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An inertial forward-backward-forward primal-dual splitting

algorithm for solving monotone inclusion problems
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Abstract. We introduce and investigate the convergence properties of an inertial forward-
backward-forward splitting algorithm for approaching the set of zeros of the sum of a
maximally monotone operator and a single-valued monotone and Lipschitzian operator.
By making use of the product space approach, we expand it to the solving of inclusion
problems involving mixtures of linearly composed and parallel-sum type monotone oper-
ators. We obtain in this way an inertial forward-backward-forward primal-dual splitting
algorithm having as main characteristic the fact that in the iterative scheme all operators
are accessed separately either via forward or via backward evaluations. We present also
the variational case when one is interested in the solving of a primal-dual pair of convex
optimization problems with intricate objective functions.
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1 Introduction and preliminaries

Due to its wide applicability in different branches of the applied mathematics, especially
in connection with real-life problems, the problem of solving inclusion problems involving
mixtures of monotone operators in Hilbert spaces continues to attract the interest of many
researchers (see [6, 10,10,12–14,17,18,29]).

In this paper we will focus on the class of so-called inertial proximal methods, the
origins of which go back to [1, 3]. The idea behind the iterative scheme relies on the use
of an implicit discretization of a differential system of second-order in time and it was
employed for the first time in the context of finding the zeros of a maximally monotone
operator in [3]. One of the main features of the inertial proximal algorithm is that the
next iterate is defined by making use of the last two iterates. It also turns out that
the method is a generalization of the classical proximal-point one (see [25]). Since its
introduction, one can notice an increasing interest in the class of inertial type algorithms,
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see [1, 3, 3, 15, 21–23]. Especially noticeable is that these ideas where also used in the
context of determining the zeros of the sum of a maximally monotone operator and a
(single-valued) cocoercive operator, giving rise to the so-called inertial forward-backward
algorithm [23]. This is an extension of the classical forward-backward algorithm (see [6,17])
and assumes the evaluation of the set-valued operator via its resolvent, called backward
step, while the single-valued operator is evaluated via a forward step.

The first major aim of this manuscript to introduce and investigate an inertial forward-
backward-forward splitting algorithm for finding the zeros of the sum of a maximally
monotone operator and a monotone and Lipschitzian operator. The proposed scheme
represents an extension of Tseng’s forward-backward-forward-type algorithm, (see [6,14,27,
28]), however, for the study of its convergence properties we will use some generalizations
of the Fejér monotonicity techniques provided in [3]. An essential argument in the favor
of forward-backward-forward splitting algorithms is given by the fact that they can be
used when solving a larger class of monotone inclusion problems, since it is known that
there exist monotone and Lipschitzian operators which are not cocoercive, in which case
the forward-backward algorithms cannot be applied (see [10,14,18]). This is for instance
the case when considering primal-dual splitting methods, as one can notice by consulting
[10,14,18].

Primal-dual splitting algorithms are modern techniques designed to solve inclusion
problems where some complex structures of monotone operators are involved, such as
mixtures of linearly composed and parallel-sum type monotone operators. The key fea-
ture of these algorithms is that they are fully decomposable, in the sense that each of the
operators are evaluated in the algorithm separately, either via forward or via backward
steps. It is also noticeable that the primal-dual algorithms solve concomitantly a (pri-
mal) monotone inclusion problem and its dual monotone inclusion problem in the sense
of Attouch-Théra [5]. We invite the reader to consult [10–14, 16, 18, 19, 29] for further
considerations concerning this class of algorithms. The second major aim of this paper
will be to formulate an inertial primal-dual splitting algorithm relying on the inertial
forward-backward-forward one.

The structure of the paper is the following. The remainder of this section is dedi-
cated to some elements of the theory of maximal monotone operators and to the recall of
some convergence results. In the next section we formulate the inertial forward-backward-
forward splitting algorithm for finding the zeros of the sum of a maximally monotone
operator and a monotone and Lipschitzian operator and investigate its convergence. In
Section 3 we use the product space approach in order to obtain the inertial primal-dual
splitting algorithm designed for solving monotone inclusion problems involving mixtures
of linearly composed and parallel-sum type monotone operators. Finally, we show how
the proposed iterative schemes can be used in order to solve primal-dual pairs of convex
optimization problems.

For the notions and results presented as follows we refer the reader to [6–8,20,26,30].
Let N = {0, 1, 2, ...} be the set of nonnegative integers. Let H be a real Hilbert space with
inner product 〈·, ·〉 and associated norm ‖·‖ =

√

〈·, ·〉. The symbols ⇀ and→ denote weak
and strong convergence, respectively. When G is another Hilbert space and K : H → G
a linear continuous operator, then the norm of K is defined as ‖K‖ = sup{‖Kx‖ : x ∈
H, ‖x‖ ≤ 1}, while K∗ : G → H, defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H × G,
denotes the adjoint operator of K.

