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Abstract

A well known property of a harmonic function in a ball is that its value at the cen-
tre equals the mean of its values on the boundary. Less well known is the more general
property that its value at any point x equals the mean over all chords through x of
its values at the ends of the chord, linearly interpolated at x. In this paper we show
that a similar property holds for polyharmonic functions of any order when linear
interpolation is replaced by two-point Hermite interpolation of odd degree.
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1 Introduction

Let ∆ be the Laplace operator
∑n

i=1
∂2/∂x2i in R

n, n ≥ 2. A function u that is C2m,
m ≥ 1, in a domain is said to be polyharmonic of order m if ∆mu = 0 there, where
∆k = ∆(∆k−1). Various properties of polyharmonic functions have been developed
(Almansi 1899), (Nicolesco 1935), (Aronszajn, Creese & Lipkin 1983), (Hayman &
Korenblum 1993). In this paper we derive a new property, based on a method
proposed by Gordon & Wixom (1974) for interpolating functions in convex domains
given data on the boundary.

Let B(R) denote the ball in R
n of radius R > 0,

B(R) = {x ∈ R
n : |x| < R},

where |x| = (
∑n

i=1
x2i )

1/2. The boundary of B(R) is the sphere

S(R) = {y ∈ R
n : |y| = R}.
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Suppose that u is a polyharmonic function in B(R) of order m, and that u is Cm−1

in the closure B(R) = B(R) ∪ S(R).
Fix some point x ∈ B(R) and let µ be any unit vector in S

n−1, the unit sphere
in R

n. The line through x in the direction µ intersects S(R) at two points,

yj = x+ sjµ, j = 0, 1, (1)

where s0 < 0 < s1. Specifically, using the scalar product in R
n,

yj · yj = |yj |
2 = R2,

and we deduce that

sj = −x · µ− (−1)j
√

(x · µ)2 +R2 − |x|2, j = 0, 1. (2)

Let pµ(s) be the unique polynomial of degree ≤ M := 2m− 1 such that

dk

dsk
pµ(sj) = Dk

µ
u(yj), k = 0, 1, . . . ,m− 1, j = 0, 1,

where Dµ denotes the directional derivative in the direction µ. We will show

Theorem 1

u(x) =
2

ωn−1

∫

Hn−1

pµ(0) dµ, (3)

where dµ denotes the element of (n − 1)-dimensional area, ωn−1 is the surface area
of Sn−1, and H

n−1 is any hemisphere of Sn−1, for example,

H
n−1 = {µ = (µ1, . . . , µn) ∈ S

n−1 : µ1 ≥ 0}.

The harmonic case of the theorem (m = 1) was shown for n = 2 in Gordon &
Wixom (1974) (attributed to W. W. Meyer) and for n > 2 in Belyaev (2006). The
biharmonic case for n = 2 and R = 1 was derived in Floater (2015), based on the
formula of (Polyanin 2002, Sec. 9.4.1-4) for the solution to the biharmonic equation.

2 The harmonic case

In the harmonic case, m = 1,

pµ(0) =
s1u(y0)− s0u(y1)

s1 − s0
.

Writing yj = yj,µ and sj = sj,µ, j = 0, 1, to indicate dependence on µ, observe that
y0,µ = y1,−µ, and sj,µ = −s1−j,−µ, j = 0, 1, and thus we can express the right hand
side of (3) as

2

ωn−1

∫

Sn−1

−s0u(y1)

s1 − s0
dµ. (4)
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Now y1 = Rν for some ν ∈ S
n−1, and we change the variable of integration from µ

to ν. The relation between the (n− 1)-dimensional area elements dµ and dν is

dµ =
cosα

|y1 − x|n−1
dy1 =

Rn−1 cosα

|y1 − x|n−1
dν, (5)

where α is the angle between µ and ν. Since α is also the angle at y1 between the line
segments [y1,0] and [y1,x0], where x0 is the midpoint of the line segment [y0,y1],
we have

cosα =
|x0 − y1|

R
=

s1 − s0
2R

. (6)

