_assemFE(T0 , nref)

If no refinement is to be performed, the temporal FEM matrices CFE
t and MFE

t

can be computed directly. Temporal meshes are stored as row vectors.

2 K = length (T0);

3 if (nref == 0)

4 MtFE = spdiags (diff(T0)’ * [1/2 1/2], 0:1, K-1, K);
5 CtFE = diff(speye (K));

6 return

7 end

Otherwise, the prolongation matrix SEt is computed first, see Section 6.1. As can
be seen from (47), it coincides with the matrix representation of an interpolation
operator (a more efficient but lengthier implementation is possible here).

8 StE = sparse (interp1 (1:K, eye (K), 1:(1/2) :K));

Perform a uniform refinement of the current mesh T0 and pass the new mesh
recursively to femT_assemFE. Hence, the number of refinements still to be performed
decreases by one. We obtain the matrices MFE⋆

t and CFE⋆

t with respect to the
meshes TF and T ⋆0 , and the nref-th refinement of T0 (which is the desired TF).
9 [MtFEs , CtFEs , T0] = femT_assemFE((StE * T0 ’) ’, nref -1);

Apply the prolongation matrix according to (46) to obtain MFE
t and CFE

t .

10 MtFE = MtFEs * StE; CtFE = CtFEs * StE;

Here the Matlab function femT_assemFE ends.

11 end

Space-time discretization of the heat equation 17

8.4 Assembly of the temporal FEM matrices 2

The computation of the temporal stiffness and mass matrices AE
t , M

E
t and MF

t

is a routine task. The Matlab code is provided for completeness.

1 function [MtE , AtE] = femT_assemE (TE)

2 K = length (TE); h = diff(TE); g = 1./ h;
3 MtE = spdiags ([h 0; 0 h]’ * [1 2 0; 0 2 1]/6, -1:1, K, K);

4 AtE = spdiags ([g 0; 0 g]’ * [-1 1 0; 0 1 -1], -1:1, K, K);

5 end

1 function MtF = femT_assemF (TF)

2 K = length (TF) -1;

3 MtF = sparse (1:K, 1:K, abs (diff(TF)));

4 end

9 Numerical experiments

We present two numerical experiments. In the first, we focus on the dependence
of the condition number of the preconditioned system matrix as a function of
temporal elements. In the second, we focus on the execution times. To illustrate
the modularity, the two experiments are based on two different packages for spatial
finite element discretization. For simplicity we set a = 1 for the heat conduction
coefficient and f(t, x) = sin(t) for the source term in (1), as well as g = 0 for the
Neumann data (3) and h = 0 for the initial condition (4).

9.1 Dependence on the temporal resolution

In the first experiment we use the 2d spatial FEM discretization from [2, Sections
2–8]. The mesh consists of 6 quadrilaterals and 4 triangles, carrying bilinear and
linear finite elements, respectively, see [2] for details. The code described in Section
8 (and some graphical postprocessing) produces a figure similar to Fig. 1.

Fig. 1 Snapshots of the solution at t = 0, 1, 2, 3, 5, produced by the code given in Section 8.
Dark corresponds to low, bright to high values.

In Fig. 2 we document a) the accuracy of the discrete solution with respect to
the space-time norm ‖·‖X defined in (36), b) the number of iterations of the gen-
eralized least squares solver for equidistant temporal meshes TE of different size
and different numbers of refinements between TE and TF , and c) the condition

number of the preconditioned system matrix B̃TB̃, see Section 7.3. For measuring

18 Roman Andreev

the accuracy of the discrete solution, a reference solution on a fine temporal mesh
is used. We observe that for Type 1 temporal subspaces (no refinement of the test
space; this method is equivalent to the Crank-Nicolson time-stepping scheme), the
number of iterations first increases with #TE but then decreases again. This is ex-
plained by the increasing size of the system, but decreasing condition number. For
Type 2 temporal subspaces (one or more temporal refinements of the test space),
the number of iterations is consistently smaller. Indeed, the condition number is
approximately 2 independently of #TE . These observations are in agreement with
Propositions 1 and 2. Replacing the trapezoidal rule by a higher-order quadrature
does not significantly change the results.

9.2 Execution times

In the second experiment we use the spatial discretization by the first order finite
element space on the L-shaped domain D = (−1, 1)2 \ [0, 1)2 produced by the
Matlab PDE toolbox with four subsequent regular mesh refinements. This results
in 32′705 spatial degrees of freedom. For Type 1 and Type 2 temporal subspaces
with different temporal resolutions, we measure a) the number of generalized least
squares iterations as in the previous subsection, b) the assembly time of the space-
time load vector, and c) the solution time by the generalized LSQR algorithm.
We compare to the execution time of Crank-Nicolson time stepping scheme with a
direct solver for each time step on the same temporal mesh. A pool of four Matlab
workers on a Linux machine equipped with four AMD Opteron 2220 processors
and 32 GB RAM was used. From the results documented in Fig. 3 we infer that
while the present implementation is competitive (in terms of execution time), it
can only unfold its full potential in a massively parallel setting with approximate
multigrid- or wavelet-based solvers within the space-time preconditioners.

10 Conclusions

A concise Matlab implementation of a space-time simultaneous discretization and
solution algorithm for parabolic evolution equations that is stable, parallelizable,
and modular has been presented. It admits nonuniform temporal meshes and time-
dependent inputs. Very efficient preconditioners for the iterative resolution of the
resulting single linear system of equations are available. Extensions to higher order
in time and to space-time compressive algorithms are possible [4,3,5].