For an arbitrary set-valued operator A : H ⇒ H we denote by GrA = {(x, u) ∈ H×H :
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u ∈ Ax} its graph, by domA = {x ∈ H : Ax 6= ∅} its domain, by ranA = ∪x∈HAx its
range and by A−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ GrA−1 if and only
if (x, u) ∈ GrA. We use also the notation zerA = {x ∈ H : 0 ∈ Ax} for the set of
zeros of A. We say that A is monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A
monotone operator A is said to bemaximally monotone, if there exists no proper monotone
extension of the graph of A on H × H. The resolvent of A, JA : H ⇒ H, is defined by
JA = (IdH+A)−1, where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator
on H. Moreover, if A is maximally monotone, then JA : H → H is single-valued and
maximally monotone (see [6, Proposition 23.7 and Corollary 23.10]). For an arbitrary
γ > 0 we have (see [6, Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA

and (see [6, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdH = IdH . (1)

Further, let us mention some classes of operators that are used in the paper. We
say that A is demiregular at x ∈ domA if, for every sequence (xn, un)n∈N ∈ GrA and
every u ∈ Ax such that xn ⇀ x and un → u, we have xn → x. We refer the reader
to [4, Proposition 2.4] and [14, Lemma 2.4] for conditions ensuring this property. The
operator A is said to be uniformly monotone at x ∈ domA if there exists an increasing
function φA : [0,+∞) → [0,+∞] that vanishes only at 0, and 〈x−y, u−v〉 ≥ φA (‖x− y‖)
for every u ∈ Ax and (y, v) ∈ GrA. If this inequality holds for all (x, u), (y, v) ∈ GrA, we
say that A is uniformly monotone. If A is uniformly monotone at x ∈ domA, then it is
demiregular at x.

Prominent representatives of the class of uniformly monotone operators are the strongly
monotone operators. Let γ > 0 be arbitrary. We say that A is γ-strongly monotone, if
〈x − y, u − v〉 ≥ γ‖x − y‖2 for all (x, u), (y, v) ∈ GrA. Further, a single-valued operator
A : H → H is said to be γ-cocoercive if 〈x − y,Ax − Ay〉 ≥ γ‖Ax − Ay‖2 for all (x, y) ∈
H × H. Moreover, A is γ-Lipschitzian if ‖Ax − Ay‖ ≤ γ‖x − y‖ for all (x, y) ∈ H × H.
A single-valued linear operator A : H → H is said to be skew, if 〈x,Ax〉 = 0 for all
x ∈ H. Finally, the parallel sum of two operators A,B : H ⇒ H is defined by A�B : H ⇒

H, A�B = (A−1 +B−1)−1.
We close this section by presenting three convergence results which will be crucial for

the proof of the main results in the next section.

Lemma 1 (see [1–3]) Let (ϕn)n∈N, (δn)n∈N and (αn)n∈N be sequences in [0,+∞) such
that ϕn+1 ≤ ϕn + αn(ϕn − ϕn−1) + δn for all n ≥ 1,

∑

n∈N δn < +∞ and there exists a
real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:

(i)
∑

n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗.

An easy consequence of Lemma 1 is the following result.

Lemma 2 Let (ϕn)n∈N, (δn)n∈N, (αn)n∈N and (βn)n∈N be sequences in [0,+∞) such that
ϕn+1 ≤ −βn + ϕn + αn(ϕn − ϕn−1) + δn for all n ≥ 1,

∑

n∈N δn < +∞ and there exists a
real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:
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(i)
∑

n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗;

(iii)
∑

n∈N βn < +∞.

Finally, we recall a well known result on weak convergence in Hilbert spaces.

Lemma 3 (Opial) Let C be a nonempty set of H and (xn)n∈N be a sequence in H such
that the following two conditions hold:

(a) for every x ∈ C, limn→+∞ ‖xn − x‖ exists;

(b) every sequential weak cluster point of (xn)n∈N is in C;

Then (xn)n∈N converges weakly to a point in C.

2 An inertial forward-backward-forward splitting algorithm

This section is dedicated to the formulation of an inertial forward-backward-forward split-
ting algorithm which approaches the set of zeros of the sum of two maximally monotone
operators, one of them being single-valued and Lipschitzian, and to the investigation of
its convergence properties.

Theorem 4 Let A : H ⇒ H be a maximally monotone operator and B : H → H a
monotone and β-Lipschitzian operator for some β > 0. Suppose that zer(A+B) 6= ∅ and
consider the following iterative scheme:

(∀n ≥ 1)

{

pn = JλnA[xn − λnBxn + α1,n(xn − xn−1)]
xn+1 = pn + λn(Bxn −Bpn) + α2,n(xn − xn−1),

where x0 and x1 are arbitrarily chosen in H. Consider λ, σ > 0 and α1, α2 ≥ 0 such that

12α2
2 + 9(α1 + α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√

1− 12α2
2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1 (2)

and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 with αi,1 = 0 and 0 ≤ αi,n ≤ αi for
all n ≥ 1. Then there exists x ∈ zer(A+B) such that the following statements are true:

(a)
∑

n∈N ‖xn+1 − xn‖
2 < +∞ and

∑

n≥1 ‖xn − pn‖
2 < +∞;

(b) xn ⇀ x and pn ⇀ x as n → +∞;

(c) Suppose that one of the following conditions is satisfied:

(i) A+B is demiregular at x;

(ii) A or B is uniformly monotone at x.

Then xn → x and pn → x as n → +∞.
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Proof. Let z be a fixed element in zer(A+B), that is −Bz ∈ Az, and n ≥ 1. From the
definition of the resolvent we deduce

1

λn
(xn − pn)−Bxn +

α1,n

λn
(xn − xn−1) ∈ Apn.

