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Abstract

A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented.
First, a new biparametric family without memory of optimal order four is proposed. The improvement of the
convergence rate of this family is obtained by using two self-accelerating parameters. These varying parameters
are calculated in each iterative step employing only information from the current and the previous iteration. The
corresponding R-order is 7 and the efficiency index 7'/3 = 1.913. Numerical examples and comparison with
some existing derivative-free optimal eighth-order schemes are included to confirm the theoretical results. In
addition, the dynamical behavior of the designed method is analyzed and shows the stability of the scheme.

Keywords: Multipoint iterative method; nonlinear equation; optimal order; method with memory, Kung-Traub’s
conjecture.

1 Introduction

Solving nonlinear equations is a classical problem which has interesting applications in various branches of science
and engineering. In this study, we describe new iterative methods to find a simple root « of a nonlinear equation
f(z) =0, where f : I CR — Ris a scalar function on an open interval I.

The most efficient existing root-solvers are based on multipoint iterations. This class of methods overcomes
theoretical limits of one-point schemes related to the convergence order and the efficiency index. However, the
Kung-Traub’s conjecture limits the order of convergence of a multipoint method without memory. Kung and Traub
conjectured in [1] that the order of convergence of any of these schemes can not exceed the bound 29!, where d is
the number of functional evaluations per step. When this bound is achieved the method is called optimal. We recall
that, commonly, the efficiency of an iterative method is measured by the efficiency index defined as E = p'/¢,
where p is the order of convergence.

Many high-order multipoint methods without memory have been already derived in the literature by using
different procedures: divided differences, weight functions, frozen derivative, interpolation polynomials, ..., see
for instance [2, 3,4, 5,6, 7, 8,9, 10, 12, 13] and the references therein.

In this paper, from the derivative-free method presented by Zheng et al. in [13] we design a biparametric family
of two-point optimal fourth-order methods without memory. The convergence rate of this family is significantly
increased by applying an accelerating procedure based on varying two parameters calculated by Newton’s inter-
polating polynomials in each iteration. This accelerating technique relies on information from the current and the
previous iterative step, defining in this way two-point methods with memory. The increase of convergence speed
is achieved without additional functional evaluations, which is an important advantage of these methods compared
to other known ones.
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In the following, we use the symbols —, O and ~ according to the following conventions [11]: If lim,, o0 g(2,,) =
C, we write g(z,) — Cor g — C. If lim,_,, g(x) = C, we write g(x) = C or g — C. If% — C, where C'is a
nonzero constant, we write f = O(g) or f ~ Cyg.

The rest of the paper is organized as follows: in Section 2 we describe the biparametric family of Steffensen-
type two-point iterative schemes and we prove the fourth-order of convergence, with independence of the values of
the parameters. Section 3 is devoted to design the method with memory and to prove its R-order and its efficiency
index. The numerical study presented in Section 4 confirm the theoretical results and the excellent convergence
properties of the presented method in comparison with some optimal iterative method, without memory, of order
8. These good convergence properties are confirmed with the dynamical study carried out in this section.

2 Derivative-free two-point family

Zheng et al. in [13] presented a Steffensen-type iterative method with fourth-order of convergence. Its iterative
expression is

{yk m ek, = oS, g 20 (1)
_ J\Yk
Tht1 = Yk = Tl ynl+wr—ar) f@r,wh ur]

where f[x,y] = @)= anq flz,w,y] = M are the divided differences of order 1 and 2, respectively.

T—1 €T
Let us consider thleollowmg modification of method (1) with an additional parameter A:

@

ykzmk—m7 wy, = o +7f(zx), Aandy #0,
z = yp — fyx)
k+1 k™ Tleruel Tk —2r) f 2k, Wi yi] ©

For k > 0, we introduce the following notation for the different errors:
€ =Tk — Q, Cpw = W — Q, €ky = YL — Q,

and
1 /D ()
“T i )
In order to obtain the order of convergence and the error equation of family (2), and also to avoid rather cum-
bersome expressions that appear in a standard convergence analysis of iterative methods, we are going to employ
symbolic computation in the computational software package Mathematica. The following abbreviation are used

i=2,3,...

£ (a)

fla=f'(a), e=x—qa, e;,=w—0q, e=y—0qa, e=%—aq, Ci:m

i=123,...

