
ar
X

iv
:1

30
9.

28
77

v1
 [

cs
.S

C
]

 1
1

Se
p

20
13

Rigorous high-precision computation of the Hurwitz zeta

function and its derivatives

Fredrik Johansson
∗

RISC

Johannes Kepler University

4040 Linz, Austria

fredrik.johansson@risc.jku.at

Abstract

We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta
function ζ(s, a) for s, a ∈ C, along with an arbitrary number of derivatives with respect to s,
to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implemen-
tation are discussed. We present new record computations of Stieltjes constants, Keiper-Li
coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open
source implementation of the algorithms described in this paper.

1 Introduction

The Hurwitz zeta function ζ(s, a) is defined for complex numbers s and a by analytic continuation
of the sum

ζ(s, a) =
∞
∑

k=0

1

(k + a)s
.

The usual Riemann zeta function is given by ζ(s) = ζ(s, 1).

In this work, we consider numerical computation of ζ(s, a) by the Euler-Maclaurin formula with
rigorous error control. Error bounds for ζ(s) are classical (see for example [13], [6] and numerous
references therein), but previous works have restricted to the case a = 1 or have not considered
derivatives. Our main contribution is to give an efficiently computable error bound for ζ(s, a) valid
for any complex s and a and for an arbitrary number of derivatives with respect to s (equivalently,
we allow s to be a formal power series).

We also discuss implementation aspects, such as parallelization and use of fast polynomial arith-
metic. An open source implementation of ζ(s, a) based on the algorithms described in this paper
is available. In the last part of the paper, we present results from some new record computations
done with this implementation.

Our interest is in evaluating ζ(s, a) to high precision (hundreds or thousands of digits) for a single s
of moderate height, say with imaginary part less than 106. Investigations of zeros of large height
typically use methods based on the Riemann-Siegel formula and fast multi-evaluation techniques
such as the Odlyzko-Schönhage algorithm [28] or the recent algorithm of Hiary [20].

This work is motivated by several applications. For example, recent work of Matiyasevich and
Beliakov required values of thousands of nontrivial zeros ρn of ζ(s) to a precision of several

∗Supported by the Austrian Science Fund (FWF) grant Y464-N18.

1

http://arxiv.org/abs/1309.2877v1

thousand digits [26, 27]. Investigations of quantities such as the Stieltjes constants γn(a) and the
Keiper-Li coefficients λn also call for high-precision values [22, 24]. The difficulty is not necessarily
that the final result needs to be known to very high accuracy, but that intermediate calculations
may involve catastrophic cancellation.

More broadly, the Riemann and Hurwitz zeta functions are useful for numerical evaluation of var-
ious other special functions such as polygamma functions, polylogarithms, Dirichlet L-functions,
generalized hypergeometric functions at singularities [4], and certain number-theoretical con-
stants [14]. High-precision numerical values are of particular interest for guessing algebraic re-
lations among special values of such functions (which subsequently may be proved rigorously by
other means) or ruling out the existence of algebraic relations with small norm [1].

2 Evaluation using the Euler-Maclaurin formula

Assume that f is analytic on a domain containing [N,U] where N,U ∈ Z, and let M be a positive
integer. Let Bn denote the n-th Bernoulli number and let B̃n(t) = Bn(t − ⌊t⌋) denote the n-th
periodic Bernoulli polynomial. The Euler-Maclaurin summation formula (described in numerous
works, such as [29]) states that

U
∑

k=N

f(k) = I + T +R (1)

where

I =

∫ U

N

f(t) dt, (2)

T =
1

2
(f(N) + f(U)) +

M
∑

k=1

B2k

(2k)!

(

f (2k−1)(U)− f (2k−1)(N)
)

, (3)

R = −
∫ U

N

B̃2M (t)

(2M)!
f (2M)(t) dt. (4)

If f decreases sufficiently rapidly, (1)–(4) remain valid after letting U → ∞. To evaluate the
Hurwitz zeta function, we set

f(k) =
1

(a+ k)s
= exp(−s log(a+ k))

with the conventional logarithm branch cut on (−∞, 0). The derivatives of f(k) are given by

f (r)(k) =
(−1)r(s)r
(a+ k)s+r

where (s)r = s(s + 1) · · · (s + r − 1) denotes a rising factorial. The Euler-Maclaurin summation
formula now gives, at least for ℜ(s) > 1 and a 6= 0,−1,−2, . . .,

ζ(s, a) =
N−1
∑

k=0

f(k) +
∞
∑

k=N

f(k) = S + I + T +R (5)

2

where

S =

N−1
∑

k=0

1

(a+ k)s
, (6)

I =

∫ ∞

N

1

(a+ t)s
dt =

(a+N)1−s

s− 1
, (7)

T =
1

(a+N)s

(

1

2
+

M
∑

k=1

B2k

(2k)!

(s)2k−1

(a+N)2k−1

)

, (8)

R = −
∫ ∞

N

B̃2M (t)

(2M)!

(s)2M
(a+ t)s+2M

dt. (9)

If we choose N and M such that ℜ(a + N) > 0 and ℜ(s + 2M − 1) > 0, the integrals in I and
R are well-defined, giving us the analytic continuation of ζ(s, a) to s ∈ C except for the pole at
s = 1.