Further, by the Intersecting Chords Theorem (ICT) for x in B(R),

(−s0)s1 = |y0 − x||y1 − x| = (R− |x|)(R+ |x|) = R2 − |x|2 (7)

(which can also be seen from (2)). Hence,

−s0 = (R2 − |x|2)/s1,

and substituting this and (5) and (6) into (4) shows that the right hand side of (3) is

Rn−2(R2 − |x|2)

ωn−1

∫

Sn−1

u(Rν)

|x−Rν|n
dν. (8)

This we recognize as the Poisson integral formula for u(x) (Gilbarg & Trudinger
1983).

3 Concentric spheres

To deal with general m we first establish a mean value property for u with respect
to concentric spheres, and show later, in Section 4, that Theorem 1 is the limiting
case as the spheres coallesce.

Let R1, . . . , Rm be any sequence of radii such that

|x| < R1 < R2 < · · · < Rm < R.

We will make use of a representation of u with respect to S(R1), . . . , S(Rm) due to
Duffin & Nehari (1961). First recall that u has the unique Almansi representation

u(x) =
m−1∑

l=0

ul(x)|x|
2l, (9)

for functions u0 . . . , um−1 that are harmonic in B(R); see (Almansi 1899), (Nicolesco
1936), and (Aronszajn et al. 1983, Chap. 1). By Lagrange polynomial interpolation
of degree m− 1,

|x|2l =
m∑

j=1

R2l
j

m∏

k=1
k 6=j

|x|2 −R2
k

R2
j −R2

k

,
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and substituting this into (9) gives the representation of u of (Duffin & Nehari 1961),

u(x) =
m∑

j=1

v(x;Rj)
m∏

k=1
k 6=j

|x|2 −R2
k

R2
j −R2

k

, (10)

where, for any ρ, 0 < ρ < R,

v(x; ρ) :=
m−1∑

l=0

ul(x)ρ
2l. (11)

Observe that v(·, ρ) is harmonic for each ρ, and, comparing (11) with (9), we see that
if |x| = Rj , then v(x, Rj) = u(x), i.e., v(·, Rj) agrees with u on the sphere S(Rj).

Consider now, as in Section 2, the line in the direction µ ∈ S
n−1 through x. It

intersects the spheres S(R1), . . . , S(Rm) at the 2m points

zj = x+ tjµ, −m+ 1 ≤ j ≤ m,

where
t−m+1 < · · · < t0 < 0 < t1 < · · · < tm.

The intersections with S(Rj) are z1−j and zj , j = 1, . . . ,m. Let qµ(s) be the poly-
nomial of degree ≤ M such that

qµ(tj) = u(zj), −m+ 1 ≤ j ≤ m.

Using the representation (10) we will show

Lemma 1

u(x) =
2

ωn−1

∫

Hn−1

qµ(0) dµ. (12)

Proof. From the Lagrange form of qµ(s),

qµ(0) =
m∑

j=−m+1

Lju(zj),

where

Lj =
m∏

k=−m+1
k 6=j

−tk
tj − tk

.

In analogy to the derivation of (4), writing Lj = Lj,µ to indicate its µ-dependence,
we find L1−j,µ = Lj,−µ, and therefore the right hand side of (12) is

2

ωn−1

∫

Sn−1

m∑

j=1

Lju(zj) dµ. (13)
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For j = 1, . . . ,m, we can express Lj as

Lj =
−t1−j

tj − t1−j

m∏

k=1
k 6=j

tkt1−k

(tj − tk)(tj − t1−k)
. (14)

By ICT for x in B(Rk) we have

tkt1−k = −|zk − x||z1−k − x| = |x|2 −R2
k.

For k > j in (14), by ICT for zj in B(Rk),

(tj − tk)(tj − t1−k) = −|zk − zj ||zj − z1−k| = R2
j −R2

k.

