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A. Cuyt, O. Salazar Celis, M. Lukach, K. In’t Hout
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Abstract

Options are a type of financial instrument classed as derivatives, as they derive
their value from an underlying asset.

The equations used to model the option price are often expressed as partial differ-
ential equations (PDEs). Once expressed in this form, a discretization method on a
finite grid can be applied and the numerical valuation obtained. Remains the problem
of writing down an (approximate) closed-form analytic model for the option price in
function of all the variables and parameters, which is the main objective of this paper.

At the same time we also consider the Greeks, which are the quantities represent-
ing the sensitivities of the price to a change in the underlying variables or parameters.
Discrete values for these Greeks can again be derived, either directly from the differ-
entiation matrices occurring in the option price PDE or by solving new but similar
PDEs. Next, analytic models for the Greeks are computed in the same way as for the
option price.

As a prototype case, the Black-Scholes PDE for European call options is considered.

1 Introduction.

The basic product traded in financial option markets is a European call option. It gives
its holder the right, but not the obligation, to purchase from the writer of the option a
prescribed asset for a prescribed price E at a prescribed time T in the future. The quantity
E is called the exercise price or strike price and T is called the maturity time. In return for
granting the option, the writer collects an up-front payment from the buyer.

Black-Scholes. In contemporary financial option pricing theory, the fair value C of a
European call option is evaluated according to a given stochastic model for the evolution
of the underlying asset price. The standard model for the asset price evolution assumes a
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geometric Brownian motion. In their seminal work, Black and Scholes [2] derived from this
and additional assumptions on the market, a partial differential equation (PDE) that must
be satisfied:

∂C

∂t
=

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC, S > 0, t > 0. (1)

Here C = C(S, t) denotes the fair value of the European call option if at t time units before
maturity the asset price equals S. Thus, C is a deterministic function of two independent
real variables, S and t. The parameters r and σ are real and denote the risk-neutral interest
rate and the volatility, respectively. The Black–Scholes PDE (1) is complemented with initial
and boundary conditions:

C(S, 0) = max(0, S − E), S ≥ 0,

C(0, t) = 0, t ≥ 0,

C(S, t) ≈ S, t ≥ 0 and S large.

Note that C(S, 0) is the payoff of the option at maturity.
It is well recognized in the literature that the original assumptions in the Black–Scholes

framework are not fulfilled in the contemporary markets [7]. More advanced asset price
models are being considered, for example with stochastic volatility. Nevertheless, the Black–
Scholes model remains an important tool in financial practice. Furthermore, it constitutes
the germ of a variety of more advanced models that are being considered in the literature
today. In view of this, it serves very well to illustrate our proof of principle in this paper.
Also, since a semi-closed form formula is available for European call option prices (see [2, 10]
and Section 4), it enables a study of the approximation errors.

The approach we follow starts with existing techniques for the numerical solution of the
option pricing PDE with the property that they generate pointwise approximations. First
the parameters E, r, σ are specified and an approximation C̃ to C is obtained on a (uniform
or non-uniform) grid of (S, t) values. For the numerical experiments in this paper we have
applied a standard numerical method which employs a second-order central finite difference
discretization in the S-domain followed by a Crank-Nicolson discretization (implicit trape-
zoidal rule) in the t-domain. This procedure can be repeated several times, which becomes
expensive when considering some advanced (multidimensional) generalizations of the Black-
Scholes PDE. For a few dozen (E, r, σ) triplets and a moderate (S, t) grid, for instance with

100 × 50 points, one quickly obtains hundreds of thousands of values C̃(S, t;E, r, σ). Our
objective in this paper is to construct, after obtaining pointwise approximate option values
for several parameter sets, an accurate, multivariate continuous model for C̃ that allows fast
evaluation of the option value function in terms of all independent variables as well as pa-
rameters. Consequently, option prices can be computed for new values of the variables and
parameters S, t, E, r, σ with minor effort, compared to numerically solving the PDE. This
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approach is highly promising for the large variety of advanced (multidimensional) PDEs,
with multiple parameters, that arise in financial mathematics today, for which no solutions
in semi-closed form are available. The subject is treated in more detail in Sections 4 and 5.

