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Abstract

We improve the usual relative error bound for the computation of ™ through
iterated multiplications by x in binary floating-point arithmetic. The obtained error
bound is only slightly better than the usual one, but it is simpler. We also discuss
the more general problem of computing the product of n terms.
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nentiation
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1 Introduction

1.1 Floating-point arithmetic and rounding errors

When critical applications are at stake, one may need certain yet tight error bounds on
the results of numerical computations. The manipulation of these error bounds (either
paper-and-pencil manipulation, or dynamical error analysis) will be made easier if these
bounds are simple. This paper deals with the calculation of a certain, tight and simple
error bound for the evaluation of integer powers by the iterative algorithm in floating-
point arithmetic.

In the following, we assume a radix-2, precision-p, floating-point (FP) arithmetic. To
simplify the presentation, we assume an unbounded exponent range: our results will be
applicable to “real life” floating-point systems, such as those that are compliant with the



IEEE 754-2008 Standard for Floating-Point Arithmetic [3, 6], provided that no underflow
(i.e., no subnormal values are generated) or overflow occurs (the underflow/overflow issues
are briefly discussed in Section[5]). In such an arithmetic, a floating-point number is either

zero or a number of the form
o ex—p+1
r=X- 2% ,

where X and e, are integers, with 2P~ < |X| < 2P — 1.

The IEEE 754-2008 Standard requires that the arithmetic operations be correctly
rounded: a rounding function must be chosen among five possible functions defined by
the standard. If o is the rounding function, when the arithmetic operation (aTb) is
performed, the value that must be returned is the FP number o(aTb). Our error bounds
will be given assuming that we use a round-to-nearest rounding function RN, with any
choice in case of a tie. However, when we build examples (for instance for checking how
tight are the obtained bounds), we use round to nearest ties to even, which is the default
rounding function.

Recently, classic error bounds for summation and dot product have been improved by
Jeannerod and Rump [8] [5]. They have considered the problem of calculating the sum of
n FP numbers z1, 2o, ..., z,. If we call float(}", z;) the computed result and u = 277
the rounding unit, they have shown that

n

float (2:; m) =Y

=1

<m—1)-u 1

(notice that there is no restriction on n), which is better than the previous bound [2]

p.63]
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We are interested in finding if a similar simplification is possible in the particular
case of the computation of an integer power x™. More precisely, we wish to know if
for “reasonable” values of n the result computed using the “naive”; iterative, algorithm
(Algorithm |1 below) is always within relative error (n — 1) - u from the exact result.

This is “experimentally true” in binary32/single precision arithmetic: we did an ex-
haustive check for all x € [1;2[ in the binary32 format (22* numbers to be checked) until
overflow for 2". For the smallest number larger than 1, namely z = 1+ 2u, n ~ 7.5 x 108
is needed to reach overflow. Our test used a 100-bit interval arithmetic provided by the
MPFTI [7] package.

In this paper, we prove—under mild hypotheses—that this result holds for all “rea-
sonable” floating-point formats (we need the precision p to be larger than or equal to
5, which is always true in practice), provided that n is less than /23 —1/y/u. This
restriction on n, discussed in Section is not a problem for wide FP formats (e.g.,
binary64 or larger). It may be a significant constraint for small formats (binary32 or
smaller).

'We assume that n - u < 1 when using 7,.



1.2 Relative error due to roundings

Let a and b be floating-point numbers whose product z = ab is positive. Let Z = RN(z)
be their computed product. It is well known that

(1—w)-2<zZ<(1+u)- =z (3)

Now, assume that we wish to evaluate the non-negative product a; - as---a, of n
floating-point numbers, and that the product is evaluated as

RN(RN(- - RN(RN(ay - az) - az) - -+ ) - an). (4)

Define 7, as the exact value of a; - - - a,, and 7, as the computed value. A simple induc-
tion, based on , allows one to show

Theorem 1. Let aq, ..., a, be floating-point numbers whose product is nonnegative, m, =
ay -« -y, and T, the computed value using . Then we have

(1—u)"tm, <7 < (L+uw)" 'm,. (5)

Therefore, the relative error of the computation, namely |7, —7, |/, is upper-bounded
by (1 +u)"~' — 1, which is less than ~,_; as long as (n — 1) - u < 1 (which always holds
in practical cases). See for instance [I].