Let us point out what we believe is currently the major obstruction to massively
parallel computations based on the algorithm presented here. Allowing arbitrary
temporal meshes, the simultaneous diagonalization of the temporal FEM matri-
ces discussed in Section 7.1 leads to a nonlocal-in-time transformation Vt. If the
solution vector is split over multiple computational nodes along the temporal di-
mension, which is natural, the application of this transformation may result in
heavy communication. If, however, the temporal mesh is uniform, or derives from
a successive dyadic partition of a coarse mesh, it may be possible to use more
efficient fast Fourier or wavelet based transforms for this particular step instead.

Space-time discretization of the heat equation 19

10
0

10
1

10
2

10
−2

10
−1

10
0

of temporal elements

E
rr
o
r
o
f
th
e
d
is
cr
et
e
so
lu
ti
o
n

0 refinements
1 refinement
2 refinements
3 refinements

10
0

10
1

10
2

2

4

6

8

10

12

14

of temporal elements

#
o
f
it
er
a
ti
o
n
s

0 refinements
1 refinement
2 refinements
3 refinements

10
0

10
1

10
2

10
0

10
1

10
2

of temporal elements

C
o
n
d
it
io
n
n
u
m
b
er

0 refinements
1 refinement
2 refinements
3 refinements

Fig. 2 a) Accuracy of the discrete solution in the space-time norm |||·|||X , b) the number of
generalized LSQR iterations, c) and condition number of the preconditioned system matrix as a
function of the number of temporal elements for the setup of Section 9.1. Each line corresponds
to a number of temporal refinements of the test space.

20 Roman Andreev

10
0

10
1

10
2

4

6

8

10

12

of temporal elements

#
o
f
it
er
a
ti
o
n
s

0 refinements
1 refinement

10
0

10
1

10
2

10
0

10
1

10
2

10
3

of temporal elements

S
o
lu
ti
o
n
ti
m
e,

se
c

0 refinements
1 refinement
Crank-Nicolson

10
0

10
1

10
2

10
0

10
1

10
2

of temporal elements

A
ss
em

b
ly

ti
m
e,

se
c

0 refinements
1 refinement
Crank-Nicolson

Fig. 3 a) The number of generalized least squares iterations, b) solution time of the gen-
eralized least squares solver, c) assembly time of the space-time load vector as a function of
the number of temporal elements, and in comparison to the Crank-Nicolson time stepping
scheme, as described in Section 9.2. Number of refinements refers to the number of temporal
refinements of the test space.

Space-time discretization of the heat equation 21

Acknowledgements Research in part supported by the Swiss NSF Grant No. 127034 and
by the ERC AdG No. 247277 held by Ch. Schwab, Seminar for Applied Mathematics, ETH
Zürich. The authors thanks U.S. Fjordholm and J. Schweitzer for comments and discussions
on the draft of this manuscript.

References

1. Akrivis, G., Makridakis, C., Nochetto, R.: Galerkin and RungeKutta methods: unified
formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118,
429456 (2011)

2. Alberty, J., Carstensen, C., Funken, S.A.: Remarks around 50 lines of Matlab: short finite
element implementation. Numer. Algorithms 20(2-3), 117137 (1999)

3. Andreev, R.: Stability of space-time Petrov-Galerkin discretizations for parabolic evolution
equations. Ph.D. thesis, ETH Zrich (2012). ETH Diss. No. 20842

4. Andreev, R.: Stability of sparse space-time finite element discretizations of linear parabolic
evolution equations. IMA J. Numer. Anal. 33(1), 242260 (2013)

5. Andreev, R., Tobler, C.: Multilevel preconditioning and low rank tensor iteration for space-
time simultaneous discretizations of parabolic PDEs. Tech. rep., ETH Zrich (2012). In
review

6. Babuka, I., Janik, T.: The h-p Version of the Finite Element Method for Parabolic Equa-
tions. I. The p Version in Time. Numer. Methods Partial Differential Equations 5, 363399
(1989)

7. Babuka, I., Janik, T.: The h-p Version of the Finite Element Method for Parabolic Equa-
tions. II. The h-p Version in Time. Numer. Methods Partial Differential Equations 6,
343369 (1990)

8. Banjai, L., Peterseim, D.: Parallel multistep methods for linear evolution problems. IMA
J. Numer. Anal. 32(3), 12171240 (2012)

9. Benbow, S.J.: Solving generalized least-squares problems with LSQR. SIAM J. Matrix
Anal. Appl. 21(1), 166177 (electronic) (1999)

10. Chang, X.W., Paige, C.C., Titley-Peloquin, D.: Stopping criteria for the iterative solution
of linear least squares problems. SIAM J. Matrix Anal. Appl. 31(2), 831852 (2009)

11. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19.
American Mathematical Society (1998)

12. Fattorini, H.O.: Infinite dimensional linear control systems, North-Holland Mathematics

Studies, vol. 201. Elsevier Science B.V., Amsterdam (2005)
13. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems.

Math. Comp. 26, 415426 (1972)
14. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications.

Vol. I. Springer-Verlag, New York (1972)
15. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse

least squares. ACM Trans. Math. Software 8(1), 4371 (1982)
16. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution

problems. Math. Comp. 78(267), 12931318 (2009)
17. Sheen, D., Sloan, I.H., Thome, V.: A parallel method for time discretization of parabolic

equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23(2),
269299 (2003)

18. Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math.
94(1), 195202 (2003)

	1 Introduction
	2 Model problem and its space-time variational formulation
	3 Space-time tensor product discrete trial and test spaces
	4 Minimal residual Petrov-Galerkin discretization
	5 Parabolic space-time preconditioners
	6 Kronecker product structure of the discretized operators
	7 Implementational aspects
	8 Overview of the Matlab code
	9 Numerical experiments
	10 Conclusions

