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ON THE LEADING COEFFICIENT OF POLYNOMIALS

ORTHOGONAL OVER DOMAINS WITH CORNERS

ERWIN MIÑA-DÍAZ

Abstract. Let G be the interior domain of a piecewise analytic Jordan curve
without cusps. Let {pn}∞

n=0 be the sequence of polynomials that are orthonor-
mal over G with respect to the area measure, with each pn having leading
coefficient λn > 0. It has been proven in [9] that the asymptotic behavior of
λn as n → ∞ is given by

n+ 1

π

γ2n+2

λ2
n

= 1− αn,

where αn = O(1/n) as n → ∞ and γ is the reciprocal of the logarithmic
capacity of the boundary ∂G. In this paper, we prove that the O(1/n) estimate
for the error term αn is, in general, best possible, by exhibiting an example

for which
lim inf
n→∞

nαn > 0.

The proof makes use of the Faber polynomials, about which a conjecture is
formulated.

1. Introduction

Let L be a Jordan curve in the complex plane C. The bounded and unbounded
components of C \ L will be denoted by G and Ω, respectively. Let {pn}∞n=0 be
the sequence of orthonormal polynomials with respect to the area measure over
G. That is, each pn(z) = λnz

n + · · · is a polynomial of degree n, having positive
leading coefficient λn, and for every pair of non-negative integers m,n, we have

∫

G

pn(z)pm(z)dxdy = δn,m.

The asymptotic behavior as n → ∞ of these polynomials has been thoroughly
investigated when L is an analytic Jordan curve in [1, 2, 3, 4, 7], while for L having
some degree of smoothness, strong asymptotics for pn, outside and on the curve
itself, were obtained by Suetin [10].

For L a piecewise analytic Jordan curve, investigations on the nth-root asymp-
totics and zero distribution of the polynomials pn have been carried out in [5, 6, 8].
More recently, finer results have been obtained by N. Stylianopoulos in [9] with the
use of some tools from quasiconformal mapping theory. For instance, it is proven in
[9, Thm. 1.1] that if L is a piecewise analytic curve without cusps, then the leading
coefficients λn satisfy the asymptotic formula

n+ 1

π

γ2n+2

λ2
n

= 1− αn
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where αn = O(1/n) as n → ∞, and γ is the reciprocal of the logarithmic capacity
of L. This quantity γ can be introduced in this context via the conformal map

φ : Ω → {w : |w| > 1}

of Ω onto the exterior of the unit circle, uniquely determined by the conditions
φ(∞) = ∞ and φ′(∞) := limz→∞ φ(z)/z > 0. This limit is precisely the value of
γ.

We notice that [9] also establishes a strong asymptotic formula for pn on the
exterior of L, and several other important estimates and relations that we do not
mention here.

In this paper, we prove that the O(1/n) estimate for the error term αn is, in
general, best possible, by exhibiting an example of a curve L for which

lim inf
n→∞

nαn > 0.

For each integer n ≥ 0, the Faber polynomial Fn associated to L [11] is defined
to be the polynomial part of the Laurent expansion at ∞ of φn. The polynomials
Fn and the functions

En(z) := φn(z)− Fn(z), z ∈ Ω, n ≥ 0,

play an important role in the estimation of αn, since, as proven in [9, Lem. 2.4],

αn =
(n+ 1)

π

∥

∥

∥

∥

F ′
n+1

n+ 1
− γn+1

λn
pn

∥

∥

∥

∥

2

L2(G)

+
‖E′

n+1‖2L2(Ω)

π(n+ 1)
. (1)

The proof that αn = O(1/n) is then accomplished by showing that [9, Thm. 2.1]
the first summand in the right-hand side of (1) is a big O of the second one, while
for the second summand [9, Thm. 2.4] we have

‖E′
n+1‖2L2(Ω) = O(1), (n → ∞). (2)

Summarizing, there exists some constant C independent of n for which

‖E′
n+1‖2L2(Ω)

π(n+ 1)
≤ αn ≤ C

‖E′
n+1‖2L2(Ω)

π(n+ 1)
, n ≥ 0. (3)

Consider the circles C1 =
{

z : |z − i| =
√
2
}

and C2 =
{

z : |z + i| =
√
2
}

, which
intersect at the points ±1. Let us take L to be the curve consisting of the two arcs
of these circles that lie exterior to each other, that is,

L := {z ∈ C1 : ℑ(z) ≥ 0} ∪ {z ∈ C2 : ℑ(z) ≤ 0}. (4)

This is a piecewise analytic curve with corners at ±1 and exterior angles π/2. We
shall prove the following result.

Theorem 1.1. For the curve L defined by (4), we have

lim inf
n→∞

nαn ≥ 1

π
lim
n→∞

‖E′
n+1‖2L2(Ω) =

1

2π2
. (5)

The inequality in (5) is, of course, a consequence of (3), but it takes some effort
to establish the existence and value of the limit in (5).