Further, taking into account the relation between pn and xn+1 in the algorithm, we obtain

1

λn
(xn − xn+1)−Bpn +

α1,n + α2,n

λn
(xn − xn−1) ∈ Apn. (3)

The monotonicity of A delivers the inequality

0 ≤

〈

1

λn
(xn − xn+1)−Bpn +

α1,n + α2,n

λn
(xn − xn−1) +Bz, pn − z

〉

,

hence

0 ≤
1

λn
〈xn − xn+1, pn − z〉+ 〈Bz −Bpn, pn − z〉+

α1,n + α2,n

λn
〈xn − xn−1, pn − z〉. (4)

Since B is monotone, we have 〈Bz −Bpn, pn − z〉 ≤ 0. Moreover,

〈xn − xn+1, pn − z〉 = 〈xn − xn+1, pn − xn+1〉+ 〈xn − xn+1, xn+1 − z〉 =

‖xn − xn+1‖
2

2
+

‖pn − xn+1‖
2

2
−

‖xn − pn‖
2

2
+

‖xn − z‖2

2
−

‖xn − xn+1‖
2

2
−

‖xn+1 − z‖2

2
.

In a similar way we obtain

〈xn − xn−1, pn − z〉 = 〈xn − xn−1, xn − z〉+ 〈xn − xn−1, pn − xn〉 =

‖xn − xn−1‖
2

2
+

‖xn − z‖2

2
−

‖xn−1 − z‖2

2
+

‖pn − xn−1‖
2

2
−

‖xn − xn−1‖
2

2
−

‖xn − pn‖
2

2
.

Further we have, by using that B is β-Lipschitzian,

‖xn+1 − pn‖
2 ≤ 2λ2

nβ
2‖xn − pn‖

2 + 2α2
2,n‖xn − xn−1‖

2

and
‖pn − xn−1‖

2 ≤ 2‖xn − pn‖
2 + 2‖xn − xn−1‖

2.

The above estimates together with (4) imply

0 ≤

(

1

2λn
+

α1,n + α2,n

2λn

)

‖xn − z‖2 −
1

2λn
‖xn+1 − z‖2 −

α1,n + α2,n

2λn
‖xn−1 − z‖2+

(

λnβ
2 −

1

2λn
+

α1,n + α2,n

λn
−

α1,n + α2,n

2λn

)

‖xn − pn‖
2+

(

α2
2,n

λn
+

α1,n + α2,n

λn

)

‖xn − xn−1‖
2,

from which we further obtain, after multiplying with 2λn,

‖xn+1 − z‖2 − (1 + α1,n + α2,n)‖xn − z‖2 + (α1,n + α2,n)‖xn−1 − z‖2 ≤

−(1− α1,n − α2,n − 2λ2
nβ

2)‖xn − pn‖
2 + 2(α2

2,n + α1,n + α2,n)‖xn − xn−1‖
2. (5)
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By using the bounds given for the sequences (λn)n≥1, (α1,n)n≥1 and (α2,n)n≥1 one can
easily show by taking into account (2) that

2λ2
nβ

2 < 1− α1 − α2 ≤ 1− α1,n − α2,n,

thus
1− α1,n − α2,n − 2λ2

nβ
2 > 0.

Taking into account that

‖xn+1 − xn‖
2 = ‖pn − xn + λn(Bxn −Bpn) + α2,n(xn − xn−1)‖

2

≤ 2(1 + λnβ)
2‖xn − pn‖

2 + 2α2
2,n‖xn − xn−1‖

2,

we obtain from (5)

‖xn+1 − z‖2 − (1 + α1,n + α2,n)‖xn − z‖2 + (α1,n + α2,n)‖xn−1 − z‖2 ≤

−
1− α1,n − α2,n − 2λ2

nβ
2

2(1 + λnβ)2
‖xn+1 − xn‖

2 + γn‖xn − xn−1‖
2, (6)

where

γn := 2(α2
2,n + α1,n + α2,n) +

α2
2,n(1− α1,n − α2,n − 2λ2

nβ
2)

(1 + λnβ)2
> 0.

(a) For the proof of this statement we are going to use some techniques from [3]. We
define the sequences ϕn := ‖xn − z‖2 for all n ∈ N and µn := ϕn − (α1,n + α2,n)ϕn−1 +
γn‖xn − xn−1‖

2 for all n ≥ 1. Using the monotonicity of (αi,n)n≥1, i = 1, 2, and the fact
that ϕn ≥ 0 for all n ∈ N we get

µn+1 − µn ≤

ϕn+1 − (1 + α1,n + α2,n)ϕn + (α1,n + α2,n)ϕn−1 + γn+1‖xn+1 − xn‖
2 − γn‖xn − xn−1‖

2,

which gives by (6)

µn+1 − µn ≤ −

(

1− α1,n − α2,n − 2λ2
nβ

2

2(1 + λnβ)2
− γn+1

)

‖xn+1 − xn‖
2 ∀n ≥ 1. (7)

We claim that
1− α1,n − α2,n − 2λ2

nβ
2

2(1 + λnβ)2
− γn+1 ≥ σ ∀n ≥ 1. (8)

Indeed, this follows by taking into account that for all n ≥ 1

α1,n + α2,n + 2(λnβ)
2 + 2(1 + λnβ)

2(γn+1 + σ) ≤

α1 + α2 + 2(λnβ)
2 + 2(1 + λnβ)

2(3α2
2 + 2(α1 + α2) + σ) ≤

α1 + α2 + 2(λnβ)
2 + 4(1 + (λnβ)

2)(3α2
2 + 2(α1 + α2) + σ) ≤ 1.

