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1 Introduction

The GMRES method of Saad and Schultz [28] is one of the most popular
Krylov subspace methods for solving a non-Hermitian system of linear equa-
tions Az = b, where A € CV*V is invertible and b € CV. Given an initial
guess (©), GMRES computes successive iterates *), k =1,2,..., so that

B — min o(A)e®
[P min [p(A)r™]|2,
p(0)=1

where Py denotes the linear space of polynomials of degree at most k, and
r(®) = b — Ax®) is the k-th residual.

Since GMRES uses the Arnoldi algorithm, its computational cost increases
with each iteration. An alternative is to restart GMRES after m iterations [28],
taking the last computed residual as the next initial residual. We call the
original method full GMRES and the latter restarted GMRES or GMRES(m).
The set of m Arnoldi iterations between successive restarts will be called a
cycle.

Although in exact arithmetic full GMRES is guaranteed to terminate with
the exact solution in at most N steps, the restarted version may stagnate [5,
12,28,34] or converge slowly [4,35,36]. The behaviour of restarted GMRES
has been well studied and a number of remedies for slow convergence have
been proposed [11,22,27,30-32].

One such remedy is the weighted GMRES method of Essai [13], shortly de-
noted as WGMRES(m), that aims to improve the convergence of GMRES(m)
by using a weighted inner product, which we call a D-inner product, that
changes at each cycle. This D-inner product, and associated D-norm, are
defined for any Hermitian positive definite D € CV*N and z,y € CV as
(x,y)p = yDz, ||z|p = /(z,x)p, where y represents the Hermitian
conjugate of y.

The WGMRES(m) method also starts from an initial guess (®) and com-
putes successive approximations &(*) at each cycle k = 1,2,..., such that at
the end of the k-th cycle

(TR =D
7] p nin [p(A)r o

p(0)=1

For further details we refer to Essai [13].
The essential ingredient of weighted GMRES is the weighted Arnoldi algo-

rithm [13] that, after m iterations, generates basis vectors vy, ..., v, of the
Krylov space K,,(A,r) = span{r, Ar,..., A"~ 1r}. If one collects the Krylov
basis vectors in a matrix V11 = [vl, ceey 'vm+1] € CN*™ _one can write down

an Arnoldi decomposition

Avm = m—H@ =VnH, + vm+1hm+1,m6?m (1)
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where H,, € Cm*TDxm ig the upper Hessenberg matrix

H,,
Hm = |:hm+1,me%;:| P

and e,, € R™ is the m-th canonical unit vector. The matrix V41 is D-
orthonormal, i.e., V,f_,_l DVy41 = Inyy1, the identity matrix of dimension m +
1. The weighted Arnoldi algorithm requires more computation per iteration
than standard Arnoldi in the Euclidean inner product and, consequently, one
cycle of WGMRES(m) is computationally more expensive than one cycle of
GMRES(m). However, convergence may occur more quickly.

We would like to emphasize that weighting differs from preconditioning.
Left preconditioning, for example, solves P~'Ax = P~'b, thereby secking
a solution from Kypy1(P~'A, P~1r(©). One expects that a Krylov subspace
method that uses this space converges faster, and typically this means that the
eigenvalues of P~ A are clustered. (Right preconditioning has an analogous
effect.) Weighting, on the other hand, does not change the Krylov space at all,
instead affecting the inner product that is used to extract an approximation
from the Krylov space built with the original matrix A.

Essai [13] considered the particular weight matrix

1

D=—— diag(ri*" , r{F=Y ey =D , 2
\/NHT(k_l)”Q g(| 1 |, [ra | | N |) (2)
where the r§k_1) are the entries of the residual vector #*~1 so that greater

emphasis is given to large components of the residual at each cycle. Note that
D = D) changes at each cycle, but to keep notation simple, we typically omit
the superindex k. The matrix D may be poorly conditioned if the diagonal
entries vary too much in magnitude. In such cases, adding a small multiple of
the identity will improve the conditioning of D.

For a number of test problems, WGMRES(m) with the weight matrix
(2) required fewer cycles and less CPU time than the standard GMRES(m)
method [13]. Application of WGMRES(m) to systems left-preconditioned by
ILU(0) [21] also resulted in a slight reduction in the number of cycles required
for convergence when compared with GMRES(m) [6]. However, the CPU time
for WGMRES(m) was greater as a consequence of the computation of nonstan-
dard inner products and norms. The weighted GMRES method has also been
used to solve shifted linear systems [19], and systems with multiple right-hand
sides [17]. We remark that Niu et al. [25] showed that WGMRES(m) can be
accelerated by augmenting the Krylov space at cycle k with the £ most recent
error approximations z(, i = k—¢,... k—1, where 2 = () —g(=1) when
i > 0 and O otherwise.

Although intuitively it seems sensible to emphasize those entries of the
residual vector that are large in magnitude, the convergence behaviour of
WGMRES(m) is not well understood. We attempt to remedy this here by
examining the harmonic Ritz values associated with WGMRES(m). In view
of the limited understanding even of the convergence of full GMRES, it seems
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unlikely at this stage that a simple and complete convergence theory for WGM-
RES can be developed. However, some insight can be gained by studying sev-
eral model problems. We also propose a new implementation of the weighted
Arnoldi algorithm and compare its cost with the original.