For k < j in (14), by symmetry,

tk + t1−k = tj + t1−j ,

and so by ICT for zk in B(Rj),

(tj − tk)(tj − t1−k) = (tj − tk)(tk − t1−j) = |zj − zk||zk − z1−j | = R2
j −R2

k,

again. Thus,

Lj =
−t1−j

tj − t1−j

m∏

k=1
k 6=j

|x|2 −R2
k

R2
j −R2

k

.

Substituting this into (13), and since v(x;Rj) can be expressed as (4) with R = Rj ,
we find that (13) equals the right hand side of (10), which equals u(x). ✷

4 Proof of Theorem 1

To prove Theorem 1 from Lemma 1 it remains to show that

∫

Hn−1

qµ(0) dµ →

∫

Hn−1

pµ(0) dµ (15)

as R1, . . . , Rm → R, under the assumption that u is Cm−1 in B(R). The convergence
of (15) is equivalent to

∫

Hn−1

(u(x)− qµ(0)) dµ →

∫

Hn−1

(u(x)− pµ(0)) dµ. (16)

Fix µ ∈ H
n−1. By the Newton error formula for Lagrange and Hermite interpolation,

if uµ(s) := u(x+ sµ), s0 ≤ s ≤ s1, then uµ ∈ Cm−1[s0, s1] and

u(x)− pµ(0) = uµ(0)− pµ(0) = sm0 sm1 [s0, . . . , s0
︸ ︷︷ ︸

m

, s1, . . . , s1
︸ ︷︷ ︸

m

, 0]uµ,

u(x)− qµ(0) = uµ(0)− qµ(0) = t−m+1 · · · tm[t−m+1, . . . , tm, 0]uµ.

(17)
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If R1, . . . , Rm → R, then t−m+1, . . . , t0 → s0 and t1, . . . , tm → s1 and, by the theory
of divided differences (Isaacson & Keller 1994), (Conte & de Boor 1980),

[t−m+1, . . . , tm, 0]uµ → [s0, . . . , s0
︸ ︷︷ ︸

m

, s1, . . . , s1
︸ ︷︷ ︸

m

, 0]uµ,

and it follows from (17) that u(x)− qµ(0) → u(x)−pµ(0). Moreover, for R1, . . . , Rm

close enough to R, it follows from (17) that |u(x) − qµ(0)| is bounded by a con-
stant, independent of µ ∈ H

n−1, and this proves the convergence of (16) and hence
Theorem 1.

5 Boundary derivatives

To express the integral formula (3) in terms of the boundary derivatives of u, we
can first express the Hermite polynomial pµ in Bernstein form (Prautzsch, Boehm &
Paluszny 2002, Sec. 4.4) as

pµ(s) =
M∑

j=0

bjB
M
j (λ), (18)

where λ = (s− s0)/(s1 − s0), and

BM
j (λ) =

(
M

j

)

λj(1− λ)M−j ,

and

bj =

j
∑

k=0

(
j

k

)
(M − k)!

M !
(s1 − s0)

kDk
µ
u(y0),

bM−j =

j
∑

k=0

(−1)k
(
j

k

)
(M − k)!

M !
(s1 − s0)

kDk
µ
u(y1),

for j = 0, 1, . . . ,m− 1. From this we find

pµ(s) =
m−1∑

j=0

1

j!
(s1 − s0)

j
(
aj,m(λ)Dj

µ
u(y0) + (−1)jaj,m(1− λ)Dj

µ
u(y1)

)
, (19)

where

aj,m(λ) =

m−1−j
∑

i=0

(
M − j

i

)

λi+j(1− λ)M−i−j .

Then, similar to the derivation of (4) and (13), we obtain a more explicit form of (3):

Corollary 1

u(x) =
m−1∑

j=0

(−1)j

j!

2

ωn−1

∫

Sn−1

(s1 − s0)
jaj,m

(
s1

s1 − s0

)

Dj
µ
u(y1) dµ.

