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Abstract

We propose a smooth fictitious domain/multiresolution method for enhanc-
ing the accuracy order in solving second order elliptic partial differential
equations on general bivariate domains. We prove the existence and unique-
ness of the solution of corresponding discrete problem and the interior error
estimate which justifies the improved accuracy order. Numerical experiments
are conducted on a cassini oval.
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1. Introduction

Recently, multiresolution methods have became a new powerful tool in
the numerical approximation of partial differential equations due to their
high accuracy and related fast algorithms [1, 2]. However, it is difficult to
construct scaling and wavelet functions adapted to the geometry of general
domains. This is an important issue, especially in the case of moving bound-
ary problems.
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Fictitious domain methods were introduced to encounter this problem.
They consist in solving a problem raised on a general domain ω by merging
ω into a larger and simpler domain Ω. Fictitious domain methods differ fun-
damentally in the way how the boundary conditions are enforced on γ, the
boundary of ω. In penalization methods, additional terms are added in Ω\ω.
These terms are usually weighted with a coefficient 1

ε
. To the limit when ε

goes to zero, the boundary conditions are enforced [3, 4]. The Lagrange mul-
tipliers methods emerge from the optimization techniques under constraints.
A minimization problem on a subset is transformed into a saddle point prob-
lem on a larger set. Lagrange multipliers as supplementary unknowns that
may live on ω, on its boundary γ or on Ω \ ω [5, 6].

In this paper, the starting point is a fictitious domain method coupled
with Lagrange multipliers on the boundary. By shifting the Lagrange mul-
tipliers on a control boundary Γ located away from γ in the outer normal
direction(as proposed in [7]), this new approach is shown to preserve the
good approximation properties of multiresolution methods and to improve
the accuracy order of the numerical solution on ω.

This work is a generalization to bivariate framework of the results pre-
sented in [8, 9]. The paper is organized as follows. Section 2 presents the for-
mulation of our smooth fictitious domain method and gives the approximate
controllability result. Section 3 contains the multiresolution discretization
and proves the existence of an unique solution of the discrete saddle point
problem. Section 4 gives the main theorem of interior error estimate which
theoretically justifies the improved accuracy order. We list the important
aspects of numerical implementation in Section 5. Some numerical examples
are presented in Section 6 to verify the accuracy of the proposed method.
Section 7 concludes this paper.

2. The smooth fictitious domain method

We consider a Dirichlet boundary-value problem on an open, bounded
domain ω ⊂ R2 with Lipschitz boundary γ,

{
û− ν4û = f in ω,

û = g on γ,
(1)

where ν > 0, f ∈ L2(ω) and g ∈ H
1
2 (γ). In order to separate the difficulty of

approximating the differential operator and the integration of the boundary
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condition as well as to overcome the difficulty of constructing basis functions
adapted to the complicated domain ω, a fictitious domain/Lagrange mul-
tiplier method (FDLM) [10] can be defined. It introduces a rectangular Ω
containing ω, ω̄ ⊂ Ω, and uses the Lagrange multipliers λ on the bound-
ary γ to enforce the boundary conditions. Thus the extended problem has
a solution u on Ω such that u|ω = û [11]. Since the auxiliary variables λ
represent the normal derivative jump of u at γ by green formula [12], the
regularity of u is limited in the vicinity of γ such that u ∈ H3/2−ε(Ω), for
any ε > 0. It is well known that the smoothness degree of the solution of a
boundary-value problem does affect the order of convergence of a numerical
solution [13]. J.Haslinger et al. [7] investigated a new formulation of ficti-
tious domain methods connecting in putting the Lagrange multiplier λ on a
control boundary Γ located outside of ω̄ to enforce the boundary condition
on γ(see in Figure 1). We will call it the smooth fictitious domain/Lagrange
multiplier method (SFDLM). The Dirichlet boundary value problem (1) is

Figure 1: Geometry: ω is the original domain, γ is its boundary. Γ is the control boundary
and Ξ is the control domain with Ξ ⊃ ω̄. Ω represents the fictitious domain with Ω ⊃ Ξ̄.

then rewritten as:




Find (u, λ) ∈ H1(Ω)×H−1/2(Γ) such that,

a(u, v) + b2(v, λ) = (f̃ , v), ∀v ∈ H1(Ω),

b1(u, µ) =< g, µ >γ, ∀µ ∈ H−1/2(γ),

(2)

where, if the trace operators B and B are defined, Bu := u|γ ∈ H1/2(γ),
Bu := u|Γ ∈ H1/2(Γ), ∀u ∈ H1(Ω) then

b1(u, q) :=< Bu, q >H1/2(γ)×H−1/2(γ):=< Bu, q >γ,∀q ∈ H−1/2(γ),
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b2(u, p) :=< Bu, p >H1/2(Γ)×H−1/2(Γ):=< Bu, p >Γ,∀p ∈ H−1/2(Γ).