The outline of this paper is as follows. An analysis of the harmonic Ritz
values associated with GMRES(m) and WGMRES(m) is given in Section 2.
In Section 3 we compare Essai’s implementation of the weighted Arnoldi algo-
rithm with an alternative. Finally, in Section 4, the different implementations
are tested on a number of problems and compared with standard GMRES(m),
GMRES(m) with deflated restarting, and BICGSTAB.

2 Harmonic Ritz values and the convergence of weighted GMRES

In this section we try to shed some light on the convergence behaviour of
weighted GMRES and explain why this method may converge faster than un-
weighted GMRES in some cases, or why weighting may have no effect on the
convergence. It should be emphasized that GMRES(m) and WGMRES(m)
after k cycles yield residuals »(®) from the same Krylov space Krm+1(4, 7‘(0))
but the harmonic Ritz values that uniquely determine the residual polynomials
may exhibit considerably different behaviour. In other words, the approxima-
tion spaces of both methods are the same but the extractions from these spaces
may be different. This very property makes weighting quite different from what
is typically achieved by a preconditioner P.

The convergence of GMRES (and its restarted and weighted variants) is
generally very difficult to analyse, if not impossible, as in theory any nonin-
creasing convergence curve can be obtained with any choice of eigenvalues and
Ritz values [3,9,16]. Additionally, restarted GMRES may exhibit any admissi-
ble cycle-convergence behaviour, where the two admissible situations are that
the residuals decrease strictly monotonically at each cycle or that there is com-
plete stagnation [32]. Nevertheless, we still consider it instructive to make clear
the relations between the unweighted and weighted (harmonic) Ritz values in
the following. At the end of this section we will study three (unpreconditioned)
model problems. As no set of examples can be exhaustive, our primary aim
must be to illustrate and analyse some effects that may cause the difference
in the convergence of GMRES(m) and WGMRES(m) observed in practical
examples.

Facts about harmonic Ritz values. Let us start by collecting some well-known
facts about harmonic Ritz values, see [15,33,37]. First of all, the weighted
harmonic Ritz values 6; with corresponding Ritz vectors u; = V,,,z; satisfy

(Hu + [hgr,m* Frnel,) 25 = 052;, (3)

where f,, = H, e, It is also well known that the harmonic Ritz values
ng), cee Gr(rlf) associated with cycle k are the zeros of the residual polynomial
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pq(ff) € Pm, pgf)(O) = 1, which is uniquely determined by the condition

Ir® e = o5 (A~ (A) - Pl (A)r®| pe
= min [[p(A)pl ) (A) - P (A p.
peE

m

p(0)=1
If A is normal, then with p(¥) := pgﬁ)pgf—l) . .pﬁ,{) we have

7P llper < o mas [,

so that the convergence of (restarted) GMRES in the 2-norm can be under-
stood in terms of the uniform convergence of residual polynomials on the
discrete set of eigenvalues A(A).

Relationship between Ritz values with and without weighting. Starting from a
given vector, the Arnoldi method in the D-inner product builds D-orthogonal
vectors that satisfy (1). With the same starting vector, the Arnoldi method in
the Euclidean inner product computes orthogonal vectors v; such that

S a.
AVm = Vm+1Hm, Vm = [’Ul, PN ,’Um], Hm = |~ 7> (4)
- - hm+1,mem
where again @ is an upper Hessenberg matrix. Additionally, the matrices
V., and ‘A/m, and H,, and @ are linked by

Vin = ?msma @ = S;L};J@va (5)
where S, is upper triangular and is nonsingular in the absence of breakdown.
From (5) it follows that! [13, Proposition 2, Corollary 1]

~

~ h
1 m—+1,m T
Hp = SpHp St 4+ —mtlm o el
Sm41,m+1 (6)

Hm = S;lleSm + hm+1,m5m,mgm+1e?q;7
where 8., 41 and g,,,,; are the vectors obtained from the first m elements of the
last column of S,,,+1 and S;L}H, respectively, and Sp41.m+1 = eTHnHS;li_lemH.

We wish to relate the weighted harmonic Ritz values, defined by (3), and
the unweighted harmonic Ritz values, defined by

(Hm + |hm+1,m|2fmerTn)?jm = 0mYm,

where fm = H,"e,,. Using (6), we find that

ﬁm + |Em+1,m‘2fme;€1 = Sm (Hm + |hm+1,m|2fme£) Sr:zl + Zmeﬁa (7)

1 Note that the formula in Corollary 1 in [13] is incorrect and should be as in (6).
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hm—i—l m N N
) 2 2
Zm = Sm+1 + |hm+1,m| Fon — |hm+1,m‘ gm,msmfm-
Sm+1,m+1
T -1 .
If gmy1,me1 = €511, 16m then, using (5), we have that Apq1m =

eﬂﬂﬂmem = Gm+1,m+1Rm+1,mSm,m. Additionally, by (6) and the Sherman-
Morrison formula [18, page 19],

1
fm :HnTLHem ==

= — I 7 T*Hem,
* * —
1 + hm+1,msm,mgm+le €m

m

where T,, = S;llflmSm. Now, T, %e,, = g;,meifm, and, from the proof of
Corollary 2 in [13], Si8@,41 = —9m+1,m+18m+1. Thus,

g*
fm = = mm = S,an
1—h* * S ’
m+1,mgm+1,m+1 m+1J m

m

from which it follows that

~ |Gm+1,m+1)2 =
1?1 - milmblP g gH)F
I = (gmt+1.me1hmirm)*smm1 Fon (8)
B i1
4 Dmdlm o
3m+1,m+1