In order to evaluate derivatives with respect to s of ζ(s, a), we substitute s→ s+ x ∈ C[[x]] and
evaluate (5)–(9) with the corresponding arithmetic operations done on formal power series (which
may be truncated at some arbitrary finite order in an implementation). For example, the summand
in (6) becomes

1

(a+ k)s+x
=

∞
∑

i=0

(−1)i log(a+ k)i

(a+ k)s
xi ∈ C[[x]]. (10)

Note that we can evaluate ζ(S, a) for any formal power series S = s + s1x + s2x
2 + . . . by first

evaluating ζ(s + x, a) and then formally right-composing by S − s. We can also easily evaluate
derivatives of ζ(s, a) − 1/(s− 1) at s = 1. The pole of ζ(s, a) only appears in the term I on the
right hand side of (5), so we can remove the singularity as

lim
s→1

[

I − 1

(s+ x)− 1
=

(a+N)1−(s+x)

(s+ x) − 1
− 1

(s+ x)− 1

]

=

∞
∑

i=0

(−1)i+1 log(a+N)i+1

i!
xi ∈ C[[x]]. (11)

For F =
∑

k fkx
k ∈ C[[x]], define |F | = ∑k |fk|xk ∈ R[[x]]. If it holds for all k that |fk| ≤ |gk|,

we write |F | ≤ |G|. Clearly |F +G| ≤ |F |+ |G| and |FG| ≤ |F ||G|. With this notation, we wish
to bound |R(s+ x)| where R(s) = R is the remainder integral given in (9).

To express the error bound in a compact form, we introduce the sequence of integrals defined for
integers k ≥ 0 and real parameters A > 0, B > 1, C ≥ 0 by

Jk(A,B,C) ≡
∫ ∞

A

t−B(C + log t)kdt.

Using the binomial theorem, Jk(A,B,C) can be evaluated in closed form for any fixed k. In fact,
collecting factors gives

Jk(A,B,C) =
Lk

(B − 1)k+1AB−1

where L0 = 1, Lk = kLk−1 +Dk and D = (B − 1)(C + logA). This recurrence allows computing
J0, J1, . . . , Jn easily, using O(n) arithmetic operations.

Theorem 1. Given complex numbers s = σ + τi, a = α + βi and positive integers N,M such

that α +N > 1 and σ + 2M > 1, the error term (9) in the Euler-Maclaurin summation formula

applied to ζ(s+ x, a) ∈ C[[x]] satisfies

|R(s+ x)| ≤ 4 |(s+ x)2M |
(2π)2M

∣

∣

∣

∣

∣

∞
∑

k=0

Rkx
k

∣

∣

∣

∣

∣

∈ R[[x]] (12)

3

where Rk ≤ (K/k!)Jk(N + α, σ + 2M,C), with

C =
1

2
log

(

1 +
β2

(α+N)2

)

+ atan

(|β|
α+N

)

(13)

and

K = exp

(

max

(

0, τ atan

(

β

α+N

)))

. (14)

Proof. We have

|R(s+ x)| =
∣

∣

∣

∣

∣

∫ ∞

N

B̃2M (t)

(2M)!

(s+ x)2M
(a+ t)s+x+2M

dt

∣

∣

∣

∣

∣

≤
∫ ∞

N

∣

∣

∣

∣

∣

B̃2M (t)

(2M)!

(s+ x)2M
(a+ t)s+x+2M

∣

∣

∣

∣

∣

dt

≤ 4 |(s+ x)2M |
(2π)2M

∫ ∞

N

∣

∣

∣

∣

1

(a+ t)s+x+2M

∣

∣

∣

∣

dt

where the last step invokes the fact that

|B̃2M (t)| < 4(2M)!

(2π)2M
.

Thus it remains to bound the coefficients Rk satisfying
∫ ∞

N

∣

∣

∣

∣

1

(a+ t)s+x+2M

∣

∣

∣

∣

dt =
∑

k

Rkx
k, Rk =

∫ ∞

N

1

k!

∣

∣

∣

∣

log(a+ t)k

(a+ t)s+2M

∣

∣

∣

∣

dt.

By the assumption that α+ t ≥ α+N ≥ 1, we have

| log(α+ βi + t)| =
∣

∣

∣

∣

log(α+ t) + log

(

1 +
βi

α+ t

)∣

∣

∣

∣

≤ log(α+ t) +

∣

∣

∣

∣

log

(

1 +
βi

α+ t

)
∣

∣

∣

∣

= log(α+ t) +

∣

∣

∣

∣

1

2
log

(

1 +
β2

(α+ t)2

)

+ i atan

(

β

α+ t

)
∣

∣

∣

∣

≤ log(α+ t) + C

where C is defined as in (13). By the assumption that σ + 2M > 1, we have

1

|(α+ βi + t)σ+τi+2M | =
exp(τ arg(α+ βi + t))

|α+ βi+ t|σ+2M
≤ K

(α+ t)σ+2M

where K is defined as in (14). Bounding the integrand in Rk in terms of the integrand in the
definition of Jk now gives the result.

The bound given in Theorem 1 should generally approximate the exact remainder (9) quite well,
even for derivatives of large order, if |a| is not too large. The quantity K is especially crude,
however, as it does not decrease when |a + t|−τi decreases exponentially as a function of τ . We
have made this simplification in order to obtain a bound that is easy to evaluate for all s, a. In
fact, assuming that a is small, we can simplify the bounds a bit further using

C ≤ β2

2(α+N)2
+

|β|
(α+N)

.