Greeks. Besides the option price we also consider the Greeks, which are the quantities
representing the sensitivities of the option price to a change in the variables and parameters.
In particular, values for the partial derivatives delta, gamma and vega

∆ :=
∂C

∂S
, Γ :=

∂2C

∂S2
, vega :=

∂C

∂σ

are of interest. Since delta and gamma appear in the Black–Scholes PDE (1), finite differ-
ence approximations for these two quantities can directly be obtained during the numerical
solution of (1). Approximations for vega can be computed by simultaneously solving along
with (1) the PDE obtained by differentiating (1) with respect to σ,

∂V

∂t
=

1

2
σ2S2∂

2V

∂S2
+ σS2∂

2C

∂S2
+ rS

∂V

∂S
− rV, S > 0, t > 0.

For the latter PDE homogeneous initial and boundary conditions apply.

2 Domain, dimensionality reduction and duality

Before we apply the rational approximation method described in Section 3 to the data
obtained from the PDE solver, we need to specify the approximation domain. Some regions
are inherently more interesting than others. Moreover, although in theory nothing prevents
us from working with the current 5 variables, the proposed method benefits from some
dimension reduction techniques and exploiting both homogeneity and symmetries. These
issues are described next. Their use also facilitates the graphical illustration of the results.

Domain. Since we know that C ≈ 0 for very small S and C ≈ S for sufficiently large
S, we are especially interested in the region where C/S makes the transition from 0 to 1.
Our domain is ]0, 200] for S, ]0, 100] for E, [0, 0.2] for r, [0, 1] for σ and [0, 3] for time t to
expiration (in years). In Figure 1 we show the (E, r, σ) triplets for which we solve the PDE
(they were randomly generated in the cube [0, 100]× [0, 0.2]× [0, 1]). Since a static 3-d view
is difficult to interpret, we have chosen to give (from left to right) the projections on the
(E, r)–, (r, σ)– and (E, σ)–planes.

Dimensionality reduction. It is convenient to introduce the new variables [7, p.110],[8]

u = ln(S)− ln(E) + rt, (2)

w = σ
√
t, (3)
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Figure 1: Randomly sampled (E, r, σ) in ]0, 100]× [0, 0.2]× [0, 1] (64 triplets).

and consider c(u,w) = C/S. This is allowed for specific types of options. For instance, it is
well-known that European call options are homogeneous of degree one in S and E [2, 10].

Hence each quintuple (S, t;E, r, σ) is mapped to some vector v = (u,w). We use the
computed values for C at (Si, ti;Ei, ri, σi) to obtain

c(ui, wi) = C(Si, ti;Ei, ri, σi)/Si. (4)

Application of Leibniz’s rule gives for the Greeks

∆ :=
∂C

∂S
= c(u,w) +

∂c(u,w)

∂u
= ∆(u,w), (5)

Γ :=
∂2C

∂S2
=

1

S

(
∂c(u,w)

∂u
+
∂2c(u,w)

∂u2

)
=

1

S
γ(u,w), (6)

vega :=
∂C

∂σ
= S
√
t
∂c(u,w)

∂w
=
(
S
√
t
)
κ(u,w), (7)

where the newly introduced γ and κ are functions of (u,w).
For the interesting region where 1/2 ≤ S/E ≤ 3/2 and the ranges of the remaining

variables as above, the ranges of u and w are respectively

ln(1/2) ≤ u ≤ ln(3/2) + 0.6, 0 ≤ w ≤
√

3. (8)

Plots of c, ∆, γ and κ on this domain are shown in Figure 2.
At this point, it is worth noting that given a sufficiently differentiable approximation for

the option price C, approximations for the Greeks can obviously be obtained directly from
differentiating this approximation with respect to S or σ. Equations (5) to (7) indicate that
such approximations can also be derived from differentiating (with respect to u or w) an
approximation for c(u,w). However, such a direct approach is not advised because typically
one order of magnitude in accuracy is lost in each differentiation step. Hence, instead of
differentiating an approximation for c(u,w) we use the computed values for ∆, Γ and vega
at (Si, ti;Ei, ri, σi) to obtain

∆(ui, wi),

γ(ui, wi) = Γ(ui, wi)Si,

κ(ui, wi) = vega(ui, wi)/(Si
√
ti).
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Figure 2: The exact functions expressed in the variables u and w.