6



From this we obtain an apparently new mean value property of u at the centre of the
ball B(R) by specializing to x = 0. In that case, s1 = R, s0 = −R, and y1 = Rµ,
and we deduce

Corollary 2

u(0) =
1

4m−1

m−1∑

j=0

cj,m
(−2R)j

j!ωn−1

∫

Sn−1

Dj
µ
u(Rµ) dµ,

where cj,m is the partial sum of binomial coefficients,

cj,m =

m−1−j
∑

i=0

(
M − j

i

)

.

The first few cases of the coefficients cj,m are

c0,1 = 1,

(c0,2, c1,2) = (4, 1),

(c0,3, c1,3, c2,3) = (16, 5, 1)

(c0,4, c1,4, c2,4, c3,4) = (64, 22, 6, 1).

6 Poisson-type integral

It is interesting to compare the integral formula (3) with the Poisson-type integral
formula derived by (Duffin & Nehari 1961) and (Edenhoffer 1975). Equation (10)
expresses u(x) as the value at |x|2 of the Lagrange polynomial interpolant of degree
≤ m− 1 at the points R2

j to the values v(x;Rj), j = 1, . . . ,m. Therefore, taking the
limit as R1, . . . , Rm → R makes u(x) the Taylor series,

u(x) =

m−1∑

i=0

1

i!
(|x|2 −R2)i

∂i

∂(R2)i
v(x;R).

By the Leibniz rule applied to the product of 1/(|x|2 − R2) and v(x;R), we can
rewrite this as

u(x) =
(|x|2 −R2)m

(m− 1)!

∂m−1

∂(R2)m−1

(
v(x;R)

|x|2 −R2

)

.

Applying the Poisson formula (8) to v now gives

u(x) =
−(|x|2 −R2)m

(m− 1)!ωn−1

∫

Sn−1

∂m−1

∂(R2)m−1

(
Rn−2u(Rν)

|x−Rν|n

)

dν, (20)

as found by (Duffin & Nehari 1961) and (Edenhoffer 1975).
Unlike (3), this formula requires repeated differentiation in the integrand with

respect to R2, and it would be more difficult to derive Corollary 2 from this for
general m. One might also try to prove Theorem 1 by transforming (3) into (20). In
the special case that n = 2 and m = 2, this was the approach used in (Floater 2015),
based on expressing the first directional derivative with respect to µ at a point on the
sphere as a linear combination of a normal and tangent derivative. This approach,
however, does not look promising when either m ≥ 3 or n ≥ 3.
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7 Final remarks

• Various numerical integration methods can be used to evaluate the integral in
(3) and to verify Theorem 1 and Corollaries 1 and 2 numerically. A simple
choice in the planar case (n = 2) is to let µ = (cos θ, sin θ) and use the periodic
trapezoidal rule with respect to the angle θ, as suggested in (Gordon & Wixom
1974).

• The linear-based method of (Gordon &Wixom 1974) (m = 1) for general convex
domains has recently gained interest as a method of constructing generalized
barycentric coordinates (GBCs) in polygonal domains (Belyaev 2006), (Manson,
Li & Schaefer 2011), (Li & Hu 2013), (Li, Ju & Hu 2013), (Floater 2015).
GBCs have various applications in graphics and geometric modelling, such as
surface parameterization and the deformation of images and shapes. Although
Gordon-Wixom coordinates do not have a simple closed form like Wachspress
and mean values coordinates for example, they have the advantage of being
‘pseudo-harmonic’, i.e., they are close to harmonic when the polygon is close to
a circle. This paper shows that Gordon-Wixom coordinates of any order m are
similarly ‘pseudo-polyharmonic’. This means that, at least for convex domains,
Gordon-Wixom coordinates of general order could be considered as a practical
alternative to polyharmonic coordinates: requiring less computational effort,
but approximating the polyharmonic ones. For shape deformation, the ad-
vantage of using biharmonic coordinates instead of harmonic ones was recently
demonstrated in (Weber, Poranne & Gotsman 2012), and in that case one might
consider the alternative of Gordon-Wixom coordinates of order m = 2.
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Springer.

Weber, O., Poranne, R. & Gotsman, C. (2012), ‘Biharmonic coordinates’, Comput.

Graph. Forum 31, 2409–2422.

9