In our experiments, we always observed a relative error less than (n —1)-u for n until
< 27/2 If this was a valid bound, it would be slightly better, and easier to manipulate
than v,_;. In the general case of an iterated product, we did not succeed in proving
that. We could only automatically build cases for which the attained relative error is
extremely close to, yet not larger than, (n — 1) - u for n < 2P/? (see Section @ We
also found counterexampleﬂ (in the special case of the computation of z™) for n ~ 2P.
However, in the particular case n < 4, one can easily prove that the relative error is less
than (n — 1) - u. This is done as follows.

First, as noticed by Jeannerod and Rump [4], the bound w on the relative error due to
rounding can be slightly improved: if ¢ is a floating-point number, then [t — RN(¢)|/t <
u/(1 4+ w) (incidentally, if RN is round-to-nearest ties to even, that bound is attained
when ¢ = 1 + u, which shows that the bound cannot be improved further).

A consequence of this is that u can be replaced by u/(1 + u) in (5]). In the general
case (that is, for any n), this improvement does not suffice to show that the relative error
is less than (n — 1) - u, and yet, when n < 4, we can use the following result.

k
(1+L> <1l4+k-u.
1+u

Proof. Straightforward by separately considering the cases k = 1,2, and 3. m

Property 1. If k < 3 then

By taking k£ = n — 1, we immediately deduce that for n < 4, the relative error of the
iterative product of n FP numbers is bounded by (n — 1) - w.

2Good candidates are machine numbers less than but very close to 2™/4, where m and ¢ are small
integers, such that 7,1, and 75 have the same significand for some k.
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1.3 The particular case of computing powers

In the following, we are interested in computing x", where x is a FP number and n is an
integer. One shows by induction that the bound provided by Theorem [I| applies not only
to the case that was discussed above (computation of RN(--- RN(RN(z-z)-z)----)-z) but
to the larger class of recursive algorithms where the approximation to z** is deduced
from approximations to ¥ and z by a FP multiplication. However, we will prove a
(slightly) better bound only in the case where the algorithm used for computing 2™ is
Algorithm (1| below (i.e., we compute powers using iterated multiplications). Incidentally,
when n is not known at compile-time (i.e., it is not a constant), computing z" using a
“smart” algorithm such as exponentiation by squaring is not so efficiently implementable
in modern pipeline architectures, and it also requires tests that may be slow (because
of non-predictable branches) in front of a floating-point multiplication. Hence, although
the logarithmic-time smart algorithms necessarily beat the linear-time iterated product
algorithm ultimately, our tests show that this is not the case until n is around 10. Also,
there are a few applications where one needs to know all the powers ¢, i < n of a given
number z. For these applications, obviously, the iterated product algorithm is of interest.

Algorithm 1 (naive-power(z,n)).
/Zfl —
for k=2 ton do
L/L'\k < RN(LL' . i/L’\kfl)
end for
return T,

We wish to prove

Theorem 2. Assume p > 5. If

n <213 —1.20/2

then
T, — 2" < (n—1)-u-|z"|.

To prove Theorem [2] it suffices to prove it in the case 1 <z < 2: in the following we
will therefore assume that z lies in that range.

We prove Theorem [2]in Section [3] Before that, in Section [2], we give some preliminary
results. In Section [4] we discuss the tightness of our new bound, and in Section [ we
raise brief remarks about possible underflow /overflow issues. Section [f] is devoted to a
discussion on the possible generalization of this bound to the product of n floating-point
numbers.

2 Preliminary results

Let us start with an easy remark.