The bilinear form a(·, ·) reads

a(u, v) =

∫

Ω

(uv + νOuOv)dx, ∀(u, v) ∈ H1(Ω)×H1(Ω),

and f̃ is an extension of f from ω to Ω. Note that the bilinear forms b1 and
b2 are distinct. This kind of problem can be considered as a generalization
of saddle point problems which have been studied in [14, 15]. Since the
derivative jump λ lays on Γ at a positive distance from γ, this new method
is expected to produce a smoother solution in the control domain Ξ which
motivates the proof of interior error estimate depending on the smoothness
of u in Ξ. For any λ ∈ H−1/2(Γ)(if H1

p (Ω) stands for the sobolev space of
order 1 of periodic functions on Ω), there exists a unique solution ū of the
problem (2’): {

Find ū ∈ H1
p (Ω) such that

a(ū, v) = (f̃ , v)− b2(v, λ).

However, the extended problem (2) does not have a solution in general [16].
We will use the following approximate controllability result [7].

Lemma 1. Defining the linear mapping Φ : H−1/2(Γ) 7→ H1/2(γ) by Φ(λ) =
ū|γ, where ū is the solution of (2’). Then for any ε > 0, there exists a value
of λ̄ and the corresponding solution ū associated to ḡ = Φ(λ̄) in (2’) such
that

‖û− ū‖H1(ω) ≤ ε. (3)

3. The multiresolution discretization

The finite dimensional subspaces used in the numerical approximation of
problem (2) include the multiresolution analysis on Ω, Γ, γ denoted by UΩ

h ⊂
H1(Ω), QΓ

h′ ⊂ H−1/2(Γ) ,Qγ
h′′ ⊂ H−1/2(γ), and the subspace V Ω

h which is the
image of UΩ

h by the operator (I−ν4)−1, i.e., V Ω
h = (I−ν4)−1UΩ

h . This space
is spanned by biorthogonal vaguelettes [17]. We call it the Petrov-Galerkin
and wavelet-vaguelette method [18]. Then the discretization formulation of
(2) reads 




Find (uh, λh′) ∈ UΩ
h ×QΓ

h′ , such that

a(uh, vh) + b2(vh, λh′) = (f̃ , vh), ∀vh ∈ V Ω
h ,

b1(uh, µh′′) =< g, µh′′ >γ, ∀µh′′ ∈ Qγ
h′′ .

(4)
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We assume that Γ and γ are piecewise regular in the sequel. The definition
of the various spaces reads as follows:

UΩ
h = span{ΦΩ

α , α ∈ Kj := {(j, k1, k2), 0 ≤ k1, k2 ≤ 2j − 1, (j, k1, k2) ∈
N3}}, where ∀f ∈ L2(R2), fj,k1,k2(x, y) = 2jf(2jx − k1, 2

jy − k2). It is an
orthogonal m-order(m ∈ N) multiresolution 1on Ω with h = 2−j(see [17]).

The basis function ΦΩ
α is the tensor product of φ

[0,L1]
j,k1

(x) and φ
[0,L2]
j,k2

(y) with

Ω = [0, L1]× [0, L2], where φ
[0,L1]
j,k1

(x)(φ
[0,L2]
j,k2

(y)) is the scaling function on the
interval [0, L1](resp [0, L2]) in the x(resp y) direction.

V Ω
h = span{θΩ

α , α ∈ Kj}. θΩ
α = (I − ν4)−1ΦΩ

α . For any ε, there exists an
integer r > 0 and g ∈ UΩ

h̃
, h̃ = 2−j−r such that ‖θΩ

α − g‖ ≤ ε [19]. Thus we

can approximate θΩ
α by an element in UΩ

h̃
up to arbitrary precision.