Program written in Mathematica

In[l]: fle_]:=fla (e + Zi:z Cy * ei) ;
In[2]: ey :=e+7Series[f[e],e,0,4]//FullSimplify
out[2]: (1 +yfla)e + QO[e]?
In[3]: f[x_, ] = 7f[x}]{_y[3’],
In[4]: f[x_, z_]:= fx,y]— f[yvz]
Infs]: ey =e~— W//FullSlmpllfy
Out[5]: (1 +yfla)(A+cy)e®+0e]?
f
In[6]: ez =e; — o] //FullSimplify

fle,ey] + (ey — e)fle, ey, ey]
out[6] : (1 +vf1a)?(\ + ca) (ca(A + ca) — c3) e* + 0[e]®.

Remark 2.1. In the above outputs, we have just reported the first terms of the corresponding error equations as
they are required later (see the proof of Theorem 3.2).

Therefore, we can establish the following result.



Theorem 2.2. Let o € I be a simple root of a sufficiently differentiable function f : I C R — R in an open
interval 1. If xg is close enough to «, then the order of convergence of the class of two-step methods (2) is at least
four and its error equation is given by

er1 = (1+7f(@)*(A+ c2) (ca(A + c2) — c3) €} + O(€}). 3

3 The development of a new method with memory

In this section, we are going to design from family (2), a new method with memory by using two self-accelerating
parameters. We observe from (3) that the order of convergence of the family (2) is four when v # —1/f’(«) and
A # —co. With the choice y = —1/f/(«) and A = —co = — " () /(2f'()), it can be proved that the order of the
family (2) can reach 7, being ej+1 = —c3ciel + O(e}) its error equation. But the values of f/(«) and f”(«) are
unknown, so the idea in constructing methods with memory consists of the calculation of the parameters v = ~;,
and A = )\, as the iteration proceeds by the formulas v, = —1/f"(a) and Ay = —é = —f" () /(2f(a)) for
k=1,2,..., where f’ and & are aproximations to f’(c) and ¢y, respectively.
We consider the following accelerator for approximating the parameters 7 and Ag

-1 -1 _ Ni’(wk)

Ve = = = A = ma @

where
N3 (t) = N3(t; @k, Yk—1, Th—1, We—1) and Ny(t) = Nuy(t; Wi, Th, Yo—1, Wh—1, Th—1)

are Newton’s interpolating polynomials of third and fourth degree, set through four and five best available approx-
imations (nodes) g, Yx—1, Tx—1, Wg—1 and wg, Tk, Yk—1, Tp—1, Wi—1, respectively. It should be noted that if one
uses lower degree Newton’s interpolation, lower accelerators are obtained. It is assumed that initial estimates 7y
and A\ should be chosen before starting the iterative process.

Replacing the fixed parameter v and )\ in the iterative formula (2) by the varying v, and Ay calculated by (4),
the following derivative-free two-points scheme with memory is achieved:

Zo, Yo, Ao are given, then wog = xg + Yo f (o),

N (w
Tk = *m, w, =z + Y f(TK), Ak = 721\2((11;);))’ k=12,...

(&)

@)
Y = Tk flwk,zr]+Xe f(wg) ?

_ _ f(yk)
Tht1 = Yk = Flan unlt We—ar) Fl@n, 0run] -

In the next subsection we are going to prove the convergence of the scheme (5) by using the concept and the
notation of R-order, introduced in [14].

3.1 Convergence analysis

To obtain the order of convergence of the two-point scheme with memory (5), we need the following technical
result whose proof is obtained by using the error of Newton’s interpolation, in a similar way as Lemma 1 of [4].

Lemma 3.1. Ify, = —1/Ni(x) and A\, = =N} (wy) /(2N (wy)), k = 1,2,. .., then the estimates
/ 305
Lt af(a) ~ caerory eh-twen—1 and 2+ Xy~ o er_1y €10 Ch1 (6)
2

hold.
Now we state the following convergence result for the scheme (5):

Theorem 3.2. If an initial estimation x is close enough to a simple root « of f(x) = 0, being f a real sufficiently
differentiable function, then the R-order of convergence of the two-point method with memory (5) is at least 7.