In practice, the Hurwitz zeta function is usually only considered for 0 < a ≤ 1, unless s is an
integer greater than 1 in which case it reduces to a polygamma function of a. It is easy to derive
error bounds for polygamma functions that are accurate for large |a|, and we do not consider this
special case further here.

4

3 Algorithmic matters

The evaluation of ζ(s+ x, a) can be broken into three stages:

1. Choosing parameters M and N and bounding the remainder R.

2. Evaluating the power sum S.

3. Evaluating the tail T (and the trivial term I).

In this section, we describe some algorithmic techniques that are useful at each stage. We sketch
the computational complexities, but do not attempt to prove strict complexity bounds.

We assume that arithmetic on real and complex numbers is done using ball arithmetic [33], which
essentially is floating-point arithmetic with the added automatic propagation of error bounds.
This is probably the most reasonable approach: a priori floating-point error analysis would be
overwhelming to do in full generality (an analysis of the floating-point error when evaluating ζ(s)
for real s, with a partial analysis of the complex case, is given in [30]).

Using algorithms based on the Fast Fourier Transform (FFT), arithmetic operations on b-bit
approximations of real or complex numbers can be done in time Õ(b), where the Õ-notation
suppresses logarithmic factors. This estimate also holds for division and evaluation of elementary
functions.

Likewise, polynomials of degree n can be multiplied in Õ(n) coefficient operations. Here some
care is required: when doing arithmetic with polynomials that have approximate coefficients, the
accuracy of the result can be much lower than the working precision, depending on the shape of

the polynomials and the multiplication algorithm. If the coefficients vary in magnitude as 2±Õ(n),
we may need Õ(n) bits of precision to get an accurate result, making the effective complexity
Õ(n2). This issue is discussed further in [32].

Many operations can be reduced to fast multiplication. In particular, we will need the binary

splitting algorithm: if a sequence cn of integers (or polynomials) satisfies a suitable linear recur-
rence relation and its bit size (or degree) grows as Õ(n), then we can use a balanced product tree
to evaluate cn using Õ(n) bit (or coefficient) operations, versus Õ(n2) for repeated application of
the recurrence relation [2, 17].

3.1 Evaluating the error bound

For a precision of P bits, we should choose N ∼ M ∼ P . A simple strategy is to do a binary
search for an N that makes the error bound small enough when M = cN where c ≈ 1. This is
sufficient for our present purposes, but more sophisticated approaches are possible. In particular,
for evaluation at large heights in the critical strip, N should be larger than M .

Given complex balls for s and a, and integers N and M , we can evaluate the error bound (12)
using ball arithmetic. The output is a power series with ball coefficients. The absolute value of
each coefficient in this series should be added to the radius for the corresponding coefficient in
S+I+T ≈ ζ(s+x, a) at the end of the whole computation. If the assumptions that ℜ(a)+N > 1
and ℜ(s) + 2M > 1 are not satisfied for all points in the balls s and a, we set the error bounds
for all coefficients to +∞.

If we are computing D derivatives and D is large, the rising factorial |(s+x)2M | can be computed
using binary splitting and the outer power series product in (12) can be done using fast polynomial
multiplication, so that only Õ(D+M) real number operations are required. Or, if D is small and
M is large, |(s+ x)2M | can be computed via the gamma function in time independent of M

5

3.2 Evaluating the power sum

As a power series, the power sum S becomes
∑N−1

k=0 (
∑

i ci(k)x
i) where the coefficients ci(k) are

given by (10). For i ≥ 1, the coefficients can be computed using the recurrence

ci+1(k) = −
log(a+ k)

i+ 1
ci(k).

If we are computing D derivatives with a working precision of P bits, the complexity of evaluating
the power sum is Õ(NPD), or Õ(N2D) if N ∼ P . The computation is easy to parallelize by
assigning a range of k values to each thread (for large D, a more memory-efficient method is to
assign a range of i to each thread).

Algorithm 1 Sieved summation of a completely multiplicative function

Input: A function f such that f(jk) = f(j)f(k) for j, k ∈ Z≥1, and an integer N ≥ 1

Output:
∑N

k=1 f(k)
1: p← 2⌊log2

N⌋ (largest power of two such that p ≤ N)
2: h← 1, z ← 0, u← 0
3: D = [] ⊲ Build table of divisors
4: for k ← 1; k ≤ N ; k ← k + 2 do

5: D[k]← 0

6: for k ← 3; k ≤ ⌊
√
N⌋; k ← k + 2 do

7: if D[k] = 0 then

8: for j ← k2; j ≤ N ; j ← j + 2k do

9: D[j]← k

10: F = [] ⊲ Create initially empty cache of f(k) values
11: F [2]← f(2)
12: for k ← 1; k ≤ N ; k ← k + 2 do

13: if D[k] = 0 then ⊲ k is prime (or 1)
14: t← f(k)
15: else

16: t← F [D[k]]F [k/D[k]] ⊲ k is composite

17: if 3k ≤ N then

18: F [k]← t ⊲ Store f(k) for future use

19: u← u+ t
20: while k = h and p 6= 1 do ⊲ Horner’s rule
21: z ← u+ F [2]z
22: p← p/2
23: h← ⌊N/p⌋
24: if h is even then

25: h← h− 1

26: return u+ F [2]z

When evaluating the ordinary Riemann zeta function, i.e. when a = 1, and we just want to
compute a small number of derivatives, we can speed up the power sum a bit. Writing the sum
as
∑N

k=1 f(k), the terms f(k) = k−(s+x) are completely multiplicative, i.e. f(k1k2) = f(k1)f(k2).
This means that we only need to evaluate f(k) from scratch when k is prime; when k is composite,
a single multiplication is sufficient.