From these values we construct independent approximations for each of the Greeks.

Duality. We can further restrict the domain of approximation to either u ≥ 0 or u ≤ 0
due to the following duality [8],[6]:

c(−u,w) = euc(u,w) + 1− eu. (9)

Applying this relation to the Greeks gives for (u,w) 6= (0, 0):

∆(−u,w) = euc(u,w) + 1− eu∆(u,w), (10)

γ(−u,w) = euγ(u,w), (11)

κ(−u,w) = euκ(u,w). (12)
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Let D+ and D− denote the part of the domain where u ≥ 0 and u ≤ 0 respectively.
When extending the dualities (9–12) to approximations for c,∆, γ and κ, we have to take

into account that we may be introducing discontinuities at u = 0. For instance, if c(u,w) on
D− is approximated by r−(u,w) and if we define

r+(u,w) := e−ur−(−u,w) + 1− e−u, (u,w) ∈ D+,

then r+(0, w) = r−(0, w) but the approximation is not differentiable anymore at u = 0.
With ∆, γ and κ the approximation itself even becomes discontinuous so that we need to
define it on the line u = 0 as the average of the approximations on D+ and D−. Note
that this discontinuity is not visible in the displayed figures, such as Figure 4, because the
approximation is sufficiently accurate (the threshold on the relative error is too small to be
visible in the graphics; the discontinuity is visible with a coarser approximation though).

We remark that we compute the approximation r(u,w) on D− (and not on D+) and
extend it from there to the rest of the domain because then the error is not magnified by a
factor eu with u ≥ 0. It is merely multiplied by a factor less than 1. A similar remark was
pointed out in [8].

3 Rational interval interpolation

We aim to capture the underlying parameter dependency with a generalized rational function

r`,m(u,w) =
p`,m(u,w)

q`,m(u,w)
=

∑̀
i=0

pi bi(u,w)

m∑
i=0

qi bi(u,w)

,

where the multivariate basis functions bi(u,w) can be multinomials uk1wk2 (k1, k2) ∈ N2,
or some multivariate orthogonal polynomials, trigonometric or other basis functions. In
what follows we simply take the multinomials as basis functions, ordered by increasing total
degree, with ukw` < uk−iw`+i for i > 0.

The rational function r`,m(u,w) essentially has only `+m+1 degrees of freedom because
one of the coefficients pi and qi can always be fixed to normalize the representation (a
common choice is q0 = 1). Typically, fairly low degree rational functions (i.e. ` + m small)
can accurately approximate functions like the ones shown in Figure 2. This is mainly due
to their outstanding ability to display flat behavior followed by a sudden and steep increase.
As an example, consider different approximations for the univariate slice κ(−0.5, w), where
u = −0.5 is fixed and 0 ≤ w ≤

√
3. It is not difficult to find, using the Black-Scholes formula,
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that an analytical expression for κ(u,w) is

κ(u,w) =
e−

(2u+w2)2

8w2

√
2π

.

For the univariate function κ(−0.5, w), we compare a low degree best rational approximation
to the best polynomial approximation with the same number of unknowns. The distance
is measured using the uniform (Chebyshev) norm ||f(w)||∞ = sup{|f(w)| : 0 ≤ w ≤

√
3}.

Figure 3(a) shows the best rational approximation of degree 4 in numerator and denominator
as well as the best polynomial approximation of degree 8. The polynomial approximation
is clearly a lot worse than the rational approximation, which is visually indistinguishable
from the original function. How much worse is shown in Figure 3(b), where the difference
between κ(−0.5, w) and the rational, respectively the polynomial approximation is shown.
Note the characteristic equi-oscillating behavior of the error curves. The maximum error of
the polynomial is 0.0091, while that of the rational function is 0.00095.
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Figure 3: Univariate approximations for the slice κ(−0.5, w) on 0 ≤ w ≤
√

3.