Remark 1. Since (1 —u)" ' >1—(n—1)-u for alln > 2 and u € [0,1], (8) suffices
to show that (1 — (n — 1) - u) - 2™ < Z,,. In other words, to establish Theorem |4, we only
need to show that T, < (14 (n—1)-u) - 2"

4



We also have,

Lemma 1. Let t be a real number. If

2°<w-2°< Jt| <2t e € Z (6)
then
‘RN(t)—t‘ u
hih SV Rt
t Tw

Lemma [f] is a straightforward consequence of the relations |RN(¢) — | < u-2¢ and
w-2° < |t
For ¢t # 0, we will define t as the significand of t, namely

t

b= 9[log, [{]] -

Lemmall]is at the heart of our study: if at least once in the execution of Algorithm [T}
X - Tp—_1 is such that x - Z;_; is large enough to sufficiently reduce the error bound on
the corresponding FP multiplication Ty «— RN(x - Zx_1), then the overall relative error
bound becomes smaller than (n — 1) - u. More precisely, we will show that, under some
conditions, at least once, x - Tj,_; is larger than 1+mn?u, so that in the term (1 +w)"?

can be replaced by
u
T+u)" 2 (1 :
(1+u) ( +_1+4ﬂu)

Therefore, we need to bound this last quantity. We have,

Lemma 2. If 0 < u < 2/(3n?) then

(1+u)”—2-(1+ )§1+(n—1)-u. (7)

14+ nu
Proof. Proving Lemma [2| reduces to proving that the polynomial
Py(u) = (14 (n — Du)(1 +n*u) — (1 +w)" (1 + n’*u + u)

is > 0 for 0 < u < 2/(3n?).
Notice that for u > 0, we have

2 U3

In(1 <u——+ —.
n(l+u) <u 2+3

From In(1 + u) < u we also deduce that (n — 2)In(1 + u) < (n — 2)u < 1/(2n). For
0<t<1/6,e <1+t+ %tQ. Therefore, for 0 < u < 2/3n?, to prove that P,(u) > 0 it
suffices to prove that

Qn,u) =1+ (n—1)u) (n®u+1)

- (1 F(n—2)(u—1/2u® +1/3u¥) +3/5 (n— 2)* (u—1/2u* + 1/3u3)2> 8)
X (n*u+u+1) > 0.



By defining a = n*u, Q(n,u) = R(n,a), with

2 2
_ _1a%*Ba=2) 1 a2(29a+19) |, 1 @*(3a2-17a-7)
R(n’a)__gT+1_0 n3 5

n4

1 dd(82a-5) 1 a® (3302187 a+20) 1 a*(33a-8)

30 nd 60 nb 15 n’

4(12a2-153 a+52 5(4q— 5(a2—14a+21
Jﬁa( w15 )_%a%w_%a(anma ) 9)

Multiplying R(n,a) by 5n%/a?, we finally obtain

S(n,a) = —3a+2+ (%a—ir %) n-1 4 8a°=17a=7 _ 1 a(82a-5)

n2 6 n3
1 a(33a%—187a+20) 41 2(33a-8) | 1 a?(12a2-153 a+52)

12 n4 3 nd 12 nb

ol (10)
_a®(4a=7) 19 (a —14a+21) + 4 a*(a—2) 1 a*(5a—8)
n’ 3 n® 3 n9 3 nlo

We wish to show that S(n,a) > 0 for 0 < a < 2/3. Let us examine the terms of S(n,a)
separately. For a in the interval [0,2/3] and n > 3:

e the term —3a + 2 is always larger than 0;

29 19

e the term 2—= is always larger than 19/(2n);

e the term % is always larger than —6/n;

e the term — ““ﬁ*ﬁs) is always larger than —7/(10n);

1 a(33a%-187a+20)

e the term —; — is always larger than —17/(10000n);

e the term % % is always larger than —3/(10000n);

1 @ (12 a2—153 a+52)

e the term 45 — is always larger than —69/(10000n);
e the term —a3(4n‘$*7) is always larger than 0;

1 @®(a?-14a+21) .
e the term —3 ———5— is always larger than —6/(10000n);

e the term % 9-2) i5 always larger than —6/(100000n);

n9

1 a*(5a—8)

e the term —3 — 15— is always larger than 0;

a®

e the term % <7 is always larger than 0;




e the term —3 ;—fz is always larger than —1/(1000000n).