QΓ
h′ = span{φΓ

α′ , α
′ ∈ K ′

j := {(j′, k′), (j′, k′) ∈ N2}}. It is an orthogo-
nal m’-order(m′ ∈ N) multiresolution on Γ constructed by a map from the
multiresolution on [0, 1] with h′ = 2−j′ [20].

Qγ
h′′ = span{φγ

α′′ , α
′′ ∈ K ′′

j := {(j′′, k′′), (j′′, k′′) ∈ N2}}}. It is an orthog-

onal m”-order(m′′ ∈ N) multiresolution on γ with h′′ = 2−j′′ .
The matrix form of (4) is





Find Uh ∈ R4j

, Λh′ ∈ R2j′
, such that(

I C
D 0

)(
Uh

Λh′

)
=

(
F
G

)
,

(5)

where the off-diagonal matrices

Cα,α′ =

∫

Γ

θΩ
αφΓ

α′ds,Dα′′,α =

∫

γ

ΦΩ
αφγ

α′′ds,

and the vectors at the right side

(F )α =

∫

Ω

f̃ θΩ
αdx, (G)α′′ =

∫

γ

gφγ
α′′ds.

Assuming the discretization level j′ and j′′ are equal, the matrix involved in
(5)

A :=

(
I C
D 0

)
.

1The multiresolution is of order m if it produces polynomials of degree up to m− 1.
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is square. To prove that there exists a unique solution of (4), we only need
to show that A is invertible. We will use the following lemma [21].

Lemma 2. A is invertible if and only if C has a full-column rank and

Ker(D) ∩ R(C) = {0},

where Ker(D) is the null space of matrix D and R(C) is the range space of
matrix C.

Therefore, if the conditions in Lemma 2 are satisfied, (4) has a unique solu-
tion.

Theorem 3. Let UΩ
h , V Ω

h , QΓ
h′ and Qγ

h′′ be constructed as previously. If

QΓ
h′ ∈ Hs′− 1

2 (Γ) with s′ > 2, Qγ
h′′ ∈ Hs′′− 1

2 (γ) with s′′ > 1 such that j(s′ −
2)− j′(s′− 1) > B where B is a positive constant, then there exists a unique
solution of (4).

Proof. We mimic the proof of Theorem 3.1 in [22]. The condition j(s′ −
2)− j′(s′ − 1) > B ensures that the following LBB condition holds [23], i.e.,
there exist constants β1, β2 such that

sup
vh∈V Ω

h
vh 6=0

b2(vh, ph′)

‖vh‖H2(Ω)

≥ β1‖ph′‖H− 1
2 (Γ)

, ∀ph′ ∈ QΓ
h′ , (6)

sup
uh∈UΩ

h
uh 6=0

b1(uh, q̃h′′)

‖uh‖H1(Ω)

≥ β2‖q̃h′′‖H− 1
2 (γ)

, ∀q̃h′′ ∈ Qγ
h′′ . (7)

We then estimate the condition number of CT C, DT D and (DC)T DC as
follows.

-estimation of CT C
According to the definition of the matrix C, it follows

∀w ∈ R2j′
, (CT Cw, w) =

∑
α∈Kj

(
∑

α′∈K′
j

Cα,α′wα′)
2

=
∑
α∈Kj

|
∫

Γ

θΩ
α

∑

α′∈K′
j

wα′φ
Γ
α′|2.
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Substituting vh =
∑

α∈Kj
zαθΩ

α , ph′ =
∑

α′∈K′
j
wα′φ

Γ
α′ in (6), we have

sup
z∈R4j

∫
Γ

∑
α∈Kj

zαθΩ
α

∑
α′∈K′

j
wα′φ

Γ
α′

‖∑
α∈Kj

zαθΩ
α‖H2(Ω)

≥ β1‖
∑

α′∈K′
j

wα′φ
Γ
α′‖H−1/2(Γ),∀wα′ ∈ R2j′

.

By the discrete Cauchy-Schwartz inequality, it yields

∫

Γ

∑
α∈Kj

zαθΩ
α

∑

α′∈K′
j

wα′φ
Γ
α′ ≤ (z, z)1/2(CT Cw, w)1/2.