Proof. Let {x} } be a sequence of approximations generated by an iterative method (IM). If this sequence converges
to a root o of f(x) = 0 with the R-order Or((IM), o) > R, we will write

ext1 ~ Dy ref, er = T — Q, @)
where Dy, g tends to the asymptotic error constant D g of (IM), when &k — oo. Hence

R R \R R?
ekt1 ~ Dy rey = Dy r(Di—1,r€,—1)" = Di,rRDr—1,rR€}_1- (8)

We assume that the R-order of the iterative sequences {wy, } and {yy} are at least p and ¢, respectively, that is,

D __ R _ D Rp
ekw ~ Dy pey, = Dip(D—1,re_1)" = Dk,pDk—l,Rek—l ©

and
q _ R \q _ q Rq
eky ~ Diqey = Dig(Dr—1,r€5—1)? = Dk,qu—l,Rekfl' (10)

Considering these R-orders and Lemma 3.1, we obtain

1+ f'(a) ~ caeh 1w eh—1yeh1 = caDy_1p€0 D1 4€l e 1 =caDy1pDp14etT9%"
co + A ~ %ekq,w €k—1,y Ch—1 = %Dkq,pefg_lDk71,q62_1€k71 = %Dkq,pDkaqeﬁf{H,
or
L+ e f' (@) ~ caDy1,pDi—1,4e7 47, (n
Co Ak ~ %Dk_l,pDk_l,qezt‘{“. (12)
By Theorem 2.2, see remark 2.1, it can be inferred that
Chw ™~ (1 + ’ka/<a))ek, (13)
ery ~ e2(1+ S (@) (2 + M)ed, (14)
Cht1 ~ (1 + ch/(a))Q(Cz + Ak)eg- (15)
Consequently, combining (11)-(15), yield
ek~ (1+ 8 (@) (e2 + MJer ~ ea D1, Di1,g D1, ref O, (16)
€y ~ C2 (1 + ’ykf’(oz)> (c2 + /\k)ei ~ C2C4Dk—1=PDk—1qui—1,R€Z(_1Tp+q)+2R7 a7
and
eni1 ~ Ag (1 + mf’(a))Q(c2 +A)Eh ~ Asea DRy D}y Di_y gest iPrOtAR, (18)

By comparing the powers of error exponents of e;_; in pairs of relations (9)-(16), (10)-(17) and (8)-(18), we
obtain the nonlinear system of three equations with unknowns p, ¢ and R

Rp—R—(p+q+1)=0,
Rqg—2R—-2(p+q+1)=0, (19)
R?—4R—3(p+q+1)=0.

The unique positive solution of this system is given by p = 2, ¢ = 4 and R = 7, which define the order of
convergence of the derivative-free scheme with memory (5). O

We have proved that the order of convergence of the iterative scheme (5) is, at least, 7. So, its efficiency index
is 73 = 1.913 which is greater than that of the optimal methods of order eight, 8% = 1.682. In the next section,
we are going to compare scheme (5) with some derivative-free optimal eighth-order methods.



4 Numerical results and dynamical behavior

In order to show the efficiency of the described method, we will compare its features with the ones obtained by
optimal derivative-free eighth-order methods without memory, both numerical and dynamically.
Derivative-free Zheng et al. method, see [13], denoted by ZLH8, has the iterative expression

f(xr)

Ye = l‘k—m, wkzl”k—f(ﬂfk),
o f(yk)
ST sl Gk — o) Tl o, wn] e
= S (uk)
k+1 =  Ug

Fluk, y] + flug, yr, o] (ur — &) + fluk, Y, o, wi] (upe — yr) (up — 25)”

where f[u,y, z,w] is the divided difference of order three.
Steffensen-type procedure by Thukral et al., see [10], is denoted by T8 and it is expressed as

Ye = ka; wy =z — f(Tr),
wp = g Tl 21

Jlers yrl flye, wi]’

o Flun)  fluw) _2w)” )
TR T s yd + flows yd + f o il (1 f(%)) <1+f(wk)2f($k)> .

Finally, the derivative-free method, by Soleymani et al. [8], denoted by S8, has the iterative expression

— g f(xr) W — 1 — flx
Y = Tk Flom,wnl’ k r— flzk),
o S () f (wi)
=Y T () — T 22

f(uk) f(wr) ( f(uk)>
T+l = Uk — 1+
flew, gl (f (wr) = fyk)) fyr)
mm>< ﬂwv Sm)
1+ 1+ 1+ (14 flzg, wi)) .
( f(w) fxr) f(wr)

All of them have order of convergence eight and are optimal schemes, in the sense of Kung-Traub’s conjecture,
without memory.