This method has two drawbacks: we have to store previously computed terms, which requires
O(NPD) space, and the power series multiplication f(k1)f(k2) becomes more expensive than
evaluating f(k1k2) from scratch for large D. For both reasons, this method is only useful when D
is quite small (say D ≤ 4).

We can avoid some redundant work by collecting multiples of small primes. For example, if we

6

extract all powers of two,
∑10

k=1 f(k) can be written as

[f(1) + f(3) + f(5) + f(7) + f(9)]

+f(2) [f(1) + f(3) + f(5)]

+f(4) [f(1)]

+f(8) [f(1)].

This is a polynomial in f(2) and can be evaluated from bottom to top using Horner’s rule while
progressively adding the terms in the brackets. Asymptotically, this reduces the number of mul-
tiplications and the size of the tables by half. Algorithm 1 implements this trick, and requires
about π(N) ≈ N/ logN evaluations of f(k) and N/2 multiplications, at the expense of having to
store about N/6 function values plus a table of divisors of about N/2 integers. Constructing the
table of divisors using the sieve of Eratosthenes requires O(N log logN) integer operations, but
this cost is negligible when multiplications and f(k) evaluations are expensive. One could also
extract other powers besides 2 (for example powers of 3 and 5), but this gives diminishing returns.

Another trick that can save time at high precision is to avoid computing the logarithms of integers
from scratch. If q and p are nearby integers (such as two consecutive primes) and we already know
log(p), we can use the identity

log(q) = log(p) + 2 atanh

(

q − p

q + p

)

and evaluate the inverse hyperbolic tangent by applying binary splitting to its Taylor series. This
is not an asymptotic improvement over the best known algorithm for computing the logarithm
(which uses the arithmetic-geometric mean), but likely faster in practice.

3.3 Evaluating the tail

Except for the multiplication by Bernoulli numbers, the terms of the tail sum T satisfy a simple
(hypergeometric) recurrence relation. If we are computing D derivatives with a working precision
of P bits, the complexity of evaluating the tail by repeated application of the recurrence relation
is Õ(MPD), or Õ(P 2D) if M ∼ P . We can do better if D is large, using binary splitting
(Algorithm 2).

If D ∼M , the complexity with binary splitting is only Õ(PD), or softly optimal in the bit size of
the output. A drawback is that the intermediate products increase the memory consumption.

The Bernoulli numbers can of course be cached for repeated evaluation of the zeta function, but
computing them the first time can be a bottleneck at high precision, at least if done naively.
The first 2M Bernoulli numbers can be computed in quasi-optimal time Õ(M2), for example by
using Newton iteration and fast polynomial multiplication to invert the power series (ex − 1)/x.
For most practical purposes, simpler algorithms with a time complexity of Õ(M3) are adequate,
however. Various algorithms are discussed in [19]. An interesting alternative, used in unpublished
work of Bloemen [3], is to compute Bn via ζ(n) by direct approximation of the sum

∑∞
k=0 k

−n,
recycling the powers to process several n simultaneously.

4 Implementation and benchmarks

We have implemented the Hurwitz zeta function for s ∈ C[[x]] and a ∈ C with rigorous error
bounds as part of the Arb library1. This library is written in C and is freely available under
version 2 or later of the GNU General Public License. It uses the MPFR [15] library for evaluation

1http://fredrikj.net/arb

7

http://fredrikj.net/arb

Algorithm 2 Evaluation of the tail T using binary splitting

Input: s, a ∈ C and N,M,D ∈ Z≥1

Output: T =
1

(a+N)s+x

(

1

2
+

M
∑

k=1

B2k

(2k)!

(s+ x)2k−1

(a+N)2k−1

)

∈ C[[x]]/〈xD〉

1: Let x denote the generator of C[[x]]/〈xD〉
2: function BinSplit(j, k)
3: if j + 1 = k then

4: if j = 0 then

5: P ← (s+ x)/(2(a+N))
6: else

7: P ← (s+ 2j − 1 + x)(s + 2j + x)

(2j + 1)(2j + 2)(a+N)2

8: return (P, B2j+2P)
9: else

10: (P1, R1)← BinSplit(j, ⌊(j + k)/2⌋)
11: (P2, R2)← BinSplit(⌊(j + k)/2⌋, k)
12: return (P1P2, R1 + P1R2) ⊲ Polynomial multiplications mod xD

13: (P, R)← BinSplit(0,M)
14: T ← (a+N)−(s+x)(1/2 +R) ⊲ Polynomial multiplication mod xD

15: return T

of some elementary functions, GMP [11] or MPIR [12] for integer arithmetic, and FLINT [18] for
polynomial arithmetic.