Using this inequality, it leads to

β1‖
∑

α′∈K′
j

wα′φ
Γ
α′‖H−1/2(Γ) ≤ sup

z∈R4j

∫
Γ

∑
α∈Kj

zαθΩ
α

∑
α′∈K′

j
wα′φ

Γ
α′

‖∑
α∈Kj

zαθΩ
α‖H2(Ω)

≤ (z, z)1/2

‖∑
α∈Kj

zαθΩ
α‖H2(Ω)

(CT Cw, w)1/2.

(8)

Due to θΩ
α = (I − ν4)−1ΦΩ

α and the orthonormality of the bases {ΦΩ
α}α

in the norm ‖ · ‖L2(R), it follows

‖
∑
α∈Kj

zαθΩ
α‖H2(Ω) ∼ ‖

∑
α∈Kj

zαΦΩ
α‖L2(Ω) = (z, z)1/2. (9)

Applying the Bernstein inequality[24] on the left term, we have

‖
∑

α′∈K′
j

wα′φ
Γ
α′‖H−1/2(Γ) ≥ c2−j′/2(w, w)1/2, (10)

where the constant C > 0 depends on the property of the multiresolution on
the boundary Γ.

Combing the (8),(9) and (9) together, it follows

(CT Cw, w) ≥ K1,c2
−j′(w, w),∀w ∈ R2j′

.

On the other hand, we use the continuous Cauchy-Schwartz inequality to
get
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∫

Γ

∑
α∈Kj

zαθΩ
α

∑

α′∈K′
j

wα′φ
Γ
α′ ≤ ‖

∑
α∈Kj

zαθΩ
α‖L2(Γ)‖

∑

α′∈K′
j

wα′φ
Γ
α′‖L2(Γ)

≤ C‖
∑
α∈Kj

zαθΩ
α‖H1(Ω)(w, w)1/2

≤ C(z, z)1/2(w, w)1/2,

where C > 0 only denotes a constant, does not mean the same value.
Choosing zα =

∫
Γ
θΩ

α

∑
α′∈K′

j
wα′φ

Γ
α′ , then we have

(CT Cw, w) ≤ K2,c(w, w).

Therefore,
K1,c2

−j′(w, w) ≤ (CT Cw, w) ≤ K2,c(w, w). (11)

-estimation of DT D
We use the definition of the matrix D to get

∀z ∈ R4j

, (DT Dz, z) =
∑

α′′∈K
′′
j

(
∑
α∈Kj

Dα′′,αzα)2

=
∑

α′′∈K
′′
j

|
∫

γ

φγ
α′′

∑
α∈Kj

zαΦΩ
α |2.

Taking uh =
∑

α∈Kj
zαΦΩ

α , q̃h′′ =
∑

α′′∈K
′′
j

wα′′φ
γ
α′′ in (7), it follows

sup
z∈R4j

∫
γ

∑
α∈Kj

zαΦΩ
α

∑
α′′∈K

′′
j

wα′′φ
γ
α′′

‖∑
α∈Kj

zαΦΩ
α‖H1(Ω)

≥ β2‖
∑

α′′∈K
′′
j

wα′′φ
γ
α′′‖H−1/2(γ). (12)

By the discrete Cauchy-Schartz inequality, it follows∫

γ

∑
α∈Kj

zαΦΩ
α

∑

α′′∈K
′′
j

wα′′φ
γ
α′′ ≤ (w, w)1/2(DT Dz, z)1/2.

Using (12) and the Bernstein inequality of the multiresolution Qγ
h′′ , we have

(DT Dz, z)1/2 ≥ β22
−j′′/2‖

∑
α∈Kj

zαΦΩ
α‖H1(Ω)

≥ β22
−j′′/2‖

∑
α∈Kj

zαΦΩ
α‖L2(Ω)

= β22
−j′′/2(z, z)1/2.
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The inequality above equals to

(DT Dz, z) ≥ K1,D2−j′′(z, z).