By summing all these lower bounds, we find that for 0 < a < 2/3 and n > 3, S(n,a) is
always larger than 2790439 /(10000007). O

Let us deduce two consequences of Lemma[2] The most important is Lemma [3] below,
which is the basis of almost all subsequent results. It says that if in Algorithm [I] at least
one rounding is done towards zero, the desired result is obtained.

Lemma 3. Assumen < +/2/3-2P/2. If for some k < n, we have RN(x-Tp_1) < - Tp_1,
thenz, < (14 (n—1) u)z”

Proof. We have
Tn < (1+u)" 2™
Lemma [2 implies that (1 + «)""? is less than 1+ (n — 1) - u. Therefore,
T, <(1+(n—1) u)z"
0

Now, by combining Lemma [I] and Lemma [2] if there exists k, 1 < k < n — 1, such
that
r-Tp > 140 u,
then
(14 u)"

1—i—n2 )-x"§(1+(n—1)-u)-x",

so that:

Remark 2. Assume n < 4/2/ . P/, If there exists k, 1 < k < n — 1, such that
T > 14+n% u, then, < (1 (n—l) w)z™.

3 Proof of Theorem [2

The proof is articulated as follows.

e First, we show that if z is close enough to 1, then when computing RN(2?), the
rounding is done downwards (i.e., RN(2?) < 2?), which implies, from Lemma [3]
that Z, < (1+ (n — 1) - w)z™. This is the purpose of Lemma 4]

e Then, we show that in the other cases, there is at least one k¥ < n — 1 such that
T - Ty > 1+ n?-u, which implies, from Remark , that 7, < (1+ (n—1) - u)a”

Lemma 4. Let v = 1+ k- 277" = 1 4 2ku, where k € N (all FP numbers between 1
and 2 are of that form). We have x> = 1+ 2k - 271 4 k2. 27242 50 that if k < 2P/~

e, if 1 <z <1422, then Ty = 14 2k - 27PH1 < 22, which, by Lemma[d, implies
T, <1+ (n—-1Nu)- =z

Assume u < 2/(3n?), ie., n < /2/3-27/% (later on, we will see that a stronger
assumption is necessary). Remark [2] and Lemma {4| imply that to prove Theorem [2 we
are reduced to examine the case where 1 + 2P/2y < z < 2. For that, we distinguish
between the cases where 2 < 1 + n?u and 22 > 1 + n’u.




3.1 First case: if 22 <1+ n2u
From z > 1+ 27/%24 > 1 + nu, we deduce
2" > (1 +nu)" > 1+ n’u,
so that, from Lemma [3| we can assume that
Tpo1 - > (14 nu)

(otherwise, at least one rounding was done downwards, which implies Theorem. There-
fore

e if T, 1o <2, then T, 1x > (1+n?u), so that, from Remark " < (I+(n—1)-u)-a™

e if 7,_1x > 2, then let k& be the smallest integer such that Z;_;x > 2. Notice that
since we have assumed that 22 < 1 + n?u, we necessarily have k¥ > 3. We have

~ 2 2
Tpog > 2> ——
T T VT
hence
Foyoa > 2 (11)
Tpo T .
2 V14 nPu- (14 u)
Now, define

op+1 1\ 2/3
Q, = — 1.
! (2p+ 1>

For all p > 5, a, > a5 = 0.74509 - - -, and oy, < V/2%/% — 1 = 0.7664209 - - - . If

n<a,-2P? (12)

then

1+ nu < 2\

n°u
—\2r+1 ’

so that

(1+n2u)*?. (14+u) <2,
so that

2
V14+n2u- (14 u)

Therefore, from (11]), we have

> 1+ nu.

Tr_o-x > 1+ nu.

Also, Tj_o - x is less than 2, since k was assumed to be the smallest integer such
that Zr_;2 > 2. Therefore

/.fk_g -x > 14 n2u,
which implies, by Remark [2| that ™ < (1+ (n — 1) - u) - ™. So, to summarize this
first case, if 2 < 1+n?u and n < a,,-2P/2, then the conclusion of Theorem [2/ holds.