Based on Theorem 1.1, we find plausible that the following conjecture be true.
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Conjecture 1.2. For an arbitrary piecewise analytic Jordan curve L having at
least one corner with exterior angle different from 0, π, and 2π, we have

lim
n→∞

‖E′
n+1‖2L2(Ω) > 0.

The weaker thesis that lim infn→∞ ‖E′
n+1‖2L2(Ω) > 0 would be enough to guaran-

tee that the O(1/n) estimate for αn is sharp for every such curve. If the conjecture
were true, it would be interesting to determine whether the value of the limit is,
indeed, independent of the curve L, and therefore equal to (2π)−1.

2. Proof of Theorem 1.1

Hereafter, L will denote the curve in (4). The other two arcs of the circles C1

and C2 also form a piecewise analytic Jordan curve that we denote by

L := {z ∈ C1 : ℑ(z) ≤ 0} ∪ {z ∈ C2 : ℑ(z) ≥ 0}.
The exterior of L will be denoted by Ω, while the interior of L will be denoted by
R. It is easy to verify that

R = {1/z : z ∈ Ω},
and that the Zhoukowsky transformation φ(z) = 2−1 (z + 1/z) maps Ω conformally
onto {w : |w| > 1}. This same function φ takes both L and L onto the unit circle.

With the notation we previously introduced for the Faber polynomials and re-
lated quantities, we then have for the curve L that

φn(z) =
1

2n

(

z +
1

z

)n

= Fn(z) + En(z), (6)

where Fn is the polynomial part of φn, so that if we define

Gn(z) := Fn(z)− Fn(0), n ≥ 0,

then G0(z) ≡ 0 and

Gn(z) =
1

2n

⌊n−1

2
⌋

∑

j=0

(

n

j

)

zn−2j , n ≥ 1. (7)

Since φ is invariant under z 7→ 1/z, we get from (6) that

En+1(z) = Gn(1/z), (8)

and that Gn satisfies the recurrence relation

Gn+1(z) = φ(z)Gn(z) +
zan
2

− an+1

2
, n ≥ 0, (9)

where

an := Fn(0) =

{

0, n odd,

2−n
(

n
n/2

)

, n even,
n ≥ 0.

From this explicit expression for an one can easily verify that

an =
n− 1

n
an−2, n ≥ 2. (10)

At some point, we will need to deal with the quantities

bn :=

∫ 1

−1

Gn+1(x)

x
dx n ≥ 0.



4 ERWIN MIÑA-DÍAZ

If n is odd, Gn+1 is even and so bn = 0. If n is even, then (7) yields

bn =
1

2n

n/2
∑

j=0

(

n+1
j

)

n+ 1− 2j
, n = 2k, k ≥ 0.

From this last expression, it is not difficult to see that

bn =
n

n+ 1
bn−2 +

an
n+ 1

, n ≥ 2. (11)

Combining (10) and (11), we find (n+ 2)an+2bn − nanbn−2 = a2n, so that

k
∑

j=0

a22j = (2k + 1)a2kb2k, k ≥ 0. (12)

We now have everything we need to give the proof of Theorem 1.1.
It follows from (8), and the fact that z 7→ 1/z takes Ω onto the region R, that

‖E′
n+1‖2L2(Ω) =

∫

R

|G′
n+1(z)|2dxdy.

Let L1 denote the part of L lying in the closed upper half plane. Since Gn(z) =

Gn(z), and since G′
n+1Gn+1 is an odd function, the complex version of Green’s

formula yields

‖E′
n+1‖2L2(Ω) = In+1,n+1, (13)

where

In,k :=
1

i

∫

L1

[Gk(z)φ
n−k(z)]′ Gk(z)φn−k(z)dz, n ≥ 0, 0 ≤ k ≤ n.

Notice that In,0 = 0.
Using the recurrence relation (9), we find that

In+1,k+1 = In+1,k +An,k +Bn,k + Cn,k, (14)

where

An,k :=
1

2i

∫

L1

[φn+1−k(z)Gk(z)]
′φn−k(z) [zak − ak+1] dz, (15)

Bn,k :=
1

2i

∫

L1

φn+1−k(z)Gk(z)
(

φn−k(z) [zak − ak+1]
)′
dz, (16)

and

Cn,k :=
1

4i

∫

L1

φn−k(z) [zak − ak+1]
(

φn−k(z) [zak − ak+1]
)′
dz . (17)

We now observe that for z ∈ L1,

|φ(z)| = 1, [φ(z)]2φ′(z)dz = −φ′(z)dz, (18)

and

z =
1 + iz

z + i
=

2z + i(z2 − 1)

z2 + 1
, dz = − 2dz

(z + i)2
= d

(

1 + iz

z + i

)

. (19)

Hence, integration by parts in (15) gives

An,k =
n− k

2i

∫

L1

Gk(z)φ
′(z) [zak − ak+1] dz +

ak
i

∫

L1

φ(z)Gk(z)

(z + i)2
dz.



5

Similarly, by expanding the derivative in (16), multiplying, and using (18) and
(19), we obtain that Bn,k = An,k. Hence,

An,k +Bn,k = (n− k)ℑ
(
∫

L1

Gk(z)φ
′(z) [zak − ak+1] dz

)

+ 2akℑ
(
∫

L1

φ(z)Gk(z)

(z + i)2
dz

)

= 2(n+ 1− k)ak

∫ 1

−1

Gk(z)

z2 + 1
dz − (n− k)ak

2

∫ 1

−1

Gk(z)(z
2 + 1)

z2
dz

+
π(n− k)a2k+1

2
. (20)

In the calculations leading to the equality of these two last expressions, we have
used (19), that

(z2 − 1)2

z2(z2 + 1)
=

z2 + 1

z2
− 4

z2 + 1
,

and that for k even
∫ 1

−1

Gk(z)

z

(z2 − 1)

z2 + 1
dz = 0,

while for k odd,
∫

L1

Gk(z)(z
2 − 1)

z2
dz = −G′

k(0)

∫

L1

1

z
dz = −iπak+1.

Applying the recurrence relation (9) one more time yields
∫ 1

−1

Gk(z)

z2 + 1
dz =

bk−2

2
− πak

4
,

∫ 1

−1

Gk(z)(z
2 + 1)

z2
dz = 2bk − 2ak, (21)

and since G0(z) ≡ 0 and a1 = 0, we get from (20), (21) and (10) that

n
∑

k=0

[An,k +Bn,k] =
n−1
∑

k=0

(n− k − 1)ak+2bk −
n
∑

k=2

(n− k)akbk +
n
∑

k=1

(n− k)a2k

= na0b0 − (n+ 1)
n−1
∑

k=0

akbk
k + 2

+
n
∑

k=1

(n− k)a2k. (22)

We now consider (17) and compute

Cn,k =
(n− k)a2k

4i

∫

L1

φ(z)φ′(z)|z|2dz +
(n− k)a2k+1

4i

∫

L1

φ(z)φ′(z)dz

+
a2k
4i

∫

L1

zdz .

Using (18) again, and having in mind that φ takes L1 onto the lower half of the
unit circle, we get

∫

L1

φ(z)φ′(z)dz =

∫

L1

φ′(z)

φ(z)
dz = −iπ,

∫

L1

zdz = −
∫ 1

−1

2z

z2 + 1
dz − i

∫ 1

−1

z2 − 1

z2 + 1
dz = i(π − 2)
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and since |z|2 = 1 + iz − iz for z ∈ L1,

∫

L1

φ(z)φ′(z)|z|2dz = − iπ + i

∫

L1

φ′(z)

φ(z)
zdz + i

∫

L1

φ′(z)

φ(z)
zdz

= − iπ − 2i

∫ 1

−1

z2 − 1

z2 + 1
dz.

Hence,

Cn,k =
π

4

[

(n+ 1− k)a2k − (n− k)a2k+1

]

− (n− k)a2k − a2k/2. (23)

Then, combining (14), (22) and (23), and since a0 = b0 = 1, we obtain

In+1,n+1 =

n
∑

k=0

(An,k +Bn,k + Cn,k) = (n+ 1)

[

π

4
−

n−1
∑

k=0

akbk
k + 2

]

− 1

2

n
∑

k=0

a2k.

Now, summation by parts gives

1

2N + 1

N
∑

k=0

a22k =
N
∑

k=0

a22k
2k + 1

−
N−1
∑

k=0

(

1

2k + 1
− 1

2k + 3

) k
∑

j=0

a22j .

Combining the two last equalities and (12), we get that for every integer N ≥ 0,
we have

I2N+1,2N+1

2N + 1
=

π

4
− 1

2

N
∑

k=0

a22k
2k + 1

−
N−1
∑

k=0

∑k
j=0 a

2
2j

(2k + 1)(2k + 2)(2k + 3)
, (24)

I2N+2,2N+2 =
(2N + 2)

(2N + 1)
I2N+1,2N+1 −

∑N
j=0 a

2
2j

(2N + 1)
.

Since (2) tells us that In+1,n+1, which is defined by (13), is bounded above, the
bracket in (24) must converge to zero as n → ∞, and since

a2k =
1

22k

(

2k

k

)

=
Γ(1/2)Γ(k + 1/2)

πΓ(k + 1)
=

1 +O(1/k)
√

π(k − 1/2)
,

we arrive at

I2N+1,2N+1

2N + 1
=

1

2

∞
∑

k=N+1

a22k
2k + 1

+

∞
∑

k=N

∑k
j=0 a

2
2j

(2k + 1)(2k + 2)(2k + 3)

=
1

2π

∞
∑

k=N+1

2 +O(1/k)

(2k − 1)(2k + 1)
+

∞
∑

k=N

O(
∑k

j=0
1
j )

(2k + 1)(2k + 2)(2k + 3)

=
1

2π(2N + 1)
+O(lnN/N2),

and Theorem 1.1 follows.
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