By the continuous Cauchy-Schwartz inequality, it follows

∫

γ

∑
α∈Kj

zαΦΩ
α

∑

α′′∈K
′′
j

wα′′φ
γ
α′′ ≤ ‖

∑
α∈Kj

zαΦΩ
α‖L2(γ)‖

∑

α′′∈K
′′
j

wα′′φ
γ
α′′‖L2(γ)

≤ C‖
∑
α∈Kj

zαΦΩ
α‖H1(Ω)(w, w)1/2

≤ C2j(z, z)1/2(w, w)1/2,

where we use the Bernstein inequality of the multiresolution UΩ
h and the trace

theorem.
Choosing wα′′ =

∫
γ
φγ

α′′
∑

α∈Kj
zαΦΩ

α , we get

(DT Dz, z) ≤ K2,D22j(z, z).

Therefore,

K1,D2−j′′(z, z) ≤ (DT Dz, z) ≤ K2,D22j(z, z). (13)

-estimation of (DC)T DC
Taking z = cw in (13), we have

2−j′′K1,D(Cw, Cw) ≤ (DT DCw, Cw) ≤ 22jK2,D(Cw, Cw).

By (11), it yields

2−(j′+j′′)K1,DK1,C(w, w) ≤ (DT DCw, Cw) ≤ 22jK2,DK2,C(w, w).

Denote K1 = K1,DK1,C , k2 = K2,DK2,C , and here j′ = j′′, we have

K12
−2j′(w, w) ≤ (DCw, DCw) ≤ K22

2j(w, w),∀w ∈ R2j′
,

Thus it yields that C has a full-column rank and Ker(D) ∩ R(C) = {0}. By
Lemma 2, the proof concludes.

9



4. Interior error estimate

We will use the notation A . B which means that there exits a constant
c > 0 such that A ≤ cB, similarly for &. Local interior error estimate deals
with the error between the computed solution uh and ū, a good approxima-
tion of u on ω, on ¤ a subdomain of Ξ including ω̄. This estimate depends
on the regularity of ū. We first recall the results for the bilinear form a(·, ·)
[22].

Lemma 4. For UΩ
h , V Ω

h constructed as previously, there exist

sup
vh∈V Ω

h
vh 6=0

a(uh, vh)

‖vh‖H1(Ω)

& ‖uh‖H1(Ω), ∀uh ∈ UΩ
h , (14)

sup
uh∈UΩ

h
uh 6=0

a(uh, vh)

‖uh‖H1(Ω)

& ‖vh‖H1(Ω), ∀vh ∈ V Ω
h . (15)

Then, we derive the interior error estimate as follows.

Theorem 5. Let ω ⊂⊂ ¤ ⊂⊂ Ξ ⊂⊂ Ω, û (resp uh) be the solution of
problem of (1) (resp problem (4)). Moreover, (ū, λ̄) is the solution of problem
(2’) associated to ḡ = Φ(λ̄) such that ū satisfies (3). Then if ū ∈ Hs(¤),
1 < s ≤ m, λ̄ ∈ Hs′(Γ), 0 < s′ ≤ m′, and j ≥ j0(j0 depending on ω and Ξ),
we have

‖û− uh‖H1(ω) . 2−j(s−1)‖ū‖Hs(¤) + 2−j′s′‖λ̄‖Hs′ (Γ) + ε, ∀ε > 0.

Proof. Let ω ⊂⊂ ¤0 ⊂⊂ ¤ ⊂⊂ Ξ ⊂⊂ Ω and δ = 1 on ω, δ ∈ C∞
0 (¤0) and

set ũ = δū. Let T ũ ∈ UΩ
h be the unique solution of

a(ũ− T ũ, vh) = −b2(vh, λ̄− λ̃), ∀vh ∈ V Ω
h , (16)

where λ̃ ∈ QΓ
h′ solves ‖λ̃ − λ̄‖H−1/2(Γ) = infλh′∈QΓ

h′
‖λh′ − λ̄‖H−1/2(Γ). The

existence of T ũ is guaranteed by Lemma 4 and Lax-Milgram lemma.
Now

‖ũ− T ũ‖H1(Ω) . sup
v∈H1(Ω)

a(ũ− T ũ, v)

‖v‖H1(Ω)

. sup
v∈H1(Ω)

(
a(ũ− T ũ, v − P ∗v)

‖v‖H1(Ω)

− b2(P
∗v, λ̄− λ̃)

‖v‖H1(Ω)

),

(17)
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where P ∗v ∈ V Ω
h satisfies

a(uh, v − P ∗v) = 0, ∀uh ∈ UΩ
h . (18)

Furthermore, it follows from (15) that

‖P ∗v‖H1(Ω) . sup
uh∈UΩ

h

a(uh, P
∗v)

‖uh‖H1(Ω)

= sup
uh∈UΩ

h

a(uh, v)

‖uh‖H1(Ω)

. ‖v‖H1(Ω).