Our implementation incorporates most of the techniques discussed in the previous section, includ-
ing optional parallelization of the power sum. Bernoulli numbers are computed using the algorithm
of Bloemen. Fast and numerically stable multiplication in R[x] and C[x] is implemented by rescal-
ing polynomials and breaking them into segments with similarly-sized coefficients and computing
the subproducts exactly in Z[x] (a simplified version of van der Hoeven’s block multiplication
algorithm [32]). Polynomial multiplication in Z[x] is done via FLINT which for large polynomials
uses a Schönhage-Strassen FFT implementation by William Hart.

4.1 Computing zeros to high precision

For n ≥ 1, let ρn denote the n-th smallest zero of ζ(s) with positive imaginary part. We assume
that ρn is simple and has real part 1/2. Using Newton’s method, we can evaluate ρn to high
precision nearly as fast as we can evaluate ζ(s) for s near ρn.

It is convenient to work with real numbers. The ordinate tn = ℑ(ρn) is a simple zero of the
real-valued function Z(t) = eiθ(t)ζ(1/2 + it) where

θ(t) =
log Γ

(

2it+1
4

)

− log Γ
(

−2it+1
4

)

2i
− log π

2
t.

We assume that we are given an isolating ball B0 = [m0 − ε0,m0 + ε0] such that tn ∈ B0 and
tm 6∈ B0,m 6= n, and wish to compute tn to high precision (finding such a ball for a given n is an
interesting problem, but we do not consider it here).

Newton’s method maps an approximation zn of a root of a real analytic function f(z) to a new
approximation zn+1 via zn+1 = zn−f(zn)/f ′(zn). Using Taylor’s theorem, the error can be shown
to satisfy

|ǫn+1| =
|f ′′(ξn)|
2 |f ′(zn)|

|ǫn|2

for some ξn between zn and the root.

8

Digits mpmath Mathematica Arb
ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1)

100 0.080 0.0031 0.044 0.012 0.012 0.0011
1000 7.1 0.24 11 1.6 0.18 0.05
10000 7035 252 5127 779 29 15
100000 - - - - 6930 3476
303000 - - - - 73225 31772

Table 1: Time in seconds to compute an approximation ρ̃1 of the first nontrivial zero ρ1 accurate
to the specified number of decimal digits, and then to evaluate ζ(ρ̃1) at the same precision.
Computations were done on a 64-bit Intel Xeon E5-2650 2.00 GHz CPU.

As a setup step, we evaluate Z(s), Z ′(s), Z ′′(s) (simultaneously using power series arithmetic) at
s = B0, and compute

C =
max |Z ′′(B0)|
2min |Z ′(B0)|

.

This only needs to be done at low precision.

Starting from an input ball Bk = [mk − εk,mk + εk], one step with Newton’s method gives an
output ball Bk+1 = [mk+1 − εk+1,mk+1 + εk+1]. The updated midpoint is given by

mk+1 = mk −
Z(mk)

Z ′(mk)
(15)

where we evaluate Z(mk) and Z ′(mk) simultaneously using power series arithmetic. The updated
radius is given by εk+1 = ε′k+1 + Cε2k where ε′k+1 is the numerical error (or a bound thereof)
resulting from evaluating (15) using finite-precision arithmetic. The new ball is valid as long as
Bk+1 ⊆ Bk (if this does not hold, the algorithm fails and we need to start with a better B0 or
increase the working precision).

For best performance, the evaluation precision should be chosen so that ε′k+1 ≈ Cε2k. In other
words, for a target accuracy of p bits, the evaluations should be done at . . . , p/4, p/2, p bits, plus
some guard bits.

As a benchmark problem, we compute an approximation ρ̃1 of the first nontrivial zero ρ1 ≈ 1/2+
14.1347251417i and then evaluate ζ(ρ̃1) to the same precision. We compare our implementation
of the zeta function and the root-refinement algorithm described above (starting from a double-
precision isolating ball) with the zetazero and zeta functions provided in mpmath version 0.17
in Sage 5.10 [31] and the ZetaZero and Zeta functions provided in Mathematica 9.0. The results
of this benchmark are shown in Table 1. At 10000 digits, our code for computing the zero is about
two orders of magnitude faster than the other systems, and the subsequent single zeta evaluation
is about one order of magnitude faster.

We have computed ρ1 to 303000 digits, or slightly more than one million bits, which appears
to be a record (a 20000-digit value is given in [27]). The computation used up to 62 GiB of
memory for the sieved power sum and the storage of Bernoulli numbers up to B325328 (to attain
even higher precision, the memory usage could be reduced by evaluating the power sum without
sieving, perhaps using several CPUs in parallel, and not caching Bernoulli numbers).