In the above estimates we used the upper bounds for (αi,n)n≥1, i = 1, 2, that

γn+1 ≤ 2(α2
2 + α1 + α2) + α2

2 ∀n ∈ N

and the assumptions in (2).
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We obtain from (7) and (8) that

µn+1 − µn ≤ −σ‖xn+1 − xn‖
2 ∀n ≥ 1. (9)

The sequence (µn)n≥1 is nonincreasing and the bounds for (αi,n)n≥1, i = 1, 2, deliver

− (α1 + α2)ϕn−1 ≤ ϕn − (α1 + α2)ϕn−1 ≤ µn ≤ µ1 ∀n ≥ 1. (10)

We obtain

ϕn ≤ (α1 + α2)
nϕ0 + µ1

n−1
∑

k=0

(α1 + α2)
k ≤ (α1 + α2)

nϕ0 +
µ1

1− α1 − α2
∀n ≥ 1,

where we notice that µ1 = ϕ1 ≥ 0 (due to the relation α1,1 = α2,1 = 0). Combining (9)
and (10) we get for all n ≥ 1

σ
n
∑

k=1

‖xk+1 − xk‖
2 ≤ µ1 − µn+1 ≤ µ1 + (α1 + α2)ϕn ≤ (α1 + α2)

n+1ϕ0 +
µ1

1− α1 − α2
,

which shows that
∑

n∈N ‖xn+1 − xn‖
2 < +∞.

Combining this relation with (5) and Lemma 2 it yields

∑

n≥1

(

1− α1,n − α2,n − 2λ2
nβ

2
)

‖xn − pn‖
2 < +∞.

Moreover, from (8) we have 1−α1,n−α2,n−2λ2
nβ

2 ≥ 2σ(1+λβ)2 for all n ≥ 1 and obtain,
consequently,

∑

n≥1 ‖xn − pn‖
2 < +∞.

(b) We are going to use Lemma 3. We proved above that for an arbitrary z ∈ zer(A+B)
the inequality (5) is true. By part (a) and Lemma 2 it follows that limn→+∞ ‖xn − z‖
exists. On the other hand, let x be a sequential weak cluster point of (xn)n∈N, that is, it
has a subsequence (xnk

)k∈N fulfilling xnk
⇀ x as k → +∞. Since xn−pn → 0 as n → +∞,

we get pnk
⇀ x as k → +∞. Since A+B is maximally monotone (see [6, Corollary 20.25

and Corollary 24.4]), its graph is sequentially closed in the weak-strong topology of H×H
(see [6, Proposition 20.33(ii)]). As (λn)n≥1 and (αi,n)n≥1, i = 1, 2, are bounded, we derive
from (3) and part (a) that 0 ∈ (A+B)x, hence x ∈ zer(A+B). By Lemma 3 there exists
x ∈ zer(A+B) such that xn ⇀ x as n → +∞. In view of (a) we have pn ⇀ x as n → +∞.

(c) Since (ii) implies that A + B is uniformly monotone at x, hence demiregular at
x, it is sufficient to prove the statement under condition (i). Since pn ⇀ x and 1

λn
(xn −

xn+1) +
α1,n+α2,n

λn
(xn − xn−1) → 0 as n → +∞, the result follows easily from (3) and the

definition of demiregular operators. �

Remark 5 Let us mention that the conclusion of the theorem holds also in case one
assumes that the sequence (α1,n + α2,n)n≥1 is nondecreasing. Moreover, the condition
α1,1 = α2,1 = 0 was imposed in order to ensure µ1 ≥ 0, which is needed in the proof. An
alternative is to require that x0 = x1, in which case the assumption α1,1 = α2,1 = 0 is not
anymore necessary.
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Remark 6 Assuming that α2 = 0, which enforces α2,n = 0 for all n ≥ 1, the conclu-
sions of Theorem 4 remains valid if one takes as upper bound for (λn)n≥1 the expression
1
β

√

1−5α1−2σ
4α1+2σ+1 . This is due to the fact in this situation one can use in its proof the improved

inequalities ‖xn+1 − pn‖
2 ≤ λ2

nβ
2‖xn − pn‖

2 and ‖xn+1 − xn‖
2 ≤ (1 + λnβ)

2‖xn − pn‖
2

for all n ≥ 1. On the other hand, let us also notice that the algorithmic scheme ob-
tained in this way and its convergence properties can be seen as generalizations of the
corresponding statements given for the error-free case of the classical forward-backward-
forward algorithm proposed by Tseng in [28] (see also [14, Theorem 2.5]). Indeed, if we
further set α1 = 0, having as consequence that α1,n = 0 for all n ≥ 1, we obtain nothing
else than the iterative scheme from [14,28]. Notice that for ε ∈ (0, 1/(β+1)), one can chose

λ := ε and σ := 1−(1−ε)2

2(1+(1−ε)2) . In this case the sequence (λn)n≥1 must fulfill the inequalities

ε ≤ λn ≤ 1
β

√

1−2σ
2σ+1 = 1−ε

β for all n ≥ 1, which is exactly the situation considered in [14].