Hence, for any η ∈ UΩ
h ,

a(ũ− T ũ, v − P ∗v) = a(ũ− η, v − P ∗v) . ‖ũ− η‖H1(Ω)‖v‖H1(Ω), (19)

where we have used (18). Also

|b2(P
∗v, λ̄− λ̃)| = |(BP ∗v, λ̄− λ̃)Γ| . ‖P ∗v‖H1(Ω)‖λ̄− λ̃‖H−1/2(Γ)

. ‖v‖H1(Ω)2
−j′s′‖λ̄‖Hs′ (Γ),

(20)

where the trace theorem and Jackson estimate are used.
It follows from (17), (19) and (20) that

‖ũ− T ũ‖H1(Ω) . inf
η∈UΩ

h

‖ũ− η‖H1(Ω) + 2−j′s′‖λ̄‖Hs′ (Γ)

. 2−j(s−1)‖ũ‖Hs(¤) + 2−j′s′‖λ̄‖Hs′ (Γ)

. 2−j(s−1)‖ū‖Hs(¤) + 2−j′s′‖λ̄‖Hs′ (Γ).

Hence,

‖ū− T ũ‖H1(ω) = ‖ũ− T ũ‖H1(ω) ≤ ‖ũ− T ũ‖H1(Ω)

. 2−j(s−1)‖ū‖Hs(¤) + 2−j′s′‖λ̄‖Hs′ (Γ).
(21)

Let us now estimate ‖û− uh‖H1(ω).

‖û− uh‖H1(ω) ≤ ‖û− ū‖H1(ω) + ‖ū− uh‖H1(ω)

≤ ε + ‖ū− T ũ‖H1(ω) + ‖T ũ− uh‖H1(ω).
(22)

Note (ū, λ̄) (resp (uh, λh′)) is the solution of (2’) (resp (4)), we subtract
these two equations to have

a(ū− uh, vh) + b2(vh, λ̄− λh′) = 0, ∀vh ∈ V Ω
h .
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It follows then from (16) that

a(T ũ− uh, vh) = a(ũ− ū, vh) + b2(vh, λh′ − λ̃), ∀vh ∈ V Ω
h . (23)

Let PV Ω
h

be the biorthogonal projector on V Ω
h [22], we have

a(uh, PV Ω
h

v) = a(uh, v),∀(uh, v) ∈ UΩ
h ×H1(Ω),

and
‖PV Ω

h
v‖H1(¤) . ‖v‖H1(¤), ∀v ∈ H1

0 (¤).

Hence,

‖T ũ− uh‖H1(ω) ≤ ‖T ũ− uh‖H1(¤0) . sup
v∈H1

0 (¤)

a(T ũ− uh, v)

‖v‖H1(¤)

. sup
v∈H1

0 (¤)

a(T ũ− uh, PV Ω
h

v)

‖PV Ω
h

v‖H1(¤)

.

(24)

If the scale level j is sufficiently large, then PV Ω
h

v ∈ V̊ Ω
h (¤) := {vh|vh ∈

V Ω
h , suppvh ⊂ ¤}, ∀v ∈ H1

0 (¤). It follows from (23) and (24) that

‖T ũ− uh‖H1(ω) . sup
vh∈V̊ Ω

h (¤)

a(T ũ− uh, vh)

‖vh‖H1(¤)

= sup
vh∈V̊ Ω

h (¤)

a(ũ− ū, vh)

‖vh‖H1(¤)

. inf
η∈UΩ

h

‖ũ− η‖H1(¤) + inf
η∈UΩ

h

‖ū− η‖H1(¤)

. 2−j(s−1)‖ū‖Hs(¤).

(25)

By (21), (22) and (25), we have

‖û− uh‖H1(ω) . 2−j(s−1)‖ū‖Hs(¤) + 2−j′s′‖λ̄‖Hs′ (Γ) + ε,

which completes the proof.

Here the second term in the right hand side of the estimate of Theorem 5
illustrates the influence of the Lagrange multiplier, i.e., the amplitude of the
normal gradient jump at the control boundary.
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5. Numerical implementation

5.1. Point value of ΦΩ
α and θΩ

α

Assuming the order m of the spline multiresolution on Ω is even, the or-
thonormal scaling function ΦΩ

α is derived from the tensor product of φ
[0,L1]
j,k1

(x)

and φ
[0,L2]
j,k2

(y) which are periodic as constructed in [25]. For simplicity, we

assume that L1 = L2 = 1, i.e., Ω = [0, 1] × [0, 1]. We write φ
[0,1]
j,k as a linear

combination of B-spline denoted by Nm (Nm = (∗)mχ[0,1]), seen in [8],

φj,k(x) = φj,0(x− k/2j) = 2j/2

2j+m/2∑

k=−m/2

bkNm(2jx− 2k + m/2).

Note θΩ
α can be approximated by an element in space Vj′(j

′ = j + r up to
arbitrary precision, r ∈ N+),i.e.,

θΩ
α ∼

∑

α′∈Kj′

Cα
α′Φ

Ω
α′ ,

where Kj′ := {(j′, k1, k2), 0 ≤ k1, k2 ≤ 2j′ − 1}. Applying Fourier transform
2, we have

θ̂Ω
α (w1, w2) ∼ mj′(θ

Ω
α )(w1, w2)Φ̂

Ω
j′,0,0(w1, w2),

where the symbol

mj′(θ
Ω
α )(w1, w2) =

∑

α′∈Kj′

Cα
α′e

−i2π(k1w1+k2w2)/2j′

= 4j′
∑

z1,z2∈Z

θ̂Ω
α (w1 + 2j′z1, w2 + 2j′z2)Φ̂Ω

j′,0,0(w1 + 2j′z1, w2 + 2j′z2).

Since the functions Φ̂Ω
j′,0,0 and {θ̂Ω

α}α∈Kj
have exponential decay at infinity

[24], the summation in index z1 and z2 is truncated to calculate mj′(θ
Ω
α ).

Thus the scaling coefficients {Cα
α′}α′∈Kj′ are obtained by applying discrete

inverse fourier transform on mj′(θ
Ω
α ).

2∀f ∈ L2(R2), f̂(w1, w2) =
∫
R2 f(x, y)e−i2π(xw1+yw2)dxdy
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5.2. Calculation C, D, F, G matrices

We first consider the matrix F. In view of θΩ
α being approximated by a

linear combination of scaling functions {ΦΩ
α′}α′∈Kj′ in space Vj′ , we decompose

the calculation of the elements of vector F into
∫

Ω
f̃ΦΩ

α′ . Assuming that the

grid point values of f̃ are known at scale j, we then use the interpolation
process to approximate f̃ ,

f̃ ∼ PVj
f̃ =

∑
α∈Kj

CαΦΩ
α ,

where Cα =
∑2j−1

m,n=0 f̃(m/2j, n/2j)Lj(k1−m)Lj(k2− n). An explicit expres-
sion of Lj is given in [25] when the spline multiresolution order m is even. In
order to compute

∫
Ω

ΦΩ
αΦΩ

α′ , i.e., the scaling coefficients of ΦΩ
α at scale j′, we

use the reconstruction algorithm.
Note that the elements of matrix C, D, G all involve the first form curve

integral on Γ or γ. We compute them similarly and detail the calculation of
the matrix D for example. Let the parametric representation of curve γ be

γ :

{
x = x(τ)

y = y(τ)
, τ ∈ [0, 1].

Thus we have

Dα′′,α =

∫ 1

0

ΦΩ
α(x(τ), y(τ))φ

[0,1]
α′′ (τ)

√
x′(τ)2 + y′(τ)2dτ,

where φ
[0,1]
α′′ is the spline scaling function constructed on the interval [0, 1].

Dα′′,α is its scaling coefficient with function ΦΩ
α

√
x′2 + y′2. Thus Dα′′,α can be

obtained by the interpolation process with the grid point values of ΦΩ
α

√
x′2 + y′2

at scale j′′. To improve its accuracy, we calculate the grid point values at
upgraded scale j′′+r̃ (for example, r̃ = 3), then obtain the scaling coefficients
at scale j′′ + r̃ by the interpolation process. The decomposition algorithm is
then employed to get the scaling coefficients at scale j′′, i.e., Dα′′,α.

5.3. Saddle point system

For the saddle point system (5) where the (1, 1) block matrix I (identity
matrix) is symmetric positive definite and the matrix DC is nonsingular
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inferred from Lemma 2, we solve it by Schur complement reduction method
[15], {

DCΛh′ = DF −G,

Uh = F − CΛh′ .
(26)

The QMR method [21] is applied on the first equation to obtain Λh′ . Then
Uh follows by the second equation.

6. Numerical examples

To illustrate the improved accuracy order with the smooth fictitious do-
main/multiresolution method, we consider the problem û −4û = f on the
domain ω represented by a cassini oval with boundary γ, i.e., γ = {(x, y) =

(r cos(2πτ), r sin(2πτ)) ∈ R2, τ ∈ [0, 1], r = a

√
cos(4πτ) +

√
(b/a)4 − sin2(4πτ)},

where a = 0.25 and b = 0.255. The control boundary Γ is also a cassini oval
located outside γ with distance 0.1(see in Figure 2).

The extended enforcing function f̃ and boundary conditions lead to the
exact solution û(x, y) = 100((x− 0.5)3− (y− 0.5)3)− x2. The discretization
levels on Ω, Γ and γ are equal, i.e., j = j′ = j′′. We choose the multiresolution
order of UΩ

h , m = 4. The figures 3, 4 show the computed solution uh and
the error uh − û in ω with j = j′ = j′′ = 8. In Table 1, we compare
the convergence rate of SFDLM and FDLM coupled with multiresolution
discretization. It is clear that we obtain not only a smaller error, but also
a higher accuracy order with SFDLM method which well preserves the high
approximation ability of multiresolution methods.

Table 1: Comparison of convergence rate between SFDLM and FDLM

j
ErrL2(ω)

(FDLM)
ErrH1(ω)

(FDLM)
ErrL2(ω)

(SFDLM)
ErrH1(ω)

(SFDLM)
5 6.8889e-002 3.6861e+000 5.5934e-003 5.4005e-001
6 3.2836e-002 2.4729e+000 4.4242e-004 6.0724e-002
7 1.7381e-002 1.8385e+000 1.4280e-005 3.1269e-003
8 8.5636e-003 1.2992e+000 8.4436e-007 2.2511e-004

order 1.003 0.502 4.231 3.743
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Figure 2: Geometry of ω.

To observe the influence of the multiresolution order m on the error con-
vergence rate, we use û(x, y) = sin(2πx) + cos(2πy), m=4 or 6. Since the
exact solution is periodic on fictitious domain Ω, it follows that the La-
grange multiplier defined on control boundary Γ is equal to 0, i.e., λ̄ = 0.
The figures 5, 6 give the computed solution uh and the error uh − û in ω
with j = j′ = j′′ = 8, m = 6. Table 2 shows that the smooth fictitious
domain/multiresolution method is of the orders of accuracy expected from
Theorem 5.

Table 2: Influence of multiresolution order m on convergence rate with SFDLM

j
ErrL2(ω)

(m=4)
ErrH1(ω)

(m=4)
ErrL2(ω)

(m=6)
ErrH1(ω)

(m=6)
5 6.4808e-007 1.3154e-004 7.2319e-008 4.0914e-005
6 3.9516e-008 1.8891e-005 1.9038e-009 1.0763e-006
7 2.5107e-009 1.2732e-006 7.0900e-012 1.3329e-008
8 2.2054e-010 1.2904e-007 1.7128e-013 2.7972e-010

order 3.840 3.331 6.229 5.719

16



Figure 3: Computed solution uh.
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Figure 4: Error of uh − û.

Figure 5: Computed solution uh.
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Figure 6: Error of uh − û.
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7. Conclusions

The main purpose of this short paper is to provide a numerical algo-
rithm of high accuracy order for solving second order elliptic partial dif-
ferential equations on general domain. We adopt the smooth fictitious do-
main/multiresolution method and prove interior error estimate. The numer-
ical results confirm the theoretical analysis. Future work includes implemen-
tation of adaptive spaces of approximation, solution of problems of higher
dimension and simulation of problems with moving boundary.
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