4.2 Computing the Keiper-Li coefficients

Riemann’s function ξ(s) = 1
2s(s − 1)π−s/2Γ(s/2)ζ(s) satisfies the symmetric functional equation

ξ(s) = ξ(1 − s). The coefficients {λn}∞n=1 defined by

log ξ

(

1

1− x

)

= log ξ

(

x

x− 1

)

= − log 2 +

∞
∑

n=1

λnx
n

9

n = 1000 n = 10000 n = 100000
1: Error bound 0.017 1.0 97
1: Power sum 0.048 47 65402
(1: Power sum, CPU time) (0.65) (693) (1042210)
1: Bernoulli numbers 0.0020 0.19 59
1: Tail 0.058 11 1972
2: Series logarithm 0.047 8.5 1126
3: log Γ(1 + x) series 0.019 3.0 1610
4: Composition 0.022 4.1 593
Total wall time 0.23 84 71051
Peak RAM usage (MiB) 8 730 48700

Table 2: Elapsed time in seconds to evaluate the Keiper-Li coefficients λ0 . . . λn with a working
precision of 1.1n+ 50 bits, giving roughly 0.1n accurate bits. The computations were done on a
multicore system with 64-bit Intel Xeon E7-8837 2.67 GHz CPUs (16 threads were used for the
power sum, and all other parts were computed serially on a single core).

were introduced by Keiper [22], who noted that the truth of the Riemann hypothesis would imply
that λn > 0 for all n > 0. In fact, Keiper observed that if one makes an assumption about the
distribution of the zeros of ζ(s) that is even stronger than the Riemann hypothesis, the coefficients
λn should behave as

λn ≈ (1/2) (log n− log(2π) + γ − 1) . (16)

Keiper presented numerical evidence for this conjecture by computing λn up to n = 7000, showing
that the approximation error appears to fluctuate increasingly close to zero. Some years later,
Li proved [25] that the Riemann hypothesis actually is equivalent to the positivity of λn for all
n > 0 (this reformulation of the Riemann hypothesis is known as Li’s criterion). Recently, Arias
de Reyna has proved that a certain precise statement of (16) also is equivalent to the Riemann
hypothesis [10].

Figure 1: Plot of n (λn − (logn− log(2π) + γ − 1)/2).

A computation of the Keiper-Li coefficients up to n = 100000 shows agreement with Keiper’s
conjecture (and the Riemann hypothesis), as illustrated in Figure 1. We obtain λ100000 =
4.62580782406902231409416038 . . . (plus about 2900 more accurate digits), whereas (16) gives

10

λ100000 ≈ 4.626132. Empirically, we need a working precision of about n bits to determine λn

accurately. A breakdown of the computation time to determine the signs of λn up to n = 1000,
10000 and 100000 is shown in Table 2.

Our computation of the Keiper-Li coefficients uses the formula

log ξ(s) = log(−ζ(s)) + log Γ
(

1 +
s

2

)

+ log(1 − s)− s log π

2

which we evaluate at s = x ∈ R[[x]]. This arrangement of the terms avoids singularities and
branch cuts at the expansion point. We carry out the following steps (plus some more trivial
operations):

1. Computing the series expansion of ζ(s) at s = 0.

2. Computing the logarithm of a power series, i.e. log f(x) =
∫

f ′(x)/f(x)dx.

3. Computing the series expansion of log Γ(s) at s = 1, i.e. computing γ, ζ(2), ζ(3), ζ(4),

4. Finally, right-composing by x/(x− 1) to obtain the Keiper-Li coefficients.

Step 2 requires O(M(n)) arithmetic operations on real numbers. We use a hybrid algorithm to
compute the integer zeta values in step 3; the details are beyond the scope of the present paper.

There is a very fast way to perform step 4. For f =
∑∞

k=0 akx
k ∈ C[[x]], the binomial (or Euler)

transform T : C[[x]]→ C[[x]] is defined by

T [f(x)] =
1

1− x
f

(

x

x− 1

)

=

∞
∑

n=0

(

n
∑

k=0

(−1)k
(

n

k

)

ak

)

xn.

We have

f

(

x

x− 1

)

= a0 + xT

[

a0 − f

x

]

.

If B : C[[x]]→ C[[x]] denotes the Borel transform

B

[

∞
∑

k=0

akx
k

]

=
∞
∑

k=0

ak
k!

xk,

then (see [16]) T [f(x)] = B−1[exB[f(−x)]]. This identity gives an algorithm for evaluating the
composition which requires only M(n) + O(n) coefficient operations where M(n) = Õ(n) is the
operation complexity of polynomial multiplication. Moreover, this algorithm is numerically sta-
ble (in the sense that it does not significantly increase errors from the input when using ball
arithmetic), provided that a numerically stable polynomial multiplication algorithm is used.

The composition could also be carried out using various generic algorithms for composition of
power series. We tested three other algorithms, and found them to perform much worse:

• Horner’s rule is slow (requiring about nM(n) operations) and is numerically unsatisfactory
in the sense that it gives extremely poor error bounds with ball arithmetic.

• The Brent-Kung algorithm based on matrix multiplication [8] turns out to give adequate
error bounds, but uses about O(n1/2M(n)+n2) operations which still is expensive for large n.

• We also tried binary splitting: to evaluate f(p/q) where f is a power series and p and q are
polynomials, we recursively split the evaluation in half and keep numerator and denominator
polynomials separated. In the end, we perform a single power series division. This only
costs O(M(n) logn) operations, but turns out to be numerically unstable. It would be of
independent interest to investigate whether this algorithm can be modified to avoid the
stability problem.

11

4.3 Computing the Stieltjes constants

The generalized Stieltjes constants γn(a) are defined by

ζ(s, a) =
1

s− 1
+

∞
∑

n=0

(−1)n
n!

γn(a) (s− 1)n.