Remark 7 In case Bx = 0 for all x ∈ H the proposed iterative scheme becomes

xn+1 = JλnA[xn + α1,n(xn − xn−1)] + α2,n(xn − xn−1) ∀n ≥ 1,

and is to the best of our knowledge new and can be regarded as an extension of the clas-
sical proximal-point algorithm (see [25]) in the context of solving the monotone inclusion
problem 0 ∈ Ax. If, additionally, α2 = 0, which enforces as already noticed α2,n = 0 for
all n ≥ 1, we get the algorithm

xn+1 = JλnA[xn + α1,n(xn − xn−1)],

the convergence of which has been investigated in [3].

3 Solving monotone inclusion problems involving mixtures

of linearly composed and parallel-sum type operators

In this section we employ the inertial forward-backward-forward splitting algorithm pro-
posed above to the concomitantly solving of a primal monotone inclusion problem involving
mixtures of linearly composed and parallel-sum type operators and its Attouch-Théra-type
dual problem. We consider the following setting.

Problem 8 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and µ-Lipschitzian operator for µ > 0. Let m be a
strictly positive integer and, for any i ∈ {1,...,m}, let Gi be a real Hilbert space, ri ∈ Gi,
let Bi : Gi ⇒ Gi be a maximally monotone operator, let Di : Gi ⇒ Gi be monotone such
that D−1

i is νi-Lipschitzian for νi > 0 and let Li : H → Gi be a nonzero linear continuous
operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m
∑

i=1

L∗
i

(

(Bi�Di)(Lix− ri)
)

+ Cx, (11)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{

z −
∑m

i=1 L
∗
i vi ∈ Ax+Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(12)
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We say that (x, v1,..., vm) ∈ H× G1 × ... × Gm is a primal-dual solution to Problem 8,
if

z −
m
∑

i=1

L∗
i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m. (13)

If x ∈ H is a solution to (11), then there exists (v1,..., vm) ∈ G1 × ... × Gm such that
(x, v1,..., vm) is a primal-dual solution to Problem 8 and, if (v1,..., vm) ∈ G1 × ...×Gm is a
solution to (12), then there exists x ∈ H such that (x, v1,..., vm) is a primal-dual solution
to Problem 8. Moreover, if (x, v1,..., vm) ∈ H× G1 × ... × Gm is a primal-dual solution to
Problem 8, then x is a solution to (11) and (v1,..., vm) ∈ G1× ...×Gm is a solution to (12).

Problem 8 covers a large class of monotone inclusion problems and we refer the reader
to consult [18] for several interesting particular instances of it. The main result of this
section follows.

Theorem 9 In Problem 8 suppose that

z ∈ ran

(

A+

m
∑

i=1

L∗
i

(

(Bi�Di)(Li · −ri)
)

+ C

)

. (14)

Chose x0, x1 ∈ H and vi,0, vi,1 ∈ Gi, i = 1, ...,m, and set

(∀n ≥ 1)











































p1,n = JλnA[xn − λn(Cxn +
∑m

i=1 L
∗
i vi,n − z) + α1,n(xn − xn−1)]

p2,i,n = JλnB
−1

i
[vi,n + λn(Lixn −D−1

i vi,n − ri) + α1,n(vi,n − vi,n−1)],

i = 1, ...,m

vi,n+1 = λnLi(p1,n − xn) + λn(D
−1
i vi,n −D−1

i p2,i,n) + p2,i,n
+α2,n(vi,n − vi,n−1), i = 1, ...,m

xn+1 = λn
∑m

i=1 L
∗
i (vi,n − p2,i,n) + λn(Cxn −Cp1,n) + p1,n

+α2,n(xn − xn−1).

Consider λ, σ > 0 and α1, α2 ≥ 0 such that

12α2
2 + 9(α1 + α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√

1− 12α2
2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1,

where

β = max{µ, ν1, ..., νm}+

√

√

√

√

m
∑

i=1

‖Li‖2,

and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 with αi,1 = 0 and 0 ≤ αi,n ≤ αi for
all n ≥ 1. Then the following statements are true:

(a)
∑

n∈N ‖xn+1 − xn‖
2 < +∞,

∑

n≥1 ‖xn − p1,n‖
2 < +∞ and, for i = 1, ...,m,

∑

n∈N ‖vi,n+1 − vi,n‖
2 < +∞ and

∑

n≥1 ‖vi,n − p2,i,n‖
2 < +∞;

(b) There exists (x, v1,..., vm) ∈ H× G1 × ... × Gm a primal-dual solution to Problem 8
such that the following hold:

9



(i) xn ⇀ x, p1,n ⇀ x and, for i = 1, ...,m, vi,n ⇀ vi and p2,i,n ⇀ vi as n → +∞;

(ii) If A+ C is uniformly monotone at x, then xn → x and p1,n → x as n → +∞.

(iii) If B−1
i +D−1

i is uniformly monotone at vi for some i ∈ {1, ...,m}, then vi,n → vi
and p2,i,n → vi as n → +∞.