Applying the Bauer—Fike theorem [18, Theorem 6.3.2] to (7) with (8), gives

mjin|0j — 0| < K(S;EX )| Zmll2, i =1,...,m,

where X, is an eigenvector matrix of Hy, + [hm+1,m|>fmel, and £(S;1 Xn)
is the 2-norm condition number of S;,'X,,. Although the influence of the
weighting matrix D is not obvious from the above inequality, we can obtain a
(typically pessimistic) bound that displays the effect of weighting more clearly
since, by (5) and the D-orthogonality of V,,, S, #S 1 = ‘ZfD‘/}m. Thus, it
follows that x(S;,})? = /{(Vn’;ID‘A/m) < k(D) and that

min [0 = 8i] < /a(D)s(Xm)|2mll2 i =1,....m.

This shows that the difference between the weighted and unweighted har-
monic Ritz values depends on the nonnormality of Hy,, + |hmi1.m|>fmel,
through X,,, and the conditioning of the change of basis matrix S,,. The lat-
ter term is bounded by the condition number of D, which in the case of Essai’s
weighting (2) is given by the ratio of the largest and smallest values of #(*~1)
in magnitude. Consequently, we obtain a smaller bound when the entries of
the residual vector have similar magnitudes.

The nearness of the harmonic Ritz values additionally depends on ||z, |2

in (8). In GMRES, |ﬁm+17m| is small in magnitude when the residual norm is
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small [28, Proposition 1]. When the angle between v,,11 and U, is small,
|Sm+1,m+1] is large and |gm+1,m+1] = 1/|Sm+1,m+1] is small relative to the
remaining entries in the (m 4+ 1)-th column of Sm+1, i.e., the entries of s,,+1.
The size of z,, also depends on the conditioning of Hm, through f and on
the norm of S,,,, which can be bounded by the norm of D~!. Thus, when the
entries of D are of the same magnitude, and H,, + |Am+1,m |2 f,n el has a well
conditioned eigenvector matrix, we might expect the weighted and unweighted
harmonic Ritz values to be close; otherwise they may differ significantly, which
may be advantageous for weighted GMRES.

Relationship between WGMRES and GMRES residuals. If the GMRES and
WGMRES residuals coincide at the (k — 1)-th cycle then, since WGMRES is
a quasi-minimal residual method [10, Section 4.3], it cannot have a smaller
residual in the Fuclidean norm than GMRES at the end of the k-th cycle.
Properties of quasi-minimal residual methods are described in Section 4.3 of

Eiermann and Ernst [10], where, for example, it is shown that the difference
between the GMRES and WGMRES residuals is bounded by [10, Theorem

4.8]
k k / k
||7“(GJ)\4RES||2 < ||7'§/V)GMRESH2 < “(D(k))HT(GJ)WREsHZ

The difference is small if all elements of 7*~1) are of approximately equal
magnitude, but may be larger when the sizes of these elements vary. Thus, if
WGMRES performs better than GMRES this must be due to a better choice
of starting residual for the next cycle. We explore the effect of changing r(*)
on convergence and on the harmonic Ritz values in the rest of this section.

Three model problems. We now compare the harmonic Ritz values generated
by GMRES(m) with the weighted harmonic Ritz values of WGMRES(m) for
three model problems. As well as Essai’s weight matrix (2) we consider an al-
ternative, proposed by Najafi and Zareamoghaddam [24], who were concerned
that as the magnitudes of the entries of the residual became smaller it would
be difficult to compute with (2); D;ang is a diagonal matrix with random uni-
formly distributed entries in (0.5,1.5). We use reorthogonalization to minimize
the effect of finite precision on our results. Although the following three ex-
amples have little practical relevance, we believe that they serve the purpose
of giving insight into how weighting can possibly improve the convergence of
restarted GMRES (Examples 1 and 3), or how weighting can have absolutely
no effect on the convergence (Example 2).

Example 1 (interval) We examine the harmonic Ritz values of a diagonal
matriz with diagonal entries (and, hence, eigenvalues) 1,2,...,100. The right-
hand side b is a vector of all ones, scaled to unit length. As one can see
in Figure 1 (a), it appears that for unweighted GMRES(m) with m = 5 the
harmonic Ritz values of every second cycle have m accumulation points, giving
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asymptotically 2m accumulation points 07,...,05,. in total. In this example

these accumulation points are approximately

m

3.348, 22.208, 51.510, 79.318, 96.908,
3.453, 20.616, 49.477, 79.784, 98.155.

It should be noted that a similar 2-cyclic behaviour has been observed and
analysed for the so-called optimum gradient method in the 1950°s [14, 2] (this
method can be interpreted as restarted FOM), and in the context of matric
function approzimations in [1]. This restarted GMRES behaviour may also be
related to the asymptotic orthogonality of successive initial residuals r*=1) and
(&) proven for the case m = N —1 in [4, Theorem 2]. A detailed investigation
of this phenomenon is beyond the scope of this paper, but we expect that tools
stmilar to those used in the mentioned papers can be applied.