Although best rational approximations are optimal, their possible non-existence [3] or
non-uniqueness [14] are profound and subtle topics which require special attention. Besides
these theoretical considerations, they are usually computationally more expensive to obtain
and in general require iterative techniques. For instance, for fixed ` and m, the differential
correction algorithm [1] for best discrete rational approximations requires solving a sequence
of linear programming (LP) problems. In the current paper, we propose to solve the involved
approximation problem by a different and very natural method of which the details are given
next.
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As explained in the Sections 1 and 2, from a PDE solver, approximate values f̃i are
obtained at distinct locations (ui, wi), i = 0, ..., s, after the dimensionality reduction. Here
the f̃i denote approximate values for either the option price or one of the aforementioned
Greeks. A useful property of some modern discretization methods, in which the time steps
and the grid sizes are determined adaptively, is their ability to estimate the errors of the
computed values (see for instance [9]). That is, the computed f̃i obtained from such meth-
ods are expected to approximate the (essentially unknown) exact fi within a user-specified
(absolute or relative) tolerance ε > 0. Consequently, the upper and lower bounds

fi = f̃i − ε, fi = f̃i + ε

or
fi = f̃i(1− ε), fi = f̃i(1 + ε), (13)

readily define real-valued intervals Fi = [fi, fi] which encapsulate both the approximate value

f̃i and the exact (but unknown) value fi. In the sequel we work with

fi = f̃i − ε(1 + |f̃i|), fi = f̃i − ε(1 + |f̃i|),

to provide an easy transition between absolute errors in case of small values and relative
errors in case of regular values.

Rather than approximating the point-values f̃i we look for a rational function r`,m(u,w)
which satisfies the interval interpolation conditions

r`,m(ui, wi) ∈ Fi ⇔ fi ≤ r`,m(ui, wi) ≤ fi, i = 0, . . . , s, (14)

and this for the smallest possible `+m with `+m� s. For fixed ` and m and provided that
q`,m(ui, wi) > 0, it follows that the numerator p(u,w) and denominator q(u,w) of r`,m(u,w)
have to satisfy the linear inequalities

fi q`,m(ui, wi) ≤ p`,m(ui, wi) ≤ fi q`,m(ui, wi), i = 0, .., s. (15)

Denote the vector of unknown coefficients by

c = (p0, . . . , p`, q0, . . . , qm)T ∈ R`+m+2

and denote by A the (2s+2)× (`+m+2) constraint matrix implied by the inequalities (15).
In order to obtain a nontrivial vector c 6= 0 which strictly satisfies the component wise
inequalities Ac ≤ 0, we propose the computation of a Chebyshev direction [12] of the
corresponding unbounded polyhedral cone described by Ac ≤ 0 by solving the strictly
convex quadratic programming (QP) problem:

arg min
c∈R`+m+2

(‖c‖2)2

subject to Ajc ≤ −δ ‖Aj‖2 , j = 1, . . . , 2s+ 2.
(16)
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Here δ > 0 is an arbitrary robustness margin, Aj denotes the j-th row of the matrix A and
‖ · ‖2 is the Euclidean norm. For an in-depth discussion of the geometrical interpretation of
this QP formulation and possible alternatives, we refer to the forthcoming [5]. The above QP
problem can for instance be solved using the freely available MATLAB interface qpas [13].

The smallest possible value `+m is determined by solving the QP problem (16) for each
combination of increasing ` + m = 0, 1, 2, . . . until a feasible solution is found. Although
modern QP solvers can efficiently handle several thousands of constraints, we propose a
selection procedure among the given s + 1 data to reduce the total number of constraints
and speed up this process.