Proof. We will apply Theorem 4 in an appropriate product space and will make use to
this end of a construction similar to the one considered in [18]. We endow the product
space K = H× G1 × ... × Gm with the inner product and the associated norm defined for
all (x, v1, ..., vm), (y,w1, ..., wm) ∈ K as

〈(x, v1, ..., vm), (y,w1, ..., wm)〉K = 〈x, y〉H +

m
∑

i=1

〈vi, wi〉Gi

and

‖(x, v1, ..., vm)‖K =

√

√

√

√‖x‖2H +

m
∑

i=1

‖vi‖2Gi
,

respectively.
We introduce the operators M : K ⇒ K,

M(x, v1, ..., vm) = (−z +Ax)× (r1 +B−1
1 v1)× ....× (rm +B−1

m vm)

and Q : K → K,

Q(x, v1, ..., vm) =
(

Cx+

m
∑

i=1

L∗
i vi,−L1x+D−1

1 v1, ...,−Lmx+D−1
m vm

)

and show that Theorem 4 can be applied for the operators M and Q in the product space
K. Let us start by noticing that

(14) ⇔ zer(M +Q) 6= ∅

and

(x, v1, ..., vm) ∈ zer(M +Q) ⇔ (x, v1, ..., vm) is a primal-dual solution of Problem 8.
(15)

Further, since A and Bi, i = 1, ...,m are maximally monotone, M is maximally monotone,
too (see [6, Props. 20.22, 20.23]). On the other hand, Q is a monotone and β-Lipschitzian
(see, for instance, the proof of [18, Theorem 3.1]).

For every (x, v1, ..., vm) ∈ K and every λ > 0 we have (see [6, Proposition 23.16])

JλM (x, v1, ..., vm) = (JλA(x+ λz), JλB−1

1

(v1 − λr1), ..., JλB−1
m

(vm − λrm)).

Set

xn = (xn, v1,n, ..., vm,n) ∀n ∈ N and pn = (p1,n, p2,1,n, ..., p2,m,n) ∀n ≥ 1.

In the light of the above considerations it follows that the iterative scheme in the
statement of Theorem 9 can be equivalently written as

∀n ≥ 1

{

pn = JλnM
[xn − λnQxn + α1,n(xn − xn−1)]

xn+1 = pn + λn(Qxn −Qpn) + α2,n(xn − xn−1),

10



which is nothing else than the algorithm stated in Theorem 4 formulated for the operators
M and Q.

(a) Is a direct consequence of Theorem 4(a).
(b)(i) Is a direct consequence of Theorem 4(b) and (15).
(b)(ii) Let n ≥ 1 be fixed. From the definition of the resolvent we get

1

λn
(xn − p1,n)− Cxn −

m
∑

i=1

L∗
i vi,n + z +

α1,n

λn
(xn − xn−1) ∈ Ap1,n.

The update rule for xn yields

1

λn
(p1,n − xn+1) + Cxn +

m
∑

i=1

L∗
i (vi,n − p2,i,n) +

α2,n

λn
(xn − xn−1) = Cp1,n,

hence,

1

λn
(xn − xn+1)−

m
∑

i=1

L∗
i p2,i,n + z +

α1,n + α2,n

λn
(xn − xn−1) ∈ (A+ C)p1,n.

Further, since z −
∑m

i=1 L
∗
i vi ∈ (A + C)x and A + C is uniformly monotone at x, there

exists an increasing function φA,C : [0,+∞) → [0,+∞] that vanishes only at 0, such that
〈

p1,n − x,
1

λn
(xn − xn+1)−

m
∑

i=1

L∗
i p2,i,n + z +

α1,n + α2,n

λn
(xn − xn−1)−

(

z −
m
∑

i=1

L∗
i vi

)〉

≥ φA,C(‖p1,n − x‖),

thus

1

λn
〈p1,n − x, xn − xn+1〉+

〈

p1,n − x,

m
∑

i=1

L∗
i (vi − p2,i,n)

〉

+
α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉 ≥ φA,C(‖p1,n − x‖). (16)

In a similar way, for i = 1, ...,m, the definition of p2,i,n yields

1

λn
(vi,n − p2,i,n) + Lixn −D−1

i vi,n − ri +
α1,n

λn
(vi,n − vi,n−1) ∈ B−1

i p2,i,n

and from

1

λn
(p2,i,n − vi,n+1) + Lip1,n − Lixn +D−1

i vi,n +
α2,n

λn
(vi,n − vi,n−1) = D−1

i p2,i,n

we further obtain

1

λn
(vi,n − vi,n+1) + Lip1,n − ri +

α1,n + α2,n

λn
(vi,n − vi,n−1) ∈ (B−1

i +D−1
i )p2,i,n.

Moreover, since Lix−ri ∈ (B−1
i +D−1

i )vi, the monotonicity of B−1
i +D−1

i , i = 1, ...,m,
yields the inequality
〈

1

λn
(vi,n − vi,n+1) + Lip1,n − ri +

α1,n + α2,n

λn
(vi,n − vi,n−1)− (Lix− ri), p2,i,n − vi

〉

≥ 0,

11



hence

1

λn

m
∑

i=1

〈vi,n − vi,n+1, p2,i,n − vi〉+

〈

p1,n − x,

m
∑

i=1

L∗
i (p2,i,n − vi)

〉

+
α1,n + α2,n

λn

m
∑

i=1

〈vi,n − vi,n−1, p2,i,n − vi〉 ≥ 0. (17)

Summing up the inequalities (16) and (17) we obtain for all n ≥ 1

1

λn
〈p1,n − x, xn − xn+1〉+

α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉

+
1

λn

m
∑

i=1

〈vi,n − vi,n+1, p2,i,n − vi〉+
α1,n + α2,n

λn

m
∑

i=1

〈vi,n − vi,n−1, p2,i,n − vi〉 (18)

≥ φA,C(‖p1,n − x‖).