In Figure 1 (b) we show the level lines of the modulus of the nodal polyno-
mial gam (2) = Hf:l(z — 0%). These level lines are also known as lemniscates,
see also the discussion in [1]. One can read off from this plot that the level line
104535 s the smallest one containing A(A) in its interior, and the level line
1014999 passes through the origin. By the normalization condition of residual
polynomials, the modulus of qam()\)/q2m (0) is at most 10703740 ~ 0.4227 for
all A € A(A). This residual polynomial is the result of two restart cycles, hence
the expected convergence rate of restarted unweighted GMRES(m) in this ex-
ample is approzimately v/0.4227 ~ 0.6502. This rate is shown in Figure 1 (c)
as the black dashed line, and it coincides well with the observed linear conver-
gence of unweighted GMRES(m) (black curve with + markers).

The convergence of the weighted GMRES(m ) variants under consideration
appears much less regular. The harmonic Ritz values associated with Essai’s
weighting appear to cover the spectral interval of A more evenly, and this is
also indicated by the histogram in Figure 1 (d), which shows the distribution
of harmonic Ritz values over the spectral interval of A. This “randomization”
of interpolation nodes causes the method to converge faster than linearly. A
similar effect is achieved by random weighting with Dyanq. The fact that these
harmonic Ritz values are spread out over the spectral interval of A makes visu-
ally clear that weighting does not attempt to cluster the spectrum (and thereby
the harmonic Ritz values) as we might expect a preconditioner to do. We have
not attempted to plot the lemniscates associated with the harmonic Ritz values
produced by the weighted GMRES variants as, due to the observed irreqular
behaviour, these lemniscates cannot be described by just a few accumulation
points. Therefore the evaluation of the residual polynomials at zero would not
give more information than the computed residual norms.

Example 2 (circle) Our second example is a diagonal matriz with N = 100
diagonal elements (eigenvalues) 3 - e*™/N 11 on a circle of radius f = 0.9
centered at z =1, j=1,2,..., N. The right-hand side b is a vector of all ones,
scaled to unit length, and the restart length is m = 5. As can be seen from
Figure 2 (a), the harmonic Ritz values “spiral” towards the point z = 1, being
almost evenly spaced on concentric circles. This effect appears for all types
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Fig. 1: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red o), and WGMRES(5) with Dyang (green dots) for a diagonal matrix
with equispaced eigenvalues on [1, 100]. The harmonic Ritz values are shown at
the end of each of 50 cycles. (b) Lemniscates associated with unweighted GM-
RES(5). (c) Relative 2-norm residuals for the considered GMRES(5) variants.
(d) Histogram indicating the distribution of harmonic Ritz values.

of weighting under investigation, and the convergence shown in Figure 2 (b)
seems to be unaffected by whatever weighting method we use. To explain this
observation, assume that at some cycle the harmonic Ritz values are unit roots
of order m shifted and scaled to a circle of radius o < 8 centered at z = 1.
The corresponding nodal polynomial is ¢n(z) = (z — 1)™ — ™. As can be
verified easily, the mazimal modulus of q,, on the circle of radius 8 centered
at z =1 is attained at points “in the middle” of two neighboring eigenvalues,
for example, at the point z* = 1+ Be™/N . Hence, the modulus of the residual
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Fig. 2: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red o), and WGMRES(5) with Dyang (green dots) for a 100 x 100 matrix
with eigenvalues distributed on the shifted unit circle. The harmonic Ritz val-
ues are shown at the end of each of 50 cycles. (b) Relative 2-norm residuals for
the considered GMRES(5) variants. (All three convergence curves are visually
indistinguishable.)

polynomial is bounded by

N/Bm
~

‘qm(Z*)

B ‘qm(l + Bemi/N) ‘ B 'ﬂmewim/N _gm
4m(0) | e

¢m (0) 1)m —am

for sufficiently small «. This explains why we see convergence with rate 3 in
Figure 2 (b), indicated by the black dashed line, and weighting has essentially
no effect on the convergence here.

Example 3 (Jordan block) Our next example is an upper triangular Jor-
dan block J of size N = 100 with eigenvalue 1. The right-hand side b is a
vector of all ones, scaled to unit length. As one can see in Figure 3 (b), the
unweighted GMRES(5) method will stagnate except in the first cycle, where a
little progress is made. The corresponding harmonic Ritz values reappear at 10
points on a circle of radius one around the eigenvalue 1, with the real point
0 = 2 being counted twice due to symmetry, see Figure 3 (a). The harmonic
Ritz values associated with Essai’s weighted GMRES(5) method move closer
towards the eigenvalue 1 with each cycle. After 23 cycles, weighted GMRES(5)
has found the exact solution of Jx = b. The random weighting matrix Dyang
leads to stagnation just as unweighted GMRES(5). As opposed to the previous
two examples, the harmonic Ritz values shown in Figure 3 (a) do not explain
the convergence curves in Figure 8 (b) for this (highly) nonnormal example.
To still give some insight into the different behaviour of unweighted GM-
RES and Essai’s weighted GMRES, we visualize in Figure 8 (¢) and (d) the
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entries of the residual vector after each cycle. The special structure of the Jor-
dan matriz results in large residual entries being shifted up the vector with each
cycle. With unweighted GMRES(5) the residual vector is initially largest in its
last entries. This phenomenon is fully described by Theorem 2.1 in [20], which
is stated in terms of the transpose of the Jordan block, J*, but is also valid for
J. Some intuition is gained by observing that if S = [O,el, .. .,eN_l] is the
noncircular shift matriz, then ICp, (J,7) = K (S, 7) for any vector r. It follows
that the first two basis vectors, r and Sr differ only in the last component and
this affects the weight of the residual. More generally, any two basis vectors
Sir and STt differ in the (N — j)-th component only. Thus the “support” of
nonzero entries in the residual vector at the end of the first cycle is in the last
five components of the residual. At later cycles, this “support” forms a band
that gets wider with each cycle, eventually polluting all entries of the residual
vector and causing the method to stagnate. WGMRES(5) with Essai’s weight-
ing nitially has largest entries at the bottom of the residual vector, although
the other components also have some weight. Weighted GMRES then “cleans
up” the entries of the residual vector which were large in the previous cycle
because more weight is placed at those entries. Eventually, this WGMRES(5)
variant finds the exact solution in the 24-th cycle.