4 Modelling large data clouds

Remember that the total number s + 1 of given data can easily reach the hundreds of
thousands. For instance, if for each of the 64 random triplets (E, r, σ) shown in Figure 1,
a 200 × 100 (uniform or non-uniform) (S, t)-grid is constructed, a total of 1.28 × 106 5-
dimensional data points is generated. Now let us transform these points (S, t;E, r, σ) to
2-dimensional data (u,w), without any overlap occuring. Taking also into account the re-
duction to the domain of interest (8), the duality and the extension from negative to positive
u, the number of data that remain in the ranges − ln(3/2) − 0.6 ≤ u ≤ 0 and 0 ≤ w ≤

√
3

is s+ 1 = 292353. For the interval widths, we allow a relative deviation in (13) of ε = 0.005
for the Greeks and only ε = 0.001 on the option price.

In order to further reduce the total number of inequalities in (16) we propose the follow-
ing selection procedure. Of the given s + 1 data intervals, initially only a small number s0

of intervals is selected (for instance, according to a Latin hypercube design) and a rational
function r`0,m0(u,w) is computed that satisfies (14) for these s0 data. These s0 intervals are
called the training data. Then it is checked how many of the original s + 1 interval inter-
polation conditions are automatically satisfied by r`0,m0(u,w) in addition to the s0 imposed
ones. Usually this is quite a lot more. These s + 1 − s0 intervals are called the verification
data.

Among the violated interval verification data, we select s1− s0 additional data points to
compute r`1,m1(u,w) that satisfies (14) for these s0 + (s1 − s0) = s1 data. In other words,
we update the set of training data. These s1 − s0 additional training data are placed where
r`0,m0(ui, wi) deviates most from the given intervals Fi. Because the previous s0 training
data are obviously a subset of the new s1 training data, necessarily `1 +m1 ≥ `0 +m0. That
is, the number of coefficients `1 +m1 + 2 needed to interpolate the updated s1 training data
cannot be less than the previously needed `0 + m0 + 2 coefficients. Hence the search for `1

and m1 can be continued from the diagonal `0 + m0 rather than from scratch each time.
With r`1,m1(u,w) we then check the new s + 1 − s1 verification data again. And so on till
the rational model satisfies all verification data.
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Figure 4: Models based on approximations on the domain D− and extended to D+ by
application of (9–12).

This procedure keeps the computational complexity as low as possible: the solution is
not computed from imposing all s + 1 interval data but rather from a carefully selected
subset which then entails all interpolation conditions. Using this approach we easily achieve
a reduction of s+ 1 by a factor of several thousands of the given large dataset.

Modelling c(u,w),∆(u,w) and κ(u,w). For the rational approximations shown in Fig-
ures 4(a) till 4(c), respectively only 74, 74 and 133 samples are used of the 292353 available
ones. With these small training sets, rational interval interpolants for c−(u,w),∆−(u,w)
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and κ−(u,w) of the form

r`,m(u,w) =

∑
(h,k)∈L phku

hwk∑
(h,k)∈M qhkuhwk

, #L = `+ 1,#M = m+ 1

are computed with L and M respectively given by

{(h, k) ∈ N : 0 ≤ h+ k ≤ 3}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 4} \ {(3, 1)}

for rc
−

9,13(u,w),

{(h, k) ∈ N : 0 ≤ h+ k ≤ 4} \ {(3, 1)}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 3} \ {(1, 2)}

for r∆−
13,8(u,w) and

{(h, k) ∈ N : 0 ≤ h+ k ≤ 4} ∪ {(5, 0), (0, 5)}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 3} ∪ {(4, 0), (0, 4)}

for rκ
−

16,11(u,w). An analytic model as a function of the original variables (S, t;E, r, σ) is
obtained by substituting the change of variables (2) in the final function r(u,w). The
modelling of γ(u,w) is discussed separately.

Modelling γ(u,w). Let N(x) denote the cumulative distribution function (CDF) of the
standard normal distribution,

N(x) =
1

2
+

1

2
erf

(
x√
2

)
.