It then follows from (a), (b)(i) and the boundedness of the sequences (αi,n)n≥1, i = 1, 2
and (λn)n≥1 that limn→+∞ φA,C(‖p1,n − x‖) = 0, thus p1,n → x as n → +∞. From (a) we
get that xn → x as n → +∞.

(b)(iii) In this case one can show that instead of (18) one has for all n ≥ 1

1

λn
〈p1,n − x, xn − xn+1〉+

α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉

+
1

λn

m
∑

j=1

〈vj,n − vj,n+1, p2,j,n − vj〉+
α1,n + α2,n

λn

m
∑

j=1

〈vj,n − vj,n−1, p2,j,n − vj〉 (19)

≥ φB−1

i ,D−1

i
(‖p2,i,n − vi‖).

where φB−1

i ,D−1

i
: [0,+∞) → [0,+∞] is an increasing function that vanishes only at 0.

The same arguments as in (b)(ii) provide the desired conclusion. �

Remark 10 The case α1 = α2 = 0, which enforces α1,n = α2,n = 0 for all n ≥ 1, shows
that error-free case of the forward-backward-forward algorithm considered in [18, Theorem
3.1] is a particular case of the iterative scheme introduced in Theorem 9. We refer to
Remark 6 for a discussion on how to choose the parameters λ and σ in order to get
exactly the bounds from [18, Theorem 3.1].

4 Convex optimization problems

The aim of this section is to show how the inertial forward-backward-forward primal-dual
algorithm can be implemented when solving a primal-dual pair of convex optimization
problems.

For a function f : H → R, where R := R∪{±∞} is the extended real line, we denote by
dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. We denote by Γ(H) the family of proper, convex and lower
semi-continuous extended real-valued functions defined on H. Let f∗ : H → R, f∗(u) =
supx∈H{〈u, x〉− f(x)} for all u ∈ H, be the conjugate function of f . The subdifferential of
f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ H}.
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We take by convention ∂f(x) := ∅, if f(x) ∈ {±∞}. Notice that if f ∈ Γ(H), then
∂f is a maximally monotone operator (see [24]) and it holds (∂f)−1 = ∂f∗. For two
proper functions f, g : H → R, we consider their infimal convolution, which is the function
f�g : H → R, defined by (f�g)(x) = infy∈H{f(y) + g(x− y)}, for all x ∈ H.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator
function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤ 0 ∀y ∈ S}, if
x ∈ S and NS(x) = ∅ for x /∈ S.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{

f(y) +
1

2γ
‖y − x‖2

}

. (20)

Notice that Jγ∂f = (IdH +γ∂f)−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (21)

Let us also recall that a proper function f : H → R is said to be uniformly convex, if there
exists an increasing function φ : [0,+∞) → [0,+∞] which vanishes only at 0 and such
that f(tx+ (1 − t)y) + t(1 − t)φ(‖x − y‖) ≤ tf(x) + (1 − t)f(y) for all x, y ∈ dom f and
t ∈ (0, 1). In case this inequality holds for φ = (β/2)(·)2, where β > 0, then f is said to
be β-strongly convex. Let us mention that this property implies β-strong monotonicity of
∂f (see [6, Example 22.3]) (more general, if f is uniformly convex, then ∂f is uniformly
monotone, see [6, Example 22.3]).

Finally, we notice that for f = δS , where S ⊆ H is a nonempty convex and closed set,
it holds

JγNS
= JNS

= J∂δS = (IdH+NS)
−1 = proxδS = PS , (22)

where PS : H → C denotes the projection operator on S (see [6, Example 23.3 and Example
23.4]).

We investigate the applicability of the algorithm introduced in Section 3 in the context
of the solving of the following primal-dual pair of convex optimization problems.

Problem 11 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex
and differentiable function with a µ-Lipschitzian gradient for µ > 0. Let m be a strictly
positive integer and for any i ∈ {1,...,m} let Gi be a real Hilbert space, ri ∈ Gi, gi, li ∈ Γ(Gi)
such that li is ν

−1
i -strongly convex for νi > 0 and Li : H → Gi a nonzero linear continuous

operator. Consider the convex optimization problem

inf
x∈H

{

f(x) +
m
∑

i=1

(gi�li)(Lix− ri) + h(x) − 〈x, z〉

}

(23)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{

−
(

f∗
�h∗

)

(

z −
m
∑

i=1

L∗
i vi

)

−
m
∑

i=1

(

g∗i (vi) + l∗i (vi) + 〈vi, ri〉
)

}

. (24)
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Considering the maximal monotone operators

A = ∂f,C = ∇h,Bi = ∂gi and Di = ∂li, i = 1,...,m,

according to [6, Proposition 17.10, Theorem 18.15], D−1
i = ∇l∗i is a monotone and νi-

Lipschitzian operator for i = 1,...,m. The monotone inclusion problem (11) reads

find x ∈ H such that z ∈ ∂f(x) +

m
∑

i=1

L∗
i ((∂gi�∂li)(Lix− ri)) +∇h(x), (25)

while the dual inclusion problem (12) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{

z −
∑m

i=1 L
∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m.
(26)

If (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (25)-(26), namely,

z −
m
∑

i=1

L∗
i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m, (27)

then x is an optimal solution of the problem (23), (v1,..., vm) is an optimal solution of
(24) and the optimal objective values of the two problems coincide. Notice that (27) is
nothing else than the system of optimality conditions for the primal-dual pair of convex
optimization problems (23)-(24).