Note that this Jordan example also explains why the Krylov space and hence
the residual at the end of a cycle may depend sensitively on the initial resid-
ual for that cycle: instead of working with the matrix J and right-hand side
vector b we could as well run restarted weighted or unweighted GMRES with
A= XJX ! and b = Xb, where X = [x1,...,xN]| is an arbitrary invert-
ible matriz. Since Ky (A,b) = XK, (J,b), each column of Figure 3 (c) and
(d) can now be interpreted as the components of a residual vector in the basis
of generalized eigenvectors of A. If a zero component r; of a residual vector
r = [r,...,rn]|T is altered from 0 to € > 0, for example by finite precision
arithmetic, then this can cause a change of an eigenvector component in Ar
(and the following Krylov subspace vectors) of order €|z, which can be ar-
bitrarily large depending on ||z;||.

We conclude this section by remarking on the observations of Cao and
Yu [6], who compared WGMRES(m) with GMRES(m) on ILU-preconditioned
problems. They found that although the number of WGMRES(m) cycles was
usually slightly lower, the CPU time for WGMRES(m) was greater unless the
restart length was short. Since ILU preconditioners often cluster eigenvalues,
weighting—the effect of which is typically to shift the harmonic Ritz values
from those obtained by GMRES(m)—appears to offer little benefit in this case.
Our own experiments (see Example 5) confirm that for many systems right-
preconditioned by ILU(0), WGMRES(m) requires a number of cycles that is
similar to, or slightly greater than, that required by GMRES(m). However,
WGMRES(m) may be of some benefit when the restart length is short or
when the spectrum of the preconditioned matrix is not nicely clustered.
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Fig. 3: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red o), and WGMRES(5) with D;ana (green dots) for a Jordan block with
eigenvalue 1. The harmonic Ritz values are shown at the end of each of the 25
cycles. The eigenvalue at 1 is plotted as an orange dot. (b) Relative 2-norm
residuals for the considered GMRES(5) variants. (The convergences curves of
WGMRES(5) with Dyang and GMRES(5) are visually hard to distinguish.)
(c) Entries of the residual vectors after each cycle of unweighted GMRES(5).
(d) Entries of the residual vectors after each cycle of GMRES(5) with Essai’s
weighting.

3 The weighted Arnoldi algorithm

In this section we discuss two mathematically equivalent variants of the weighted
Arnoldi algorithm for constructing the D-orthonormal basis required by WGM-
RES. Algorithm 2 is, to our knowledge, a new implementation.
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3.1 Variants of the algorithm

The most straightforward implementation of the weighted Arnoldi algorithm
replaces Euclidean inner products in a standard Arnoldi algorithm by D-inner
products (see, e.g., [13,29]). With modified Gram—Schmidt orthogonalization
(MGS)? the j-th iteration requires the computation of j D-inner products
(see Algorithm 1). If D is a diagonal matrix like (2), the inner products can
be efficiently implemented as (v o d)?u or v (d o u), where o represents the
Hadamard product and d the vector of diagonal elements of D. Each step
of Algorithm 1 is more expensive than a step of the Arnoldi algorithm in
the Euclidean inner product because of the D-inner products and D-norms.
However, Algorithm 1 can be used with a preconditioner in a straightforward
manner.

As an alternative to computing D-inner products at each step of the
weighted Arnoldi algorithm, we can apply the Arnoldi algorlthm in the Eu-
clidean inner product to the transformed matrix A DzAD~2 and starting
vector 7 = Dz . Doing so gives matrices V and H that satisfy

Avm = Nm-&-l@a (9)

where @ is an upper Hessenberg matrix, \N/mH ‘7m = I,,, and the columns
of V,, form a basis of ICm(g, 7). Premultiplying both sides of (9) by D~z
gives the Arnoldi decomposition AV, = Vi1 Hpm, where V,,, = D*%ffm and
Hy, = @ . The columns of V,,, are D-orthonormal and span IC,,, (A4, r) since
the columns of V,, span K,,(D2AD~% Dzr).