In the following we will compare the numerical results obtained by the proposed seventh-order scheme with
memory with optimal eight-order ones (without memory). Our goal is to show the high efficiency and stability of
the proposed method, even compared with optimal ones with higher order of convergence.

The errors |z, — «| of approximations to the sought roots, produced by the different methods at the first three
iterations, are given in Tables 1 and 2, where Ae — h stands for A x 10~". These tables also include, for each

test function, the initial estimation values and the last value of the computational order of convergence p (see [15])
computed by the expression (if it is stable)

P log(|f (xx)/f(x1-1)])
log(|f (zr-1)/f(xx-2)])

The software Mathematica 8, with 2000 arbitrary precision arithmetic has been used in our computations. The
test functions used are:

() fi(z) =3zt —2? —Ix+1, a~1.54682...,

) folz) = (x —2)(@® + 2% + 1), a=2,
B3) f3(x) =e " —cos(z2 — 1)+ 23+ 1, a=—1,

4) fi(r) =tan?z, o = 0 double root,



Table 1: Numerical tests with f; and fo

M7 ZLHZ | T8 S8
fi,20=3
|z1 — af 0.3470 0.5037 0.3880 0.5365
|zo — af 0.2120e-3 0.7172e-1 0.2078e-1 0.9544e-1
|zs — af 0.9429e-25 0.7718e-4 0.1151e-8 0.1269¢e-3
P 6.0572 2.5492 4.5783 2.7148
fi, 20 =2
|z1 — @ 0.4224e-1 0.5635e-1 0.3370e-1 0.6434e-1
|ze — af 0.2255e-8 0.2408e-4 0.2361e-7 0.1199¢-4
|z — o 0.3010e-59 | 0.4889e-24 | 0.1119e-55 0.1008e-33
0 6.9527 5.7439 7.8063 7.6579
fg, o = 1.5
|z1 — o 0.2813e-1 1.739 1.703 1.343
|xe — af 0.1550e-10 2.156 2.988 1.918
|zs — af 0.9025e-76 2.506 2.988 2.353
P 7.0573 - - -
fg, o — 1.8
|x1 — af 0.1361e-2 0.2033e-5 0.1981e-5 0.3482e¢-4
|ze — af 0.1409¢-20 | 0.3923e-32 | 0.1405e-42 | 0.6602e-32
|zs — af 0.5493e-146 | 0.2028e-192 | 0.8968e-340 | 0.1103e-253
p 6.9727 6.0000 8.0000 8.0000

S folz)=(x—-1°*-1, a=2.

The results alongside the test functions are given in Tables 1 and 2, calculated with the initial values 79 = A\g =
—0.01 in the proposed scheme.

It is known that the good selection of initial estimations plays a decisive role in iterative methods, but specially
in derivative-free ones. One of the advantages showed in these numerical tests is that the dependence on the prox-
imity of the initial approximation is not as important in M7 as in optimal eighth-order schemes without memory.
This makes M7 converge when the other methods fail. However, there is no advantage in other standard problems,
as in multiple roots, but neither are disadvantages. In general, it can be stated from Tables 1 and 2 that M7 shows
a good stability and convergence properties.

From the numerical point of view, the dynamical behavior of the rational function associated with an iterative
method gives us important information about its stability and reliability.

We are going to recall now some dynamical concepts (see [16]) that we use in this work. Given a rational
function R : C — C, where C is the Riemann sphere, the orbit of a point 2y € C is defined as:

{Zo, R(Z()) , R2 (Zo) y ,Rn (Zo) y }

We analyze the phase plane of the map R by classifying the starting points from the asymptotic behavior of their
orbits. A z € Cis called a fixed point if R (z0) = zo. Moreover, a fixed point z is called attractor if | R’ (z0)| < 1,
superattractor if | R'(zo)| = 0, repulsor if | R/ (zo)| > 1 and parabolic if | R'(zo)| = 1. Then, the basin of attraction
of an attractor « is defined as:

A(a) ={z € C : R"(z) —a, n—oc}.

Also, it is well-known that the basin of attraction of any fixed point belongs to the so called Fatou set and the
boundaries of these basins of attraction are the Julia set.