3.2 Second case: if 22 > 1+ n2u

First, if % < 2 then we deduce from Remark 2| that 2" < (1 + (n — 1) - u) - 2". The
case r? = 2 is impossible (x is a floating-point number, thus it cannot be irrational).
Therefore let us now assume that z? > 2. We also assume that x? < 2+ 2n?u (otherwise,
we would have @ > 1 + n?u, so that we could apply Remark . Hence, we have

V2 <1 < V2 +2n2u.

From this we deduce )

2"t < (24 2n%u) T,
therefore, using Theorem

n—1

T < (2+20%u) 2 - (14+u)" 2

which implies
T Ty < (24 20%0)™? - (14 u)" 2 (13)

Define
B =213 —1=0.5098245285339 - - -

If n < B-2P/2 then 2 + 2n%u < 2%3, so that we find
(2 4+ 2n2u)™? - (1 +u)" 2 < 223 (1 4+ u)" 2, (14)

e if n =3, the bound on z - ¥, derived from and is 4+ (1 + u). Therefore
either z - 7,1 < 4, or x - T,,_; will be rounded downwards when computing z,, (in
which case we know from Lemma (3| that the conclusion of Theorem [2| holds);

e if n > 4, consider function
g(t) = 21 — 22/3 (1+ 2_p)t72 _ 92t/3 [21&/3—1 —(1+ 2_p)t72} .

It is a continuous function, and it goes to +00 as t — +00. We have:

log(2) + 2log (1 + 277
) — 0o D) £2008 (14 20)
3 log(2) —log (1 +277)

Hence, g has a single root, and as soon as p > 5, that root is strictly less than 4.
From this, we deduce that if p > 5, then g(¢) > 0 for all ¢ > 4. Hence, using
and , we deduce that if p > 5 then 2 - 7,,_; < 2" 1.

Now that we have shown thatf|if n < - 27/2 then
x - fnfl < 2n71’

let us define k as the smallest integer for which z-Z;_; < 2¥~'. We now know that k& < n,
and (since we are assuming r? > 2), we have k > 3. The minimality of k implies that

3Unless n = 3 and = - T,,_1 > 4 but in that case we have seen that the conclusion of Theorem [2{ holds.



T - Tp_o > 2872 which implies that 7, = RN(z - Z_p) > 2¥72. Therefore, T}, and
x - Tx_1 belong to the same binadeﬂ therefore,

TTh > x> V2 (15)
The constraint n < - 2P/2 implies
1+n2u <1+ 62=2Y3 <2 (16)

By combining and we obtain

T T > 1+ nu.

Therefore, using Remark [2, we deduce that ,, < (1+ (n—1) - u) - 2™

3.3 Combining both cases

One easily sees that for all p > 5, «, is larger than 8. Therefore, combining the conditions
found in the cases 22 < 1+n%u and 22 > 1+n?u, we deduce that if p > 5 and n < 6-27”/2,
then for all z,

1-n—-1)-u)-2"<z,<(1+n-1)-u)-z"

Q.E.D.
Notice that the condition n < f3-2P/? is not a huge constraint. The table below gives

the maximum value of n that satisfies that condition, for the various binary formats of
the IEEE 754-2008 Standard for Floating-Point Arithmetic.

P [ |
24 2088

53 | 48385542

113 | 51953580258461950

For instance, in the binary32/single precision format, with the smallest n larger than
that maximum value (i.e., 2089), 2™ will underflow as soon as x < 0.95905406 and overflow
as soon as x > 1.0433863. In the binary64/double precision format, with n = 4385543, z™
will underflow as soon as x < 0.999985359 and overflow as soon as x > 1.000014669422.
With the binary113/quad precision format, the interval in which function =" does not
under- or overflow is even narrower and, anyway, computing x>1953580258461959 hy AJoo-
rithm [I] would at best require years of computation on current machines.

4 1Is the bound of Theorem [2] tight?