The resulting algorithm with MGS orthogonalization is given in Algo-
rithm 2. We note that a similar orthogonalization strategy was considered in
the context of rounding error analysis in [26]. Additionally, Heyouni and Es-
sai [17] considered the use of matrix square roots for enforcing D-orthogonality
when solving systems with multiple right-hand sides, although they still com-
puted D-inner products at each iteration of their weighted Arnoldi algorithm.

It does not seem feasible to use Algorithm 2 in this form with a precondi-
tioner P. However, a (right) preconditioner can be incorporated by replacing
the two- 81ded scaling for A in line 1 of this algorithm with a one-sided scal-
ing A, = D2 A, and line 5 with w = = A, P~1D /2y, (and similarly for left
precondltlonlng) .

In the remainder of this manuscript, we use Algorithms 1 and 2 to refer
to both the weighted Arnoldi variants and the corresponding WGMRES(m)
methods. The meaning will be clear from the context. Although it is easiest

2 When classical Gram-Schmidt orthogonalization (CGS) is used instead, nonstandard
inner products can be replaced by Euclidean inner products at the expense of two matrix-
vector products with D per cycle. One step of such a CGS version may be much cheaper
than Algorithm 1, but without reorthogonalization there may be considerable differences in
the convergence behavior compared to MGS. We therefore decided to stick with the MGS
version in this paper.
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Variants of the weighted Arnoldi algorithm:

Inputs: Matrix A € CN*V | diagonal positive definite weight matrix D €
CN*N vector » € CV, number of Arnoldi iterations m

Outputs: D-orthonormal Arnoldi vectors {v; ..., v, } of Kp, (A, 7) and upper
Hessenberg matrix H,, = [h;;] € Cm+hxm

Algorithm 1: Explicit D- Algorithm 2: Implicit D-
inner products and MGS or- inner products and MGS or-
thogonalization thogonalization

1 A=D3AD 3
2 w=D3r

1 vy =7/|7||p 3 v =w/|lwl
2 for k=1,2,...,m do 4 fork=1,2,...,mdo
3 w = Avy, 5 w = Avy,
4 for j=1,2,...,k do 6 for j=1,2,...,k do
5 hji = v;Dw 7 hji = v;w
6 w=w — v;hj 8 w=w —vV;jhj
7 end 9 end
8 g =wlp 10 hpgag = [lwl2
9 if Ari1r =0 then 11 if hgt1, =0 then
10 Stop 12 Stop
11 end 13 end
12 g1 = w/hpi1k 14 Vpyr =w/hig1k
13 end 15 end
16 [v1,...,0m] = D" 2[B1,...,0m]

to monitor ||r* || pu in WGMRES(m), we measure instead the reduction of
the residual ||r(*)||, for fair comparison with GMRES(m).

3.2 Operation counts

In both variants of the Arnoldi algorithm discussed here, the number of matrix-
vector products is m, and their computation requires 2m x Nnz arithmetic
operations, where Nnz is the number of nonzero elements in the matrix A or A,
respectively. Furthermore, the successive orthogonalization of m Krylov basis
vectors requires m(m + 1)/2 inner products and vector updates of the form
w = w — v;jhj,. One such vector update requires 2V arithmetic operations.
Computing a single inner product requires 2N or 3N arithmetic operations in
the unweighted or weighted case, respectively. The row and column?® scaling

3 As pointed out by one of the referees, the column scaling in Algorithm 2 can be elim-
inated, at the expense of storing m additional vectors, by computing each Arnoldi vector

_1_ ~ . . . _1 1 _1
v, = D™ 27 as soon as vy, is available. In this case, w = D™ 2 AD2v, = D™ 2 Avy,.
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Table 1: Operation counts for a cycle of Algorithms 1 and 2 and GMRES-DR.

Algorithm 1 2m X Nnz + %N m?
Algorithm 2 | 2m x Nnz + N(2m? +m + 2p + 3)
GMRES-DR 2m x Nnz + N (2m? + 2m¥)

of the matrix A to form A and vector r to form 7 in Algorithm 2 requires
3N +2xNnz operations, counting the computation of a square root or a division
as a single arithmetic operation. Algorithm 2 also requires N'm multiplications
to scale the basis vectors at the end of each cycle.

In Section 4 we will compare different variants of WGMRES(m) with
GMRES-DR(m, £) [23] on various numerical examples, but it easy to discuss
the computational cost theoretically as well. In each cycle, GMRES-DR(m, ¢)
augments the Krylov basis computed by GMRES(m) with the Schur vectors
corresponding to the ¢ smallest harmonic Ritz values. These Schur vectors,
and the initial residual of the new cycle k, form the columns of a matrix
Pyyq € CmtDXUEHD “from which the first £ 4 1 basis vectors of the new cycle

are obtained via V;ﬁ = Vn(ﬁ_ll)PgH. The dense matrix-matrix multiplication

to obtain Vg(ﬁ requires 2N (m + 1)(¢ 4+ 1) arithmetic operations and so domi-

. . - (k)
nates the cost of augmenting the Krylov basis. The remaining columns of V"

are then computed by the Arnoldi algorithm. Depending on the restart length
m and the number of Schur vectors ¢, one cycle of GMRES-DR(m, £) may be
more costly than a cycle of WGMRES(m).