The “usual” Stieltjes constants are γn(1) = γn, and γ0 = γ ≈ 0.577216 is Euler’s constant. The
Stieltjes constants were first studied over a century ago. Some historical notes and numerical
values of γn for n ≤ 20 are given in [5]. Keiper [22] provides a method for computing the Stieltjes
constants based on numerical integration and recurrence relations, and lists various γn up to
n = 150. Keiper’s algorithm is implemented in Mathematica [21].

More recently, Kreminski [24] has given an algorithm for the Stieltjes constants, also based on
numerical integration but different from Keiper’s. He reports having computed γn to a few thou-
sand digits for all n ≤ 10000, and provides further isolated values up to γ50000 (accurate to 1000
digits) as well as tables of γn(a) with various a 6= 1.

The best proven bounds for the Stieltjes constants appear to be very pessimistic. In a recent
paper, Knessl and Coffey [23] give an asymptotic approximation formula for the Stieltjes constants
that seems to be very accurate even for small n. Based on numerical computations done with
Mathematica, they note that their approximation correctly predicts the sign of γn up to at least
n = 35000 with the single exception of n = 137.

Our implementation immediately gives the generalized Stieltjes constants by computing the series
expansion of ζ(s, a)− 1/(s− 1) at s = 1 using (11). The costs are similar to those for computing
the Keiper-Li coefficients: due to ill-conditioning, it appears that we need about n + p bits of
precision to determine γn with p bits of accuracy. This makes our method somewhat unattractive
for computing just a few digits of γn when n is large, but reasonably good if we want a large
number of digits. Our method is also useful if we want to compute a table of all the values
γ0, . . . , γn simultaneously.

For example, we can compute γn for all n ≤ 1000 to 1000-digit accuracy in just over 10 seconds on
a single CPU. Computing the single coefficient γ1000 to 1000-digit accuracy with Mathematica 9.0
takes 80 seconds, with an estimated 20 hours required for all n ≤ 1000. Thus our implementation
is nearly four orders of magnitude faster. We can compute a table of accurate values of γn for all
n ≤ 10000 in a few minutes on an ordinary workstation with around one GiB of memory.

We have computed all γn up to n = 100000 using a working precision of 125050 bits, resulting
in an accuracy from about 37640 decimal digits for γ0 to about 10860 accurate digits for γ100000.
The computation took 26 hours on a multicore system with 16 threads utilized for the power sum,
with a peak memory consumption of about 80 GiB during the binary splitting evaluation of the
tail. As shown in Figure 2, the accuracy of the Knessl-Coffey approximation approaches six digits
on average. Our computation gives γ100000 = 1.991927306312541095658 . . .× 1083432, while the
Knessl-Coffey approximation gives γn ≈ 1.9919333× 1083432. We are able to verify that n = 137
is the only instance for n ≤ 100000 where the Knessl-Coffey approximation has the wrong sign.

We emphasize that our implementation gives γn(a) with proved error bounds, while the other
cited works and implementations (to our knowledge) depend on heuristic error estimates.

We have not yet implemented a function for computing isolated Stieltjes constants of large index;
this would have roughly the same running time as the evaluation of the tail (since only a single
derivative of the power sum would have to be computed). The memory consumption is highest
when evaluating the tail, and would therefore remain the same.

12

Figure 2: Plot of the relative error |γn − γ̃n|/|γn| of the Knessl-Coffey approximation for the
Stieltjes constants. The error exhibits a complex oscillation pattern.

5 Discussion

One direction for further work would be to improve the error bounds for large |a| and to investigate
strategies for selecting N and M optimally, particularly when the number of derivatives is large. It
would also be interesting to investigate parallelization of the tail sum, or look for ways to evaluate
a single derivative of high order of the tail in a memory-efficient way. Further constant-factor
improvements are possible in an implementation, for example by reducing the precision of terms
that have small magnitude (rather than naively performing all operations at the same precision).

Finally, it would be interesting to compare the efficiency of the Euler-Maclaurin formula with
other approaches to evaluating the Hurwitz zeta function such as the algorithms of Borwein [7],
Vepštas [34] and Coffey [9].

References

[1] D. H. Bailey and J. M. Borwein. Experimental mathematics: recent developments and future
outlook. In B. Engquist, W. Schmid, and P. W. Michor, editors, Mathematics Unlimited –

2001 and Beyond, pages 51–66. Springer, 2000.

[2] D. J. Bernstein. Fast multiplication and its applications. Algorithmic Number Theory, 44:325–
384, 2008.

13

[3] R. Bloemen. Even faster ζ(2n) calculation!, 2009. http://remcobloemen.nl/2009/11/

even-faster-zeta-calculation.html.

[4] A. I. Bogolubsky and S. L. Skorokhodov. Fast evaluation of the hypergeometric function

pFp−1(a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s).
Programming and Computer Software, 32(3):145–153, 2006.

[5] J. Bohman and C-E. Fröberg. The Stieltjes function – definition and properties. Mathematics

of Computation, 51(183):281–289, 1988.

[6] J. M. Borwein, D. M. Bradley, and R. E. Crandall. Computational strategies for the Riemann
zeta function. Journal of Computational and Applied Mathematics, 121:247–296, 2000.

[7] P. Borwein. An efficient algorithm for the Riemann zeta function. Canadian Mathematical

Society Conference Proceedings, 27:29–34, 2000.

[8] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal
of the ACM, 25(4):581–595, 1978.