For very small values of p, it is possible to check all possible values of z (we can assume
1 < 2z < 2, so that we need to check 2P~! different values), using a Maple program
that simulates a precision-p floating-point arithmetic. Hence, for small values of p and
reasonable values of n it is possible to compute the actual maximum relative error of
Algorithm [I} For instance, Tables [I] and [2] present the actual maximum relative errors
for p = 8 and 9, respectively, and various values of n.
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Table 1: Actual maximum relative error of Algorithm [I] assuming precision p = 8, com-
pared with the usual bound 7,_; and our bound (n — 1)u. The term n,,,, designs the
largest value of n for which Theorem [2| holds, namely /21/2 — 1 . 2¢/2

’ n \ actual maximum \ Vn—1 \ our bound ‘
3 1.35988u 2.0157u 2u
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u du
7 2.69634u 6.1440u 6u
8 = Nnaz 3.42929u 7.1967u Tu

Table 2: Actual maximum relative error of Algorithm [1} assuming precision p = 9, com-
pared with the usual bound ~,_; and our bound (n — 1)u. The term 7n,,,, designs the
largest value of n for which Theorem [2 holds, namely v/21/2 — 1 . 2P/2

’ n \ actual maximum \ Vn—1 \ our bound ‘
6 2.677u 5.049u U
7 2.975u 6.071u 6u
8 3.435u 7.097u Tu
9 4.060u 8.1269u Su
10 3.421u 9.1610u 9u
11 = Npnas 3.57Tu 10.199u 10u

For larger values, we have some results (notice that beyond single precision—p = 24—
exhaustive testing is either very costly or out of reach):

e for single precision arithmetic (p = 24) and n = 6, the actual largest relative error
is 4.328005619u. It is attained for x = 8473808/22% ~ 1.010156631;

e for double precision arithmetic (p = 53) and n = 6, although finding the actual
largest relative error would require months of calculation, we could find an interest-
ing case: for x = 4507062722867963/2°? ~ 1.0007689616715527147761, the relative
error is 4.7805779 - - - u

e for quad precision arithmetic (p = 113) and n = 6, although finding the actual
largest relative error is out of reach, we could find an interesting case: for

T = 5192324351407105984705482084151108 /2112
~ 1.0000052949345978099886352037496365983,

the relative error is 4.8827888 - - -u

e for single precision arithmetic (p = 24) and n = 10, the actual largest relative error
is 7.059603149u. It is attained for x = 8429278/223 ~ 1.004848242;

1A binade is the interval between two consecutive integer powers of 2.

11



e for double precision arithmetic (p = 53) and n = 10, although finding the ac-
tual largest relative error is out of reach, we could find an interesting case: for x =
4503796447992526 /252 ~ 1.00004370295725975026, the relative error is 7.9534189 - - -

Notice that we can use the maximum relative error of single precision and “inject it” in
the inductive reasoning that led to Theorem [I]to show that in single-precision arithmetic,
and if n > 10 then

(1 —7.06u)(1 —uw)" 2" <2, < (1+7.06u)(1+u)" 02"

2724

Then, by replacing u by and through an elementary study of the function

p(t) = [(14+7.06-27) (1 +272)"10 —1] . 2 —¢
one easily deduces that for 10 < n < 2088, we always have

~

Ty, — "

< (n—2.8104) - u.

x’I’L

5 A brief remark on underflow and overflow

As stated in the introduction, the results presented in this paper (assuming an unbounded
exponent range) apply to “real” floating-point arithmetic provided that no underflow or
overflow occur. When considering “general” iterated products, intermediate underflows
are a real concern: they may make a final result very inaccurate, and this may be rather
difficult to notice when the IEEE 754 exceptions are not supported, since the returned
final result may lie well in the normal floating-point range. Overflows are less deceiving,
but they may be difficult to manage: one may have an overflow appearing in an inter-
mediate result (leading to an infinite or NaN final result being returned) even when the
exact product is of magnitude much smaller than the overflow threshold.

However, when we are concerned with powers only, these pitfalls disappear. One easily
shows that when evaluating a power using Algorithm [I}

e if an intermediate result underflows then the final result will be less than or equal
to the minimum positive normal number in absolute value, so that this will not go
unnoticed;

e if an intermediate result overflows then the exact final result is larger than /(1 +
u)"" 1 in absolute value, where Q is the largest finite floating-point number.