We summarize the operation counts for a single cycle of Algorithms 1
and 2 and GMRES-DR in Table 1, letting p = Nnz/N be the average number
of nonzeros per row. Although the performance of each algorithm is machine
dependent Algorithm 2, for which the cost of the weighted inner product is
independent of the restart length, can become more efficient than Algorithm 1
when 2p < m?/2 —m — 3, i.e., when the average number of nonzeros per
row is sufficiently small and the restart length is sufficiently large (or when
reorthogonalization is used).

4 Numerical experiments

In this section we compare the two variants of WGMRES(m) with each other
and with more established Krylov subspace methods. The first example com-
prises the five problems for which Essai [13] compared WGMRES(m) and
GMRES(m) and are available from the University of Florida Sparse Ma-
trix Collection [8]. Essai found that WGMRES(m) converged faster than
GMRES(m) for all problems and so we report only results for Algorithms 1
and 2 and the more competitive GMRES-DR (m, £) here. The motivations for
choosing GMRES-DR(m, ¢) for comparison are as follows: first, this method is
very close in spirit to GMRES(m) and WGMRES(m); in particular, all these
methods extract their approximations from the same Krylov spaces. Second,
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Table 2: Size of, and number of nonzeros in, the matrices in Essai’s problems.

Problem N Nnz
add20 2 395 13 151
bfwa782 782 7514

fs_ 5412 541 4 282
memplus 17 758 | 99 147
orsirr_1 1 030 6 858

the storage needs and orthogonalization costs of these algorithms are com-
parable. The last example compares Algorithm 1, unweighted GMRES(m),
GMRES-DR(m,¢) and BICGSTAB over a large set of right-preconditioned
test problems that is described below.

In the first example the right-hand side b is a random vector, to be con-
sistent with Essai, while in the second b either comes with the matrix, or is
generated randomly. We set (®) = 0 and stop a method when ||r§k)H2/||b||2
falls below 1071° or when 100 cycles are performed; the latter case is denoted
by ‘— . Iteration counts are given in the form itous(itin), where itoy is the
number of cycles and ét;, is the number of steps in the last cycle. In our no-
tation GMRES-DR(m, £) augments a Krylov subspace of dimension m with £
approximate Schur vectors so that that all GMRES variants require exactly
m matrix-vector products with A in a cycle. We choose ¢ = 5,10 so that the
cost of augmenting with Schur vectors is not too high.

Example 4 (Essai problems) The first example comprises the five prob-
lems considered by Essai [13] (see Table 2 for problem details). We see from
Table 8 that GMRES-DR converges in fewer cycles than WGMRES(m) for
add20, bfwa782 and fs_541_2. Indeed, for fs_541.2 WGMRES with m =
40,80 fails to converge within 100 cycles. For memplus, on the other hand,
WGMRES(m) requires fewer cycles than GMRES-DR(m,5), except when m =
80, but more than GMRES-DR(m,10), except when m = 50. When applied
to orsirr_1, WGMRES(m) converges faster than GMRES-DR(m,5) when
m = 40,50, 80, while GMRES-DR(m,10) does not converge within 100 cycles
for any m.

Essai found that for these problems WGMRES(m) consistently outper-
formed GMRES(m). However, WGMRES does not always perform as well as
GMRES-DR, which also alters the harmonic Ritz values via deflation. Never-
theless, WGMRES is still competitive for problems like memplus and orsirr_1,
for which GMRES-DR can stagnate or converge slowly if the number of ap-
proximate Schur vectors £ in not well chosen. We note that in practice the
optimal £ is usually unknown, while WGMRES has no parameters to choose.

Comparing the two WGMRES variants, we observe that Algorithms 1 and 2
behave fairly similarly, in particular for add20 and bfwa782, and that neither
is consistently better. On this evidence it appears that efficiency and precondi-
tioning should determine the most appropriate variant (since preconditioning
with Algorithm 2 is not straightforward).
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Table 3: Number of cycles for Essai’s problems.

Problem | m | GMRES-DR(m,5) | GMRES-DR(m,10) | Alg1 Alg 2
10 20(23) 18(20) 21(35) | 21(35)
50 14(44) 14(5) 15(32) | 15(32)
add20 60 11(49) 11(26) 12(43) | 12(43)
70 10(36) 10(15) 11(12) | 11(12)
80 9(12) 8(69) 10(5) | 10(5)
10 17(13) 9(2) 65(34) | 69(24)
50 11(34) 7(23) 34(26) | 34(27)
bfwa782 | 60 8(33) 6(18) 28(58) | 28(58)
70 7(42) 5(36) 22(5) | 22(5)
80 6(46) 4(70) 14(56) | 14(56)
10 35(27) 20(21) — —
50 22(18) 20(49) 23(47) | 23(42)
£5.541.2 | 60 18(49) 16(53) 25(60) | 25(60)
70 13(48) 12(62) 21(65) | 22(9)
80 10(78) 9(76) — —
10 60(40) 18(32) 50(24) | 54(29)
50 42(27) 33(41) 35(33) | 33(2)
memplus | 60 33(9) 25(54) 28(31) | 27(60)
70 25(51) 21(50) 26(26) | 26(37)
80 20(51) 18(2) 20(49) | 20(9)
10 70(9) — 61(35) | 58(2)
50 55(13) — 46(46) | 48(11)
orsirr_1 | 60 34(55) — 35(41) | 34(32)
70 25(12) — 28(39) | 28(18)
80 — — 22(32) | 23(8)

Example 5 (performance profile) To get a general idea of whether WGM-
RES is a practical method when preconditioners are used, we compare GMRES
and Algorithm 1, as well as GMRES-DR and BICGSTAB, on a large num-
ber of problems from the University of Florida Sparse Matrixz Collection. In
contrast to Cao and Yu [6] we use right preconditioning which minimizes the
residual.

Our method of comparison is as follows. We first retrieve the 220 non-
symmetric matrices A of sizes between 10* and 10° with at most 15 nonzero
elements per row on average. We then apply sparse reverse Cuthill-McKee re-
ordering as implemented in Matlab’s symrem. Next we scale the columns of A
to have unit FEuclidean norm, followed by a scaling of the rows of A to unit
norm. Our aim is to compute an ILU preconditioner with thresholding and
pivoting via Matlab’s ilu. For stability reasons we compute an ILU factor-
ization of A + oI, where o = 107'2 if all diagonal elements of A are zero,
or 0 = 1072 max{|a;|} if some but not all diagonal elements a;; of A zero,
or 0 = 0 otherwise. This procedure follows recommendations in [7]. We suc-
cessively use a drop tolerance of 1073,107%,...,1078, and stop when the U
factor of the factorization has a condition number below 10'°, so that it can
be assumed numerically nonsingular. If this condition is not satisfiable with o
drop tolerance of 1078, then the matriz A is skipped.
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We now run the Krylov methods GMRES(10), WGMRES(10), GMRES-
DR(10,5), BICGSTAB on the test matrices. A method is marked as failed if
more than 50 restart cycles or 250 BICGSTAB iterations are required to obtain
a relative residual norm of 1078, Note that in our notation GMRES-DR(10,5)
requires 10 matriz-vector products (MVP) per cycle, exactly like GMRES(10)
and WGMRES(10), and BICGSTAB requires 2 MVP per iteration, so that
the mazimal number of MVP is 500 for all methods. If all methods fail on a
matriz it is excluded from the test. Since the collection contains many singular
matrices, related to eigenvalue or least-squares problems, only 109 out of the
220 retrieved matrices are finally included in our test.

The performance profile in Figure 4 allows us to compare the number of
MYVP needed for each method to converge across all test problems. More specif-
ically, if for each linear system the performance ratio measures the number of
MVP for the k-th method to converge to the number of MVP for the best per-
forming method to converge, then the function fi(«) measures the fraction of
problems in the test set for which the performance ratio of method k is less
than or equal to . Thus, o = 1 shows the fraction of problems for which
the k-th method requires the fewest MVP of all methods. Also, lima— 00 fr ()
indicates the number of failures.

It is somewhat disappointing that WGMRES(10) is generally outperformed
by GMRES(10). We note that GMRES(10) and WGMRES(10) fail on at least
16 matrices from our test set; this failure rate is considerably higher than
for GMRES-DR and BICGSTAB. Overall, GMRES-DR(10,5) requires fewest
MVP in general, and thereby outperforms all other methods under consider-
ation. It is, however, less robust than BICGSTAB, the latter of which fails
for 8 matrices only but typically requires the most MVP. To summarize, we
believe that WGMRES should not be used in combination with preconditioners,
although we are aware that for some examples it may perform satisfactorily.

5 Conclusions

The weighted GMRES variant presented by Essai has recently gained interest
for solving linear systems. This method is justified by a heuristic that empha-
sizes large residual components via a weighted inner product. With the help
of simple model problems we have given insight into how weighting affects the
distribution of harmonic Ritz values, or how it affects entries in the residual
vector after each cycle. For example, in one case where the harmonic Ritz val-
ues appeared in cyclic pairs on the spectral interval of a matrix, weighting had
the effect of “randomizing” these harmonic Ritz values, thereby covering the
spectral interval more evenly. This led to an improved convergence of WGM-
RES compared to the linear convergence observed for GMRES on the same
example.

We presented two different implementations of weighted GMRES and com-
pared their cost. Our numerical results suggest that the variants converge sim-
ilarly, but an alternative to Essai’s may require fewer arithmetic operations.
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MVP products required for 109 different matrices
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Fig. 4: Performance profile of matrix vector products required by various
Krylov methods applied to 109 matrices from the University of Florida Sparse
Matrix Collection with an ILU preconditioner.

When applied to unpreconditioned problems, WGMRES(m) can outperform
GMRES(m). However, a test run with many matrices from the University of
Florida Sparse Matrix Collection revealed, similarly to observations in [6],
that weighted GMRES is typically outperformed by GMRES if a precon-
ditioner is used. In addition, we compared these methods with other state-
of-the-art Krylov methods like GMRES-DR (GMRES with deflated restart-
ing) and BICGSTAB. GMRES-DR required fewest matrix-vector products,
whereas BICGSTAB appeared to be the most robust method in our test,
at the cost of requiring the most matrix-vector products. One advantage of
WGMRES(m) over GMRES-DR(m, ¢) is that there is no parameter ¢ to be
chosen.

We find that, although weighted GMRES may outperform unweighted GM-
RES for some examples, in general this method is not competitive with other
Krylov subspace methods like BICGSTAB or deflated GMRES, in particular
when preconditioners are used.

Acknowledgements We are grateful to Andy Wathen and the anonymous referees for
their valuable comments and suggestions.
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