In case a regularity condition is fulfilled, the optimality conditions (27) are also neces-
sary. More precisely, if the primal problem (23) has an optimal solution x and a suitable
regularity condition is fulfilled, then there exists (v1,..., vm) an optimal solution to (24)
such that (x, v1,..., vm) satisfies the optimality conditions (27).

For the readers convenience, we discuss some regularity conditions which are suitable
in this context. One of the weakest qualification conditions of interiority-type reads (see,
for instance, [18, Proposition 4.3, Remark 4.4])

(r1,..., rm) ∈ sqri

(

m
∏

i=1

(dom gi + dom li)− {(L1x,..., Lmx) : x ∈ dom f}

)

. (28)

Here, for H a real Hilbert space and S ⊆ H a convex set, we denote by

sqriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in general
this inclusion may be strict). If H is finite-dimensional, then sqriS coincides with riS,
the relative interior of S, which is the interior of S with respect to its affine hull. The
condition (28) is fulfilled, if: (i) for all i = 1,...,m, dom gi = Gi or domhi = Gi, or (ii) H
and Gi are finite-dimensional spaces and there exists x ∈ ri dom f such that Lix − ri ∈
ri dom gi+ri dom li, i = 1,...,m (see [18, Proposition 4.3]). For other regularity conditions
we refer the reader to consult [6–9,30].

The following statement is a particular instance of Theorem 9.
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Theorem 12 Suppose that the primal optimization problem (23) has an optimal solution
and the regularity condition (28) is fulfilled. Chose x0, x1 ∈ H and vi,0, vi,1 ∈ Gi, i =
1, ...,m, and set

(∀n ≥ 1)







































p1,n = proxλnf [xn − λn(∇f(xn) +
∑m

i=1 L
∗
i vi,n − z) + α1,n(xn − xn−1)]

p2,i,n = proxλng∗i
[vi,n + λn(Lixn −∇l∗i (vi,n)− ri) + α1,n(vi,n − vi,n−1)],

i = 1, ...,m
vi,n+1 = λnLi(p1,n − xn) + λn(∇l∗i (vi,n)−∇l∗i (p2,i,n)) + p2,i,n

+α2,n(vi,n − vi,n−1), i = 1, ...,m
xn+1 = λn

∑m
i=1 L

∗
i (vi,n − p2,i,n) + λn(∇h(xn)−∇h(p1,n)) + p1,n

+α2,n(xn − xn−1).

Consider λ, σ > 0 and α1 ≥ 0, α2 ≥ 0 such that

12α2
2 + 9(α1 + α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√

1− 12α2
2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1,

where

β = max{µ, ν1, ..., νm}+

√

√

√

√

m
∑

i=1

‖Li‖2,

and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 with αi,1 = 0 and 0 ≤ αi,n ≤ αi for
all n ≥ 1. Then the following statements are true:

(a)
∑

n∈N ‖xn+1 − xn‖
2 < +∞,

∑

n≥1 ‖xn − p1,n‖
2 < +∞ and, for i = 1, ...,m,

∑

n∈N ‖vi,n+1 − vi,n‖
2 < +∞ and

∑

n≥1 ‖vi,n − p2,i,n‖
2 < +∞;

(b) There exists (x, v1,..., vm) ∈ H× G1 × ... × Gm satisfying the optimality conditions
(27), hence x is an optimal solution of the problem (23), (v1,..., vm) is an optimal
solution of (24) and the optimal objective values of the two problems coincide, such
that the following hold:

(i) xn ⇀ x, p1,n ⇀ x and, for i = 1, ...,m, vi,n ⇀ vi and p2,i,n ⇀ vi as n → +∞;

(ii) If f + h is uniformly convex, then xn → x and p1,n → x as n → +∞;

(iii) If g∗i + l∗i is uniformly convex for some i ∈ {1, ...,m}, then vi,n → vi and
p2,i,n → vi as n → +∞.

Remark 13 Suppose that the primal optimization problem (23) is feasible, which means
that its optimal objective value is not identical +∞. The existence of optimal solutions
of (23) is guaranteed if for instance, f + h+ 〈·,−z〉 is coercive (that is lim‖x‖→∞(f + h+
〈·,−z〉)(x) = +∞) and for all i = 1., , , .,m, gi is bounded from below. Indeed, under these
circumstances, the objective function of (23) is coercive (one can use [6, Corollary 11.16
and Proposition 12.14] to show that gi�li is bounded from below and gi�li ∈ Γ(Gi) for
i = 1, ...,m) and the statement follows via [6, Corollary 11.15]. On the other hand, when
f + h is strongly convex, then the objective function of (23) is strongly convex, too, thus
(23) has a unique optimal solution (see [6, Corollary 11.16]).
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Remark 14 Let us mention that for i ∈ {1, ...,m} the function g∗i + l∗i is uniformly
convex, if g∗i + l∗i is δi-strongly convex for δi > 0. This is the case, for example, when
g∗i (or l∗i ) is δi-strongly convex or when g∗i is αi-strongly convex and l∗i is βi-strongly
convex, where αi, βi > 0 are such that αi + βi ≥ δi. Let us also notice that, according
to [6, Theorem 18.15], g∗i is αi-strongly convex if and only if gi is Fréchet-differentiable
and ∇gi is α

−1
i -Lipschitzian.
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