6 What about iterated products ?

Assume now that, still in precision-p binary FP arithmetic, we wish to evaluate the
product a; -ag--- -+ - a,, of n floating-point numbers. We assume that the product is
evaluated as

RN(--- RN(RN(ay - az) - ag) - ) - ap).
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Define 7, as the exact value of aq - - - ai, and 7 as the computed value. As already

discussed in Section we have
(1—w)" ', <7 < (T4 w)" 'y, (17)

which implies that the relative error |m, — 7,|/7, is upper-bounded by ~,,_1, defined for
(n—1)-u<1.

Here we seek to build a sequence ay, as, as, ..., trying to maximize the relative error
at each step. For this purpose, we will choose each a,, so that all the roundings occur in
the same direction, and this direction must be the upward one to have a chance to get a
relative error larger than (n — 1) - u at step n.

With the construction below, a, will depend only on 7,_;, and all the a,’s will be
close to 1, so that this sequence will be ultimately periodical. Over one period, the ratio
Tn/Tn will be multiplied by some constant p, and since all roundings will be performed
upward, p > 1. Over m periods, the ratio 7, /m, will be multiplied by p™, so that the
relative error will grow exponentially, thus will become larger than (n — 1) - u when n is
large enough.

We assume p > 6, so that it can be shown that the following construction behaves as
wanted. At step n > 2, one can write:

an =1+ k, - 2771
Tn=1+g, 2P =RN(T,_1 - a,),

where k,, will be an integelﬂ and g, will be a positive integer. We will deal with the initial
step after giving the general rule. We have

Tnt =1+ (gn1 +kn) - 277 4 g1k, - 272272,

We wish to maximize the relative error and have an upward rounding. If g, 1 + k,
is less than 2P~! the number 1 + (g,_1 + k,) - 277! is a FP number. To maximize
the relative error, we wish g, 1 + k, to be non-negative and as small as possible, while
Gn_1kn - 27272 should be as close as possible to, but larger than (for upward rounding),
+27P ie. go_1k, ~~ 2P72; and we will get:

. In—1 + kn lf k:n < O’
In =\ gur 4+ k1 if Ky, > 0.

However under these constraints, if g, is very small, then one obtains large values for
Jn+1, gna2, €tc., which is not interesting as we want each g; to remain small. For this
reason, we will try to keep k,, and g, balanced. Hence a good choice is

o ko= 14|22 if gy < [207072);

o k,=1-— Bpj-‘ otherwise.

5If k,, is negative, it could be a half-integer, but such a choice would not yield an interesting sequence.
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For the initial step, as we want g, to be as small as possible, we will choose for k;
(= g1) the smallest integer such that ky < 0, i.c.

ki =gy = |20~V

Table 3| gives examples of the relative errors achieved with the values a; generated by
this method, for various values of p and n. Table [4] shows relative errors for the smallest
values of n such that the relative error is larger than (n—1)-u with the values a; generated
by our method for various values of p.

Table 3: Relative errors achieved with the values a; generated by our method of Section [6]

| p| n]|relative error |
24| 101 8.99401809---u

24 1100 | 98.92221853 - - u

53| 101 8.99999971848---u
53 | 100 | 98.99999680546 - - - u

113 | 10 | 8.99999999999999972714 - - - u
113 | 100 | 98.99999999999999705984 - - - u

Table 4: Relative errors for the smallest values of n such that the relative error is larger
than (n — 1) - u with the values a; generated by our method of Section []

| p] n | relative error |

6 106 | 105.5728705 - - - u
7 124 | 123.0487381 - - - u
8 119 | 118.2293467 - - - u
9 156 | 155.0673067 - - - u
24| 27921 | 27920.0002498 - - - u

7 Conclusion

We have shown that, under mild conditions (in particular, a reasonable bound on n),
the relative error of the computation of 2" in floating-point arithmetic using the “naive”
algorithm is upper bounded by (n —1)-u. This bound is simpler and slightly better than
the previous bound. We conjecture that the same bound holds in the more general case
of the computation of the product of n floating-point numbers when n is not too large.
We have provided examples that show that the actual error can be very close to, but
smaller than, (n — 1) - u for small values of n, and becomes larger than (n — 1) - u when
n is large enough.
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