Then it is easy to verify that [7, p. 110]

c(u,w) = N(u/w + w/2)− e−uN(u/w − w/2)

and that γ(u,w) = κ(u,w)/w. However, if we divide rκ16,11(u,w) by w, we do not obtain a
very good approximation for γ(u,w), although the error |rκ16,11(u,w)−κ(u,w)|/(1+|κ(u,w)|)
is bounded overall by 0.005. This is a consequence of the fact that we need rγ`,m(u,w) to
equal zero when w = 0 except at the point (u,w) = (0, 0). To model such a singularity,
rκ`,m(u,w) need have the proper behaviour near w = 0: the approximation really needs to
decrease very fast for w ≈ 0, taking values of the order of 10−250 and smaller. We therefore
follow another approach for the modelling of γ(u,w). As explained earlier, fitting γ(u,w) by
differentiating an approximation for c(u,w),

γ(u,w) =
∂c(u,w)

∂u
+
∂2c(u,w)

∂u2
,
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Figure 5: Models based on fitting log(κ(u,w)).
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Figure 6: Approximation of κ(u,w)/w = γ(u,w) based on fitting log(κ(u,w)).

is not advised. We rather focus on log(κ(u,w)).

We choose ε = 0.0001 and compute rlog κ−

10,3 (u,w) with the numerator and denominator
degree sets L and M respectively given by

L = {(h, k) ∈ N : 0 ≤ h+ k ≤ 3} ∪ {(0, 4)}, M = {(h, k) ∈ N : 0 ≤ h+ k ≤ 1} ∪ {(0, 2)}.

Only 53 training data are required. In Figure 5 we show exp
(
rlog κ

10,3 (u,w)
)

as an approxima-

tion for κ(u,w) and the true relative error, computed a posteriori. As before, the approx-
imation is constructed on u ≤ 0 and extended to u > 0. The true relative error rises only
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slightly above 0.005. The approximation

exp
(
rlog κ

10,3 (u,w)
)

w
≈ γ(u,w)

is also very good. In Figure 6 we show the function and the true relative error, which is of
course identical to the true relative error on κ(u,w).

5 Modelling sparse data samples

A different challenge is to construct an analytic model r`,m(u,w) from only a minimal number
of data. We now describe the required adaptations to the method of Section 4 when no large
number of verification data is available. In addition we omit to make use of the dualities (9)
and (10 – 12), because we want to illustrate use of the modelling technique when not too
much about the underlying function is known. We still do restrict our analysis to the region
of interest given in (8).

So we start the modelling process with the computation of r`0,m0(u,w) from a small
number of data and we want to refine this model iteratively by sampling as few additional
values as possible. How do we proceed? We discuss the matter in terms of the original
variables (S, t;E, r, σ) instead of the transformed variables (u,w). The latter will still be used
in the computation of the analytic model though. For simplicity, we store the transformation
between the discrete grid of datapoints (S, t;E, r, σ) obtained from the PDE solver and
the discrete set of interpolation points (u,w) used in the models r`,m(u,w) in a table (for
the randomly generated (E, r, σ) given in Figure 1 and uniform 80 × 80 (S, t) grids the
transformation was bijective).

So assume you only have at your disposal the PDE solution at an 80 × 80 (uniform or
non-uniform) (S, t)-grid for 4 (E, r, σ) triplets. In a first step we model these 25600 data
intervals by a rational function r`0,m0(u,w) following the algorithm described in the previous
section. As before, all available data are divided into interpolation points (training data)
and verification points (verification data). But different from Section 4 is that in the end,
we want the model to be (sufficiently) accurate on the 80 × 80 (S, t) grids associated with
each of the 64 randomly selected (E, r, σ) triplets given in Figure 1, while we only want to
collect data on 80× 80 (S, t) grids for a limited number of (E, r, σ) tuples.

So when iterating, several things need to be taken into consideration:

• When having a data cloud of reference (or validation) material besides the interpolation
conditions, the (absolute or relative) model error at these non-interpolation points is
easily obtained. Without this reference material at our disposition, a model error can
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only be estimated from

εi(u,w) :=

∣∣r`i,mi
(u,w)− r`i−1,mi−1

(u,w)
∣∣

1 + |r`i,mi
(u,w)|

,

(u,w) ∈ (S, t;E, r, σ)-grid of size 80× 80× 64

where r`i,mi
and r`i−1,mi−1

respectively denote the analytic models computed from si+1
and si−1 +1 training data, in other words the models from the last and the one but last
set of training data. The denominator in εi(u,w) is again chosen to provide a smooth
transition from relative to absolute error in the case of very small function or model
values.

• The value max(u,w) εi(u,w) is then checked against the threshold ε and here some care
must be paid to avoid a false optimistic result. When r`i,mi

is computed from only a
slight update of the data that produced r`i−1,mi−1

, then the two analytic models may
be so similar that the error estimate εi(u,w) is small on the entire domain. As a first
precaution we can check both

max ε
(1)
i (u,w) ≤ ε,

max ε
(2)
i (u,w) ≤ ε,

(17)

where

ε
(1)
i (u,w) :=

∣∣r`i,mi
(u,w)− r`i−1,mi−1

(u,w)
∣∣

1 + |r`i,mi
(u,w)|

,

ε
(2)
i (u,w) :=

∣∣r`i,mi
(u,w)− r`i−2,mi−2

(u,w)
∣∣

1 + |r`i,mi
(u,w)|

.

As a second precaution we steer any additional sample points moderately away from
the already available data points as described below. This improves at the same time
the conditioning of the interpolation problem, which is an added advantage.

• So when adding interpolation data we avoid samples at positions that are very close
to previously sampled positions (u,w) because these usually add little or no extra
information. Hence we stay some minimal distance δ away from every already sampled
position (u,w), measured using one or other distance function, when collecting a new
sample. On the one hand the value of δ should not be too small, while on the other
hand it should not be so large that it leads us away from an interesting region. A
strategy could be to adapt δ as the iteration continues, in other words, impose a step
dependent distance δi (instead of a constant δ) between the locations of the si + 1
already available data samples and the si+1 − si newly added data samples. Here δi
can be decreased as the iteration proceeds.
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• When adding interpolation points we make a distinction between choosing a new triplet
of parameters (E, r, σ) and choosing some new points (S, t). A new triplet is only
selected after all verification data associated with the last added 80 × 80 grid are
satisfied. The reason for this is that for each separate triplet (E, r, σ) the PDE solver
usually returns a full (uniform or non-uniform) grid of data points in the remaining

variables S and t. So, inspecting arg max ε
(1)
i (u,w) or arg max ε

(2)
i (u,w), in that order

and depending on which one of both violates (17), identifies a new and different triplet
(Ei+1, ri+1, σi+1) for which the PDE solver is then called. Having obtained the solution
at an additional grid of (S, t) values, the technique of the previous section is used to
compute r`i+1,mi+1

(u,w). By this we mean that the values obtained at the grid of (S, t)
locations need not be added all at once to the interpolation conditions, but can for
each new triplet (Ei+1, ri+1, σi+1) be separated into training and verification data.

• Since ε
(1)
i (u,w) and ε

(2)
i (u,w) are only estimates of the error and not guaranteed upper

bounds, we recommend for the stop criterion to divide the objective ε by some safety
factor φ ≥ 1, in order to obtain a more reliable analytic model. This way one safeguards
the technique against underestimating the hardness of the problem. The iteration is
terminated only after

max ε
(1)
i (u,w) ≤ ε/φ,

max ε
(2)
i (u,w) ≤ ε/φ.

(18)

When expressing ε as ε = β−n, where usually β = 2 or 10, we found it useful to choose
φ ≥ β.

• When φ in (18) is too large, then it may happen that the iteration doesn’t stop, while

(17) is satisfied. As a result additional (E, r, σ) tuples are added at arg max ε
(1)
i (u,w) or

arg max ε
(2)
i (u,w) and data on (S, t) grids are generated without much use. It may be

that the approximate model r`i,mi
(u,w) is accurate enough and automatically satisfies

all added interval data. When a whole grid of 6400 data is generated that does not
lead to a single additional interpolation point and an update of the model, we suggest
to decrease φ as the iteration continues, until φ = 1. One runs into this problem for
instance, when choosing φ for κ(u,w) too large.

We illustrate the sparse adaptive sampling technique and compare with the results of
Section 4. As mentioned, for each of 4 start triplets (E, r, σ) data are collected at 6400
(S, t) locations. This adds up to a total of 25600 samples. We target a relative deviation of
ε = 0.05 for the Greeks and ε = 0.005 for the price c(u,w). We further choose φ = 50 for all
functions except κ(u,w) where we take φ = 10. A uniform choice of δ = 0.01 worked well.

The first 25600 interval data are all interpolated from only 101 samples for c(u,w), 118
samples for ∆(u,w) and 88 samples for κ(u,w). Now that the analytic model passes through
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(c) κ(u,w) ≈ rκ4,7(u,w)

Figure 7: Models based on sparse interval interpolations.

all 25600 initial data intervals, we can add a new (E, r, σ) triplet and call the PDE solver to
deliver a new grid of solutions at 6400 (S, t) tuples. The location of the new (E, r, σ) triplet

is decided from inspecting arg max(u,w) ε
(1)
i (u,w), or arg max(u,w) ε

(2)
i (u,w), and checking the

transformation table for the 5-variable vector that is associated with the (u,w) location
where a maximum is attained.

Continuing in this way we ultimately obtain the models graphed in Figure 7. The nu-
merator and denominator index sets L and M of the graphed models are respecively given
by

{(h, k) ∈ N : 0 ≤ h+ k ≤ 3} ∪ {(4, 0), (0, 4)}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 4} \ {(1, 3), (2, 2)}
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for rc11,12(u,w),

{(h, k) ∈ N : 0 ≤ h+ k ≤ 2} ∪ {(3, 0), (0, 3)}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 2} ∪ {(3, 0), (0, 3)}

for r∆
7,7(u,w) and

{(h, k) ∈ N : 0 ≤ h+ k ≤ 2} \ {(1, 1)}, {(h, k) ∈ N : 0 ≤ h+ k ≤ 2} ∪ {(3, 0), (0, 3)}

for rκ4,7(u,w). The rational approximations are computed from only 17 (E, r, σ) and a total
of 145 (u,w) interpolation points for c, 8 (E, r, σ) and 132 (u,w) interpolation points for ∆
and 4 (E, r, σ) and 88 (u,w) interpolation points for κ.

Since the Black-Scholes PDE serves as a benchmark here, and since we know the explicit
expressions for C(S, t) and the Greeks in terms of the parameters E, r and σ, we can compute
(a posteriori) the true overall error (following the formula used in the definition of εi in order
to accomodate both small and regular values):

• for rc11,12(u,w) it equals 0.0053,

• for r∆
7,7(u,w) it is 0.0499,

• and for rκ4,7(u,w) we obtain 0.0476.

When changing the start data for the computation of the rational models, the results
differ of course. But from the many, many runs that we have performed, we are showing
results that are very representative. For instance, κ(u,w) and ∆(u,w) were easier to model
than c(u,w) requiring less (E, r, σ) tupels, meaning less calls to the PDE solver to generate
new data, and less interpolation points overall (of course the accuracy conditions on the
Greeks are more relaxed).

6 Conclusions

We describe how to compute analytic models for option prices and Greeks, both from a large
data cloud (in Section 4) and from a smaller set of adaptively collected data (in Section 5).
We employ rational interval interpolation and, as a prototype case, consider the reputed
Black-Scholes PDE for European call options. The rational interval interpolation technique
is especially useful for capturing steep increases or decreases, which are common in financial
applications, such as in the Greeks.

A relative accuracy of 1‰ for c(u,w) and 5‰ for the functions ∆(u,w) and κ(u,w) is
easy to guarantee when working with a large data set. In case of a selective smaller data
set we easily achieve respectively 5‰ and 5%. The rational interval interpolation technique
can in principle be extended to more advanced option pricing models in finance, with more
variables and parameters, for which no exact solutions in semi-closed form are available.
If desired, the quadratic programming problem (16) can also be extended with positivity
conditions for the denominator, as in [4], or monotonicity, as in [11].
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