[9] M. W. Coffey. An efficient algorithm for the Hurwitz zeta and related functions. Journal of
Computational and Applied Mathematics, 225(2):338–346, 2009.

[10] J. Arias de Reyna. Asymptotics of Keiper-Li coefficients. Functiones et Approximatio Com-

mentarii Mathematici, 45(1):7–21, 2011.

[11] The GMP development team. GMP: The GNU multiple precision arithmetic library. http://
www.gmplib.org.

[12] The MPIR development team. MPIR: Multiple Precision Integers and Rationals. http://

www.mpir.org.

[13] H. M. Edwards. Riemann’s zeta function. Academic Press, 1974.

[14] P. Flajolet and I. Vardi. Zeta function expansions of classical constants. Unpublished
manuscript, http://algo.inria.fr/flajolet/Publications/landau.ps, 1996.

[15] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Transactions on Mathe-

matical Software, 33(2):13:1–13:15, June 2007. http://mpfr.org.

[16] H. Gould. Series transformations for finding recurrences for sequences. Fibonacci Quarterly,
28:166–171, 1990.

[17] B. Haible and T. Papanikolaou. Fast multiprecision evaluation of series of rational numbers.
In J. P. Buhler, editor, Algorithmic Number Theory: Third International Symposium, volume
1423, pages 338–350. Springer, 1998.

[18] W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of the Third

international congress conference on Mathematical software, ICMS’10, pages 88–91, Berlin,
Heidelberg, 2010. Springer-Verlag. http://flintlib.org.

[19] D. Harvey and R. P. Brent. Fast computation of Bernoulli, tangent and secant numbers,
2011. http://arxiv.org/abs/1108.0286.

[20] G. Hiary. Fast methods to compute the Riemann zeta function. Annals of mathematics,
174:891–946, 2011.

[21] Wofram Research Inc. Some notes on internal implementation (section of the online documen-
tation for Mathematica 9.0). http://reference.wolfram.com/mathematica/tutorial/

SomeNotesOnInternalImplementation.html, 2013.

[22] J. B. Keiper. Power series expansions of Riemann’s ξ function. Mathematics of Computation,
58(198):765–773, 1992.

14

http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html
http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html
http://www.gmplib.org
http://www.gmplib.org
http://www.mpir.org
http://www.mpir.org
http://algo.inria.fr/flajolet/Publications/landau.ps
http://mpfr.org
http://flintlib.org
http://arxiv.org/abs/1108.0286
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html

[23] C. Knessl and M. Coffey. An effective asymptotic formula for the Stieltjes constants. Math-

ematics of Computation, 80(273):379–386, 2011.

[24] R. Kreminski. Newton-Cotes integration for approximating Stieltjes (generalized Euler) con-
stants. Mathematics of Computation, 72(243):1379–1397, 2003.

[25] X-J. Li. The positivity of a sequence of numbers and the Riemann Hypothesis. Journal of

Number Theory, 65(2):325–333, 1997.

[26] Y. Matiyasevich. An artless method for calculating approximate values of zeros of
Riemann’s zeta function, 2012. http://logic.pdmi.ras.ru/~yumat/personaljournal/

artlessmethod/.

[27] Y. Matiyasevich and G. Beliakov. Zeroes of Riemann’s zeta function on the critical line
with 20000 decimal digits accuracy, 2011. http://dro.deakin.edu.au/view/DU:30051725?
print_friendly=true.

[28] A. M. Odlyzko and A. Schönhage. Fast algorithms for multiple evaluations of the Riemann
zeta function. Transactions of the American Mathematical Society, 309(2):797–809, 1988.

[29] F. W. J. Olver. Asymptotics and Special Functions. A K Peters, Wellesley, MA, 1997.

[30] Y.-F.S Pétermann and J-L. Rémy. Arbitrary precision error analysis for computing ζ(s) with
the Cohen-Olivier algorithm: complete description of the real case and preliminary report on
the general case. Rapport de recherche RR-5852, INRIA, 2006.

[31] W.A. Stein et al. Sage Mathematics Software. The Sage Development Team, 2013. http://
www.sagemath.org.

[32] J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical
Report 2008-02, Université Paris-Sud, Orsay, France, 2008.

[33] J. van der Hoeven. Ball arithmetic. Technical report, HAL, 2009. http://hal.

archives-ouvertes.fr/hal-00432152/fr/.

[34] L. Vepštas. An efficient algorithm for accelerating the convergence of oscillatory series, use-
ful for computing the polylogarithm and Hurwitz zeta functions. Numerical Algorithms,
47(3):211–252, 2008.

15

http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/
http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/
http://dro.deakin.edu.au/view/DU:30051725?print_friendly=true
http://dro.deakin.edu.au/view/DU:30051725?print_friendly=true
http://www.sagemath.org
http://www.sagemath.org
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://hal.archives-ouvertes.fr/hal-00432152/fr/

	1 Introduction
	2 Evaluation using the Euler-Maclaurin formula
	3 Algorithmic matters
	3.1 Evaluating the error bound
	3.2 Evaluating the power sum
	3.3 Evaluating the tail

	4 Implementation and benchmarks
	4.1 Computing zeros to high precision
	4.2 Computing the Keiper-Li coefficients
	4.3 Computing the Stieltjes constants

	5 Discussion