In the following, we study the stability properties of the proposed method for some of the functions involved
in the numerical test. In fact, we show the dynamical planes associated to the rational function obtained when
the method is applied on functions f(z) and f5(z). These planes are obtained in the following way: in the
rectangle [—1.5,2.5] x [—2, 2] of the complex plane, a mesh of 400 x 400 initial estimations is defined. If the
sequence generated by the iterative method reaches a root of the function (superattracting fixed point) with an error
estimation lower than 10~ and a maximum of 40 iterations, we decide that the initial point is in the basin of
attraction of these root and we paint it in a color previously selected for this root. The roots of each function are
marked with a white star. In the same basin of attraction, the number of iterations needed to achieve the solution



Table 2: Numerical tests with f3 to f5

y | M7 ZLH3 | T8 S8
fg, g = —1.65
|z1 — af 0.8448e-3 0.7177e-2 0.1463e-3 0.1495e-3
|zo — af 0.3751e-18 | 0.1261e-12 | 0.2468e-28 0.3540e-27
|xs — af 0.7054e-130 | 0.5922e-77 | 0.1610e-226 | 0.3466e-216
p 7.2774 5.9804 8.0001 8.0001
f3s 10 = =2
|x1 — «af 0.5495 0.4250 0.5500 0.1736e-1
|x2 — af 0.2163e-1 81.16 0.5263 0.5124e-11
|zs — af 0.3119e-11 - 0.3880e-2 0.6688e-87
p 8.3593 - - 7.9603
f4, o = —0.5
|x1 — o 0.1358 0.6815e-1 0.2990e-1 0.5027e-1
|zo — af 0.1389e-1 0.1252e-1 0.3875e-2 0.8197e-2
|zs — af 0.1392e-2 0.2339e-2 0.5098e-3 0.1364e-2
p 1.0063 0.9897 0.9926 0.9882
f4, g — 0.8
|z1 — af 0.2415 0.2616 0.1955 0.3238
|zo — af 0.6840e-2 0.5722e-1 0.2881e-1 0.6762¢-1
|zs — af 0.7002e-3 0.1096e-1 0.3859¢-2 0.1171e-1
P 0.6360 1.0724 1.0429 1.0969
f5, o = 1.5
|z1 — af 0.1345 14.0400 3.7670 0.1260e+8
|z2 — af 0.5325e-7 6.7950 1.0680 0.6309¢e+7
|xs — af 0.1349e-51 3.5580 0.9752e-1 0.3159e+7
p 6.9041 0.9884 1.2211 -
fs.20=3.5
|x1 — o] 0.1991 0.2718 0.2172 0.3522
|x2 — af 0.6470e-6 0.2175e-2 0.7302e-4 0.5889¢-2
|x3 — af 0.5272e-44 | 0.6610e-14 | 0.8318e-30 0.2549¢-14
p 6.8360 5.2153 7.2787 6.4464

is showed in darker or brighter colors. Black color denotes lack of convergence to any of the roots (with the
maximum of iterations established) or convergence to the infinity. These dynamical planes have been generated by
using the software showed in [17], implemented in Matlab R2011a.

The same iterative methods that appeared in the numerical section have been used for dynamical purposes:
the basins of attraction of these schemes on functions f5(z) and f5(z) are drawn in Figure 1 and 2, respectively,
showing their stability and the complexity of their associated Julia and Fatou sets.

Let us observe that the basin of the roots are, in general, bigger for method M7. This fact justifies the better
convergence of the method when the initial estimation is not very close to the solution, as happened in the numerical
section. The behavior of this scheme is much more stable than the others, as can be seen in Figures 1a and 2a. We
think that the reason of this improvement in the stability is the introduction of the memory factors (M7 method) on
lower order schemes, versus high-order methods without memory.

5 Conclusions

From a new optimal biparametric fourth-order family, we have designed a derivative-free seventh-order method
with memory which has an efficiency index higher than those of optimal eight-order procedure without memory.
Numerical and dynamical features have been checked. The results obtained showed that method M7 converges to
the root even when the initial estimation is far from the solution. This is also showed in the dynamical planes, as
the basins of attraction of M7 are wider than those of the optimal eighth-order schemes used to compare.
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Figure 1: Dynamical planes of different schemes on f5(z) = (z — 2)(26 + 23 + 1)e=*
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