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Abstract

We introduce a notion of variable quasi-Bregman monotone sequence which unifies the notion
of variable metric quasi-Fejér monotone sequences and that of Bregman monotone sequences.

The results are applied to analyze the asymptotic behavior of proximal iterations based on vari-

able Bregman distance and of algorithms for solving convex feasibility problems in reflexive real
Banach spaces.

Key words. Banach space, Bregman distance, Bregman projection, convex feasibility problem,

Fejér monotone sequence, Legendre function, proximal iterations

1

http://arxiv.org/abs/1505.04460v1


1 Introduction

The concept of Fejér monotonicity and its variants plays an important role in the convergence anal-

ysis of many fixed point and optimization algorithms in Hilbert spaces [1, 5, 7, 8, 11, 17]. A recent

development in this area is the extension of the notion of (quasi)-Fejér sequence to the case when

the underlying metric is allowed to vary over the iterations [9]. Since Fejér monotonicity is of limited

use outside of Hilbert spaces, the notion of Bregman monotonicity was introduced in [4] to provide

a unifying framework for the convergence analysis of various algorithms for solving nonlinear prob-

lems. The main objective of the present paper is to unify the work of [9] on variable metric Fejér

sequences and that of [4] on Bregman monotone sequences by introducing the notion of a variable

quasi-Bregman monotone sequence and by investigating its asymptotic properties. We apply these

results to a variable Bregman proximal point algorithm and to convex feasibility problems in Banach

spaces. Our paper revolves around the following definitions.

Definition 1.1 [3, 4] Let X be a reflexive real Banach space, let X ∗ be the topological dual space of

X , let 〈·, ·〉 be the duality pairing between X and X ∗, let f : X → ]−∞,+∞] be a lower semicontinu-

ous convex function that is Gâteaux differentiable on int domf 6= ∅, let f∗ : X ∗ → ]−∞,+∞] : x∗ 7→
supx∈X (〈x, x

∗〉 − f(x)) be conjugate of f , and let

∂f : X → 2X
∗

: x 7→
{

x∗ ∈ X ∗
∣

∣ (∀y ∈ X ) 〈y − x, x∗〉+ f(x) 6 f(y)
}

, (1.1)

be Moreau subdifferential of f . The Bregman distance associated with f is

Df : X × X → [0,+∞]

(x, y) 7→

{

f(x)− f(y)− 〈x− y,∇f(y)〉, if y ∈ int domf ;

+∞, otherwise.

(1.2)

In addition, f is a Legendre function if it is essentially smooth in the sense that ∂f is both locally

bounded and single-valued on its domain, and essentially strictly convex in the sense that ∂f∗ is

locally bounded on its domain and f is strictly convex on every convex subset of dom ∂f . Let

ϕ : X → ]−∞,+∞] be a lower semicontinuous convex function which is bounded from below and

domϕ ∩ int domf 6= ∅. The Df -proximal operator of ϕ is

proxfϕ : int domf → domϕ ∩ int domf

y 7→ argmin
x∈X

ϕ(x) +Df (x, y).
(1.3)

Let C be a closed convex subset of X such that C ∩ int domf 6= ∅. The Bregman projector onto C
induced by f is

P f
C : int domf → C ∩ int domf

y 7→ argmin
x∈C

Df (x, y),
(1.4)

and the Df -distance to C is the function

Df
C : X → [0,+∞]

y 7→ infDf (C, y).
(1.5)
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The paper is organized as follows. In Section 2, we introduce the notion of a variable quasi-

Bregman monotone sequence and investigate its asymptotic properties. Basic results on Df -proximal

operators are reviewed in Section 3. Applications to a variable Bregman proximal point algorithm

and to the convex feasibility problem are considered in Section 4.

Notation and background. The norm of a Banach space is denoted by ‖ · ‖. The symbols ⇀
and → represent respectively weak and strong convergence. The set of weak sequential clus-

ter points of a sequence (xn)n∈N is denoted by W(xn)n∈N. Let M : X → 2X . The domain of

M is domM =
{

x ∈ X
∣

∣ Mx 6= ∅
}

, the range of M is ranM =
{

y ∈ X
∣

∣ (∃x ∈ X ) y ∈ Mx
}

,

the graph of M is graM =
{

(x, y) ∈ X × X
∣

∣ y ∈ Mx
}

, and the set of fixed points of M is

FixM =
{

x ∈ X
∣

∣ x ∈ Mx
}

. A function f : X → ]−∞,+∞] is coercive if lim‖x‖→+∞ f(x) = +∞.

Denote by Γ0(X ) the class of all lower semicontinuous convex functions f : X → ]−∞,+∞] such

that dom f =
{

x ∈ X
∣

∣ f(x) < +∞
}

6= ∅. Let f ∈ Γ0(X ). The set of global minimizers of a function

f is denoted by Argmin f . In addition, if f is Gâteaux differentiable on int domf 6= ∅ then

f̂ : X → ]−∞,+∞]

x 7→

{

f(x), if x ∈ int domf ;

+∞, otherwise.

(1.6)

Finally, ℓ1+(N) is the set of all summable sequences in [0,+∞[.

2 Variable Bregman monotonicity

Definition 2.1 Let X be a reflexive real Banach space and let f ∈ Γ0(X ) be Gâteaux differentiable

on int domf 6= ∅. Then

F(f) =
{

g ∈ Γ0(X )
∣

∣ g is Gâteaux differentiable on dom g = int domf
}

. (2.1)

Moreover, if g1 and g2 are in F(f), then

g1 < g2 ⇔ (∀x ∈ dom f)(∀y ∈ int domf) Dg1(x, y) > Dg2(x, y). (2.2)

For every α ∈ [0,+∞[, set

Pα(f) =
{

g ∈ F(f)
∣

∣ g < αf
}

. (2.3)

Remark 2.2 In Definition 2.1, suppose that X is a Hilbert space and let α ∈ ]0,+∞[. Then the

following hold:

(i) Suppose that f is Fréchet differentiable on X . Then ‖ · ‖2/2 ∈ Pα(f) if and only if ∇f is

α−1-Lipschitz continuous.

(ii) Let S(X ) be the space of self-adjoint bounded linear operators from X to X . The Loewner

partial ordering on S(X ) is defined by

(∀U1 ∈ S(X ))(∀U2 ∈ S(X )) U1 < U2 ⇔ (∀x ∈ X )
〈

x,U1x
〉

>
〈

x,U2x
〉

. (2.4)
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Set Pα(X ) =
{

U ∈ S(X )
∣

∣ U < α Id
}

. Let U ∈ S(X ) and V ∈ S(X ) be such that V < αU .

Suppose that f : x 7→ 〈x,Ux〉/2 and g : x 7→ 〈x, V x〉/2. Then g ∈ Pα(f).

Proof. (i): First, since f is Fréchet differentiable, ∂f = ∇f [5, Proposition 17.26] and hence, by [5,

Corollary 16.24], (∇f)−1 = (∂f)−1 = ∂f∗. Now, we have

‖ · ‖2/2 ∈ Pα(f) ⇔ (∀x ∈ X )(∀y ∈ X ) ‖x− y‖2/2 > αDf (x, y)

⇔ (∀x ∈ X )(∀y ∈ X ) ‖x− y‖2/(2α) > f(x)− f(y)− 〈x− y,∇f(y)〉

⇔ (∀x ∈ X )(∀y ∈ X ) f(x) 6 f(y) + 〈x− y,∇f(y)〉+ ‖x− y‖2/(2α). (2.5)

The assertion therefore follows by invoking [5, Theorem 18.15].

(ii): We observe that f and g are Gâteaux differentiable on X with ∇f = U and ∇g = V .

Consequently,

(∀x ∈ X )(∀y ∈ X ) Dg(x, y) = 〈x, V x〉/2− 〈y, V y〉/2− 〈x− y, V y〉

= 〈x− y, V x− V y〉/2

> α〈x− y, Ux− Uy〉/2

= αDf (x, y). (2.6)

Example 2.3 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let α ∈ [0,+∞[, and let g ∈ Γ0(X ) be Gâteaux differentiable on dom g = int domf .

Suppose that and g − αf is convex (which means that g is more convex than αf in the terminology

of J. J. Moreau [14]). Then g ∈ Pα(f).

Proof. We first note that dom h = int domf . Since f and g are Gâteaux differentiable on int domf
by [15, Proposition 3.3], h = g − αf is likewise. Furthermore,

(∀x ∈ dom f)(∀y ∈ int domf) Dg(x, y)− αDf (x, y) = Dh(x, y) > 0. (2.7)

The following definition brings together the notions of Bregman monotone sequences [4] and of

variable metric Fejér monotone sequences [9].

Definition 2.4 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let (fn)n∈N be in F(f), let (xn)n∈N ∈ (int domf)N, and let C ⊂ X be such that

C ∩ dom f 6= ∅. Then (xn)n∈N is:

(i) quasi-Bregman monotone with respect to C relative to (fn)n∈N if

(∃(ηn)n∈N ∈ ℓ1+(N))(∀x ∈ C ∩ dom f)(∃(εn)n∈N ∈ ℓ1+(N))(∀n ∈ N)

Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn) + εn; (2.8)
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(ii) stationarily quasi-Bregman monotone with respect to C relative to (fn)n∈N if

(∃(εn)n∈N ∈ ℓ1+(N))(∃(ηn)n∈N ∈ ℓ1+(N))(∀x ∈ C ∩ dom f)(∀n ∈ N)

Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn) + εn. (2.9)

Remark 2.5

(i) In Definition 2.4, suppose that (∀n ∈ N) fn = f̂ and ηn = εn = 0. Then we recover the notion

of a Bregman monotone sequence defined in [4].

(ii) In Definition 2.4, suppose that X is a Hilbert space, that f = ‖ · ‖2/2, and that (∀n ∈ N)
fn : x 7→ 〈x,Unx〉/2, where (Un)n∈N are operators in Pα(X ) for some α ∈ [0,+∞[. Then we

recover [9, Definition 2.1] with φ = | · |2/2.

Here are some basic properties of quasi-Bregman monotone sequences.

Proposition 2.6 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let α ∈ ]0,+∞[, let (fn)n∈N be in Pα(f), let (xn)n∈N ∈ (int domf)N, let C ⊂ X be such

that C ∩ int domf 6= ∅, and let x ∈ C ∩ int domf . Suppose that (xn)n∈N is quasi-Bregman monotone

with respect to C relative to (fn)n∈N. Then the following hold:

(i) (Dfn(x, xn))n∈N converges.

(ii) Suppose that Df (x, ·) is coercive. Then (xn)n∈N is bounded.

Proof. (i): Let us set (∀n ∈ N) ξn = Dfn(x, xn). Since (xn)n∈N is quasi-Bregman monotone with

respect to C relative to (fn)n∈N, there exist (ηn)n∈N ∈ ℓ1+(N) and (εn)n∈N ∈ ℓ1+(N) such that

(∀n ∈ N) ξn+1 6 (1 + ηn)ξn + εn. (2.10)

It therefore follows from [16, Lemma 2.2.2] that (ξn)n∈N converges, i.e., (Dfn(x, xn))n∈N converges.

(ii): Since (fn)n∈N is in Pα(f), we deduce that

(∀n ∈ N) Df (x, xn) 6 α−1Dfn(x, xn). (2.11)

Therefore, since (i) implies that (Dfn(x, xn))n∈N is bounded, (Df (x, xn))n∈N is bounded. In turn,

since Df (x, ·) is coercive, (xn)n∈N is bounded.

The following result concerns the weak convergence of quasi-Bregman monotone sequences.

Proposition 2.7 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let (xn)n∈N ∈ (int domf)N, let C ⊂ X be such that C ∩ int domf 6= ∅, let (ηn)n∈N ∈
ℓ1+(N), let α ∈ ]0,+∞[, and let (fn)n∈N in Pα(f) be such that (∀n ∈ N) (1+ηn)fn < fn+1. Suppose that
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(xn)n∈N is quasi-Bregman monotone with respect to C relative to (fn)n∈N, that there exists g ∈ F(f)
such that for every n ∈ N, g < fn, and, for every x1 ∈ X and every x2 ∈ X ,











x1 ∈ W(xn)n∈N ∩ C

x2 ∈ W(xn)n∈N ∩ C
(

〈x1 − x2,∇fn(xn)〉
)

n∈N
converges

⇒ x1 = x2. (2.12)

Moreover, suppose that (∀x ∈ int domf) Df (x, ·) is coercive. Then (xn)n∈N converges weakly to a point

in C ∩ int domf if and only if W(xn)n∈N ⊂ C ∩ int domf .

Proof. Necessity is clear. To show sufficiency, suppose that every weak sequential cluster point

of (xn)n∈N is in C ∩ int domf and let x1 and x2 be two such points. First, it follows from Proposi-

tion 2.6(i) that

(

Dfn(x1, xn)
)

n∈N
and

(

Dfn(x2, xn)
)

n∈N
are convergent. (2.13)

Next, let us define the following functions

φ : [0, 1] → R : t 7→
〈

x1 − x2,∇g(x2 + t(x1 − x2))−∇g(x2)
〉

, (2.14)

and

(∀n ∈ N) φn : [0, 1] → R : t 7→
〈

x1 − x2,∇fn(x2 + t(x1 − x2))−∇fn(x2)
〉

. (2.15)

Then
∫ 1

0
φ(t)dt = g(x1)− g(x2) and (∀n ∈ N)

∫ 1

0
φn(t)dt = fn(x1)− fn(x2). (2.16)

For every n ∈ N, since (1 + ηn)fn < fn+1, for every t ∈ ]0, 1]), we have

φn+1(t) =
〈

x1 − x2,∇fn+1(x2 + t(x1 − x2))−∇fn+1(x2)
〉

= t−1
〈

x2 + t(x1 − x2)− x2,∇fn+1(x2 + t(x1 − x2))−∇fn+1(x2)
〉

= t−1
(

Dfn+1
(

x2 + t(x1 − x2), x2
)

+Dfn+1
(

x2, x2 + t(x1 − x2)
))

6 (1 + ηn)t
−1
(

Dfn
(

x2 + t(x1 − x2), x2
)

+Dfn
(

x2, x2 + t(x1 − x2)
))

= (1 + ηn)t
−1
〈

x2 + t(x1 − x2)− x2,∇fn(x2 + t(x1 − x2))−∇fn(x2)
〉

= (1 + ηn)
〈

x1 − x2,∇fn(x2 + t(x1 − x2))−∇fn(x2)
〉

= (1 + ηn)φn(t). (2.17)

Consequently,

(∀n ∈ N)(∀t ∈ ]0, 1]) 0 6 φn+1(t) 6 (1 + ηn)φn(t). (2.18)

It is clear that (2.18) is valid for t = 0 since in this case, all terms are equal to 0. In turn, we deduce

from [16, Lemma 2.2.2] that

(φn)n∈N converges pointwise. (2.19)
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On the other hand, for every n ∈ N, since g < fn, the same argument as above shows that

(∀t ∈ [0, 1]) 0 6 φn(t) 6 φ(t). (2.20)

By invoking (2.19), (2.20), and Lebesgue’s dominated convergence theorem, we obtain that

(

∫ 1

0
φn(t)dt

)

n∈N

converges, (2.21)

which implies that

(

fn(x1)− fn(x2)
)

n∈N
converges. (2.22)

We also observe that

(∀n ∈ N) Dfn(x1, xn)−Dfn(x2, xn) = fn(x1)− fn(x2)− 〈x1 − x2,∇fn(xn)〉, (2.23)

and hence, it follows from (2.13) and (2.22) that

(

〈x1 − x2,∇fn(xn)〉
)

n∈N
converges. (2.24)

In turn, (2.12) forces x1 = x2. Since Proposition 2.6(ii) asserts that (xn)n∈N is bounded and since X
is reflexive, we conclude that xn ⇀ x1 ∈ C ∩ int domf .

Example 2.8 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let (fn)n∈N be in F(f), let (xn)n∈N ∈ (int domf)N, and let C ⊂ X . Suppose that

C ∩ dom f is a singleton. Then (2.12) is satisfied.

Proof. Since (xn)n∈N ∈ (int domf)N, W(xn)n∈N ⊂ dom f , and therefore, W(xn)n∈N ∩ C is at most a

singleton.

Example 2.9 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be Gâteaux differentiable on

int domf 6= ∅, let (xn)n∈N ∈ (int domf)N, let C ⊂ int domf , and set (∀n ∈ N) fn = f̂ . Suppose that

f |int domf is strictly convex and that ∇f is weakly sequentially continuous. Then (2.12) is satisfied.

Proof. Suppose that x1 ∈ W(xn)n∈N∩C and x2 ∈ W(xn)n∈N∩C are such that (〈x1 − x2,∇fn(xn〉)n∈N
converges and x1 6= x2. Take strictly increasing sequences (kn)n∈N and (ln)n∈N in N such that

xkn ⇀ x1 and xln ⇀ x2. Since ∇f is weakly sequentially continuous, by taking the limit in (2.12)

along subsequences (xkn)n∈N and (xln)n∈N, we get

〈x1 − x2,∇f(x1)−∇f(x2)〉 = 0 (2.25)

Since f |int domf is strictly convex, ∇f is strictly monotone [19, Theorem 2.4.4(ii)], i.e.,

〈x1 − x2,∇f(x1)−∇f(x2)〉 > 0, (2.26)

and we reach a contradiction.
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Example 2.10 Let X be a real Hilbert space, let f = ‖·‖2/2, let C ⊂ X , let (xn)n∈N be a sequence in

X , let α ∈ ]0,+∞[, let U and (Un)n∈N be self-adjoint linear operators from X in X such that Un → U
pointwise, and set (∀n ∈ N) fn = 〈·, Un·〉/2. Suppose that 〈·, U ·〉 > α‖ · ‖2. Then (2.12) is satisfied.

Proof. It is easy to see that, for every n ∈ N, fn is Gâteaux differentiable on X with ∇fn = Un.

Suppose that x1 ∈ W(xn)n∈N ∩ C and x2 ∈ W(xn)n∈N ∩ C are such that (〈x1 − x2,∇fn(xn〉)n∈N
converges. Take strictly increasing sequences (kn)n∈N and (ln)n∈N in N such that xkn ⇀ x1 and

xln ⇀ x2. We have

〈

x1 − x2,∇fkn(xkn)
〉

=
〈

x1 − x2, Uknxkn
〉

=
〈

Uknx1 − Uknx2, xkn
〉

→
〈

Ux1 − Ux2, x1
〉

, (2.27)

and

〈

x1 − x2,∇fln(xln)
〉

=
〈

x1 − x2, Ulnxln
〉

=
〈

Ulnx1 − Ulnx2, xln
〉

→
〈

Ux1 − Ux2, x2
〉

, (2.28)

and hence, 0 =
〈

Ux1 − Ux2, x1 − x2
〉

> α‖x1 − x2‖
2, and therefore, x1 = x2.

The following condition will be used subsequently (see [4, Examples 4.10, 5.11, and 5.13] for

special cases).

Condition 2.11 [4, Condition 4.4] Let X be a reflexive real Banach space and let f ∈ Γ0(X ) be

Gâteaux differentiable on int domf 6= ∅. For every bounded sequences (xn)n∈N and (yn)n∈N in

int domf ,

Df (xn, yn) → 0 ⇒ xn − yn → 0. (2.29)

We now present a characterization of the strong convergence of stationarily quasi-Bregman

monotone sequences.

Proposition 2.12 Let X be a reflexive real Banach space, let f ∈ Γ0(X ) be a Legendre function, let

α ∈ ]0,+∞[, let (fn)n∈N be in Pα(f), let (xn)n∈N ∈ (int domf)N, and let C be a closed convex subset

of X such that C ∩ int domf 6= ∅. Suppose that (xn)n∈N is stationarily quasi Bregman monotone with

respect to C relative to (fn)n∈N, that f satisfies Condition 2.11, and that (∀x ∈ int domf) Df (x, ·) is

coercive. In addition, suppose that there exists β ∈ ]0,+∞[ such that (∀n ∈ N) βf̂ < fn. Then (xn)n∈N
converges strongly to a point in C ∩ dom f if and only if limDf

C(xn) = 0.

Proof. To show the necessity, suppose that xn → x ∈ C∩dom f and take x ∈ C∩ int domf . Since

Proposition 2.6(i) states that (Dfn(x, xn))n∈N is bounded and since

(∀n ∈ N) Df (x, xn) 6 Dfn(x, xn), (2.30)

we deduce that (Df (x, xn))n∈N is bounded. However, by [3, Lemma 7.3(vii)],

(∀n ∈ N) Df∗
(

∇f(xn),∇f(x)
)

= Df (x, xn). (2.31)
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Therefore (Df∗

(∇f(xn),∇f(x)))n∈N is bounded. In turn, since Df∗

(·,∇f(x)) is coercive [3,

Lemma 7.3(v)], we get (∇f(xn))n∈N is bounded and hence 〈x− xn,∇f(xn)〉 → 0. Since

(∀n ∈ N) Df
C(xn) = infDf (C, xn)

6 infDf (C ∩ dom f, xn)

6 Df (x, xn)

= f(x)− f(xn)−
〈

x− xn,∇f(xn)
〉

, (2.32)

we obtain

limDf
C(xn) 6 f(x)− lim f(xn)− lim

〈

x− xn,∇f(xn)
〉

= f(x)− lim f(xn). (2.33)

Since f is lower semicontinuous,

f(x) 6 lim f(xn) 6 lim f(xn). (2.34)

Altogether, (2.33) and (2.34) yield

limDf
C(xn) → 0. (2.35)

We now show the sufficiency. First, since f is Legendre and C ∩ int domf 6= ∅, (1.4) yields

P f
C : int domf → C ∩ int domf. (2.36)

Next, we set

(∀n ∈ N) ̺n = Df
C(xn) and ζn = inf

x∈C∩dom f
Dfn(x, xn). (2.37)

Then lim ̺n = 0. For every n ∈ N, since βf̂ < fn < αf , we obtain

(∀x ∈ C ∩ dom f) 0 6 αDf (x, xn) 6 Dfn(x, xn) 6 βDf (x, xn). (2.38)

In the above inequalities, after taking the infimum over x ∈ C ∩ dom f , we get

(∀n ∈ N) 0 6 α̺n 6 ζn 6 β̺n (2.39)

and therefore,

0 6 α lim ̺n 6 lim ζn 6 β lim ̺n = 0. (2.40)

On the other hand, since (xn)n∈N is stationarily quasi Bregman monotone with respect to C relative

to (fn)n∈N, there exist (ηn)n∈N ∈ ℓ1+(N) and (εn)n∈N ∈ ℓ1+(N) such that

(∀x ∈ C ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn) + εn. (2.41)

Taking the infimum in (2.41) over C ∩ dom f yields

(∀n ∈ N) ζn+1 6 (1 + ηn)ζn + εn. (2.42)
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It therefore follows from [16, Lemma 2.2.2] that (ζn)n∈N converges, and thus, we deduce from

(2.40) that ζn → 0. Appealing to (2.39), we get ̺n → 0, i.e.,

Df
(

P f
Cxn, xn

)

→ 0. (2.43)

Now let x ∈ C ∩ int domf . Then x ∈ FixP f
C [4, Proposition 3.22(ii)(b)] and it follows from Propo-

sition 2.6(i) that (Dfn(x, xn))n∈N is bounded, and hence, (Df (x, xn))n∈N is likewise. In turn, since

[4, Proposition 3.3(i) and Theorem 3.34] yield

(∀n ∈ N) Df
(

x, P f
Cxn

)

6 Df (x, xn), (2.44)

we deduce that (Df (x, P f
Cxn))n∈N is bounded, and hence, since Df (x, ·) is coercive, we obtain that

(

P f
Cxn

)

n∈N
∈ (int domf)N is bounded. (2.45)

Therefore, since f satisfies Condition 2.11, it follows from (2.43) that

P f
Cxn − xn → 0. (2.46)

Since (2.36) entails that

(∀n ∈ N) P f
Cxn ∈ C ∩ int domf = FixP f

C , (2.47)

we obtain

(∀n ∈ N) 0 6 dC(xn) = inf
x∈C

‖x− xn‖ 6 ‖P f
Cxn − xn‖. (2.48)

Altogether, (2.46) and (2.48) imply that

dC(xn) → 0. (2.49)

Set τ =
∏

k∈N(1 + ηk). Then τ < +∞ [12, Theorem 3.7.3]. By invoking (2.47) and [4, Proposi-

tion 3.3(i) and Theorem 3.34], we get

(∀n ∈ N)(∀m ∈ N) Df
(

P f
Cxn, P

f
Cxm+n

)

6 Df
(

P f
Cxn, xm+n

)

6 α−1Dfm+n
(

P f
Cxn, xm+n

)

6 τα−1

(

Dfn
(

P f
Cxn, xn

)

+
n+m−1
∑

k=n

εk

)

6 τα−1

(

βDf
(

P f
Cxn, xn

)

+
∑

k>n

εk

)

= τα−1

(

β̺n +
∑

k>n

εk

)

. (2.50)

After taking the limit as n → +∞ and m → +∞ in (2.50), we obtain

Df
(

P f
Cxm+n, P

f
Cxn

)

→ 0, (2.51)
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and thus (2.45) yield

P f
Cxm+n − P f

Cxn → 0. (2.52)

However,

(∀n ∈ N)(∀m ∈ N) ‖xm+n−xn‖ 6 ‖xm+n−P f
Cxm+n‖+‖P f

Cxm+n−P f
Cxn‖+‖P f

Cxn−xn‖. (2.53)

After taking the limit as n → +∞ and m → +∞ in (2.53) then using (2.46) and (2.52), we get

‖xn+m − xn‖ → 0. (2.54)

Thus, (xn)n∈N is a Cauchy sequence in X , and hence, there exists x ∈ X such that xn → x. By (2.49)

and the continuity of dC [5, Example 1.47], we obtain dC(x) = 0 and, since C is closed, x ∈ C.

Because (xn)n∈N is in int domf , we conclude that x ∈ dom f .

Remark 2.13 In Proposition 2.12, suppose that X is a Hilbert space, that f = ‖ · ‖2/2, and that

(∀n ∈ N) fn : x 7→ 〈x,Unx〉/2, where (Un)n∈N are operators in Pα(X ) such that supn∈N ‖Un‖ < +∞.

Then we recover [9, Theorem 3.4] with φ = | · |2/2.

3 Bregman distance-based proximity operators

Many algorithms in optimization in a real Hilbert space H are based on Moreau’s proximity operator

[13] of a function ϕ ∈ Γ0(H)

proxϕ : H → H : x 7→ argmin
(

ϕ+ ‖ · −x‖2/2
)

. (3.1)

Because the quadratic term in (3.1) is difficult to manipulate in Banach spaces since its gradient is

nonlinear, alternative notions based on Bregman distances have been used (see [4] and the refer-

ences therein). This leads to the notion of Df -proximal operators. In this section, we investigate

some their basic properties.

Lemma 3.1 [4, Section 3] Let X be a reflexive real Banach space, let ϕ ∈ Γ0(X ) be bounded from

below, and let f ∈ Γ0(X ) be a Legendre function such that domϕ ∩ int domf 6= ∅. Then the following

hold:

(i) proxfϕ is single-valued on its domain.

(ii) ran proxfϕ ⊂ dom proxfϕ = int domf .

(iii) proxfϕ = (∇f + ∂ϕ)−1 ◦ ∇f .

(iv) Fix proxfϕ = Argminϕ ∩ int domf .

(v) Let x ∈ Argminϕ ∩ int domf , let y ∈ int domf , and let v = proxfϕy. Then

Df (x, v) +Df (v, y) 6 Df (x, y). (3.2)
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The following result in an extension of [5, Proposition 23.30].

Proposition 3.2 Let m be a strictly positive integer, let (Xi)16i6m be reflexive real Banach spaces, and

let X be the vector product space ×m

i=1Xi equipped with the norm x = (xi)16i6m 7→
√
∑m

i=1 ‖xi‖
2.

For every i ∈ {1, . . . ,m}, let ϕi ∈ Γ0(Xi) be bounded from below and let fi ∈ Γ0(Xi) be a Legendre

function such that domϕi ∩ int domfi 6= ∅. Set f : X → ]−∞,+∞] : x 7→
∑m

i=1 fi(xi) and ϕ : X →
]−∞,+∞] : x 7→

∑m
i=1 ϕi(xi). Then

(

∀x ∈
m

×
i=1

int domfi

)

proxfϕx =
(

proxfiϕi
xi
)

16i6m
. (3.3)

Proof. First, we observe that X ∗ is the vector product space ×m

i=1X
∗
i equipped with the norm

x∗ = (x∗i )16i6m 7→
√
∑m

i=1 ‖x
∗
i ‖

2. Since, for every i ∈ {1, . . . ,m}, ϕi is bounded from below, so is ϕ.

Next, we derive from the definition of f that dom f =×m

i=1dom fi and that

∂f : X → 2X
∗

: (xi)16i6m 7→
m

×
i=1

∂fi(xi). (3.4)

Thus, ∂f is single-valued on

dom ∂f =
m

×
i=1

dom ∂fi =
m

×
i=1

int domfi = int
(

m

×
i=1

dom fi

)

= int domf. (3.5)

Likewise, since

f∗ : X ∗ → ]−∞,+∞] : (x∗i )16i6m 7→

m
∑

i=1

f∗
i (x

∗
i ), (3.6)

we deduce that ∂f∗ is single-valued on dom ∂f∗ = int domf∗. Consequently, [3, Theorems 5.4

and 5.6] assert that f is a Legendre function. In addition,

domϕ ∩ int domf =
(

m

×
i=1

domϕi

)

∩
(

m

×
i=1

int domfi

)

=
m

×
i=1

(domϕi ∩ int domfi) 6= ∅. (3.7)

Now Lemma 3.1 asserts that proxfϕ : int domf → domϕ ∩ int domf . For the remainder of the proof,

let x ∈ int domf , set p = proxfϕx, and set q = (proxfiϕi
xi)16i6m. Since Lemma 3.1(iii) yields ∇f(x)−

∇f(p) ∈ ∂ϕ(p), we deduce from (1.1) that

(∀z ∈ domϕ) 〈z − p,∇f(x)−∇f(p)〉+ ϕ(p) 6 ϕ(z). (3.8)

Setting z = q in (3.8) yields

〈q − p,∇f(x)−∇f(p)〉+ ϕ(p) 6 ϕ(q). (3.9)

For every i ∈ {1, . . . ,m}, set qi = proxfiϕi
xi. The same characterization as in (3.8) yields

(∀i ∈ {1, . . . ,m})(∀zi ∈ domϕi) 〈zi − qi,∇fi(xi)−∇fi(qi)〉+ ϕi(qi) 6 ϕi(zi). (3.10)
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By summing these inequalities over i ∈ {1, . . . ,m}, we obtain

(∀z ∈ domϕ) 〈z − q,∇f(x)−∇f(q)〉+ ϕ(q) 6 ϕ(z). (3.11)

Upon setting z = p in (3.11), we get

〈p − q,∇f(x)−∇f(q)〉+ ϕ(q) 6 ϕ(p). (3.12)

Adding (3.9) and (3.12) yields

〈p − q,∇f(p)−∇f(q)〉 6 0. (3.13)

Suppose that p 6= q. Since f is essentially strictly convex, f is strictly convex on every convex subset

of dom ∂f . In particular, since int domf ⊂ dom ∂f , f |int domf is strictly convex. Hence, by [19,

Theorem 2.4.4(ii)], ∇f is strictly monotone, i.e.,

〈p − q,∇f(p)−∇f(q)〉 > 0, (3.14)

and we reach a contradiction. Consequently, p = q which proves the claim.

Let us note that, even in Euclidean spaces, it may be easier to evaluate proxfϕ than Moreau’s usual

proximity operator proxϕ, which is based on f = ‖ · ‖2/2. We provide illustrations of such instances

in the standard Euclidean space R
m.

Example 3.3 Let γ ∈ ]0,+∞[, let φ ∈ Γ0(R) be such that domφ ∩ ]0,+∞[ 6= ∅, and let ϑ be

Boltzmann-Shannon entropy, i.e.,

ϑ : ξ 7→











ξ ln ξ − ξ, if ξ ∈ ]0,+∞[ ;

0, if ξ = 0;

+∞, otherwise.

(3.15)

Set ϕ : (ξi)16i6m 7→
∑m

i=1 φ(ξi) and f : (ξi)16i6m 7→
∑m

i=1 ϑ(ξi). Note that f is a Legendre function

[2, Theorem 5.12 and Example 6.5] and hence, Lemma 3.1 asserts that dom proxfγϕ = ]0,+∞[m. Let

(ξi)16i6m ∈ ]0,+∞[m, set (ηi)16i6m = proxfγϕ(ξi)16i6m, let W be the Lambert function [10], i.e., the

inverse of ξ 7→ ξeξ on [0,+∞[, and let i ∈ {1, . . . ,m}. Then ηi can be computed as follows.

(i) Let ω ∈ R and suppose that

φ : ξ 7→











ξ ln ξ − ωξ, if ξ ∈ ]0,+∞[ ;

0, if ξ = 0;

+∞, otherwise.

(3.16)

Then ηi = ξ
(ω−1)/(γ+1)
i .

(ii) Let p ∈ [1,+∞[ and suppose that either φ = | · |p/p or

φ : ξ 7→

{

ξp/p, if ξ ∈ [0,+∞[ ;

+∞, otherwise.
(3.17)
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Then

ηi =















(

W (γ(p− 1)ξp−1
i )

γ(p − 1)

)
1

p−1

, if p ∈ ]1,+∞[ ;

ξie
−γ , if p = 1.

(3.18)

(iii) Let p ∈ [1,+∞[ and suppose that

φ : ξ 7→

{

ξ−p/p, if ξ ∈ ]0,+∞[ ;

+∞, otherwise.
(3.19)

Then

ηi =

(

W (γ(p+ 1)ξ−p−1
i )

γ(p+ 1)

)
−1
p+1

. (3.20)

(iv) Let p ∈ ]0, 1[ and suppose that

φ : ξ 7→

{

−ξp/p, if ξ ∈ [0,+∞[ ;

+∞, otherwise.
(3.21)

Then

ηi =

(

W (γ(1− p)ξp−1
i )

γ(1− p)

)
1

p−1

. (3.22)

Example 3.4 Let φ ∈ Γ0(R) be such that domφ ∩ ]0, 1[ 6= ∅ and let ϑ be Fermi-Dirac entropy, i.e.,

ϑ : ξ 7→











ξ ln ξ − (1− ξ) ln(1− ξ), if ξ ∈ ]0, 1[ ;

0 if ξ ∈ {0, 1};

+∞, otherwise.

(3.23)

Set ϕ : (ξi)16i6m 7→
∑m

i=1 φ(ξi) and f : (ξi)16i6m 7→
∑m

i=1 ϑ(ξi). Note that f is a Legendre function

[2, Theorem 5.12 and Example 6.5] and hence, Lemma 3.1 asserts that dom proxfϕ = ]0, 1[m. Let

(ξi)16i6m ∈ ]0, 1[m, set (ηi)16i6m = proxfϕ(ξi)16i6m, and let i ∈ {1, . . . ,m}. Then ηi can be computed

as follows.

(i) Let ω ∈ R and suppose that

φ : ξ 7→











ξ ln ξ − ωξ, if ξ ∈ ]0,+∞[ ;

0, if ξ = 0;

+∞, otherwise.

(3.24)

Then ηi = eω(2− 2ξi)
−1(−ξi +

√

4ξi − 3ξ2i ).
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(ii) Suppose that

φ : ξ 7→











(1− ξ) ln(1− ξ) + ξ, if ξ ∈ ]−∞, 1[ ;

1 if ξ = 1;

+∞, otherwise.

(3.25)

Then ηi = 1/2 + ξ−1
i /2−

√

ξ−2
i /4 + ξ−1

i /2− 3/4.

Example 3.5 Let φ ∈ Γ0(R) be such that domφ ∩ ]0,+∞[ 6= ∅ and let ϑ be Burg entropy, i.e.,

ϑ : ξ 7→

{

− ln ξ, if ξ ∈ ]0,+∞[ ;

+∞, otherwise.
(3.26)

Set ϕ : (ξi)16i6m 7→
∑m

i=1 φ(ξi) and f : (ξi)16i6m 7→
∑m

i=1 ϑ(ξi). Note that f is a Legendre function

[2, Theorem 5.12 and Example 6.5] and hence, Lemma 3.1 asserts that dom proxfϕ = ]0,+∞[m.

Let (ξi)16i6m ∈ ]0,+∞[m, set (ηi)16i6m = proxfϕ(ξi)16i6m, and let i ∈ {1, . . . ,m}. Then ηi can be

computed as follows.

(i) Let γ ∈ ]0,+∞[ and suppose that φ = γϑ. Then ηi = (1 + γ)ξi.

(ii) Let (γ, α) ∈ [0,+∞[2, let ω ∈ R, and suppose that

φ : ξ 7→

{

−γ ln ξ + ωξ + αξ−1, if ξ ∈ ]0,+∞[ ;

+∞, otherwise.
(3.27)

Then ηi = (2 + 2ωξi)
−1((γ + 1)ξi +

√

(γ + 1)2ξi + 4αξi(1 + ωξi)).

(iii) Let (γ, α) ∈ [0,+∞[2, let p ∈ [1,+∞[, and suppose that

φ : ξ 7→

{

−γ ln ξ + αξp, if ξ ∈ ]0,+∞[ ;

+∞, otherwise.
(3.28)

Then ηi is the strictly positive solution of pαξiη
p + ρ = (γ + 1)ξi.

(iv) Let α ∈ [0,+∞[, let p ∈ [1,+∞[, and suppose that

φ : ξ 7→

{

αξ−p, if ξ ∈ ]0,+∞[ ;

+∞, otherwise.
(3.29)

Then ηi is the strictly positive solution of pηp+1 − ξiη
p = αpξi.

Example 3.6 Let f : (ξi)16i6m 7→
∑m

i=1 ϑ(ξi), where ϑ is Hellinger-like function, i.e.,

ϑ : ξ 7→

{

−
√

1− ξ2, if ξ ∈ [−1, 1] ;

+∞, otherwise,
(3.30)

let γ ∈ ]0,+∞[, and let ϕ = f . Note that f is a Legendre function [2, Theorem 5.12 and Exam-

ple 6.5] and hence, Lemma 3.1 asserts that dom proxfγϕ = ]−1, 1[m. Let (ξi)16i6m ∈ ]−1, 1[m and set

(ηi)16i6m = proxfγϕ(ξi)16i6m. Then (∀i ∈ {1, . . . ,m}) ηi = ξi/
√

(γ + 1)2 + (γ2 + 2γ + 2)ξ2i .
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4 Applications

4.1 Variable Bregman proximal point algorithm

The convex minimization problem, i.e., the problem of minimizing a convex function, can be solved

by proximal point algorithm (see [5, 9] for Hilbertian setting and [4] for Banach space setting). In

this section, we develop a proximal point algorithm which employs different Bregman distances at

each iteration. This provides a unified framework for existing proximal point algorithms.

Theorem 4.1 Let X be a reflexive real Banach space, let ϕ ∈ Γ0(X ), let f ∈ Γ0(X ) be a Legendre

function such that Argminϕ ∩ int domf 6= ∅, let (ηn)n∈N ∈ ℓ1+(N), let α ∈ ]0,+∞[, and let (fn)n∈N be

Legendre functions in Pα(f) such that

(∀n ∈ N) (1 + ηn)fn < fn+1. (4.1)

Let x0 ∈ int domf , let (γn)n∈N ∈ ]0,+∞[N be such that γ = infn∈N γn > 0, and iterate

(∀n ∈ N) xn+1 = proxfnγnϕxn. (4.2)

Then the following hold:

(i) (xn)n∈N is stationarily Bregman monotone with respect to Argminϕ relative to (fn)n∈N.

(ii) (xn)n∈N is a minimizing sequence of ϕ.

(iii) Suppose that, for every x ∈ int domf , Df (x, ·) is coercive, and that one of the following holds:

(a) Argminϕ ∩ dom f is a singleton.

(b) Either Argminϕ ⊂ int domf or dom f∗ is open and ∇f∗ is weakly sequentially continuous,

there exists g ∈ F(f) such that, for every n ∈ N, g < fn, and, for every x1 ∈ X and every

x2 ∈ X ,











x1 ∈ W(xn)n∈N

x2 ∈ W(xn)n∈N
(〈

x1 − x2,∇fn(xn)
〉)

n∈N
converges

⇒ x1 = x2. (4.3)

Then there exists x ∈ Argminϕ such that xn ⇀ x.

(iv) Suppose that that f satisfies Condition 2.11 and that (∀x ∈ int domf) Df (x, ·) is coercive. Fur-

thermore, assume that limDf
Argminϕ(xn) = 0 and that there exists β ∈ ]0,+∞[ such that (∀n ∈ N)

βf̂ < fn. Then there exists x ∈ Argminϕ such that xn → x.

Proof. First, for every n ∈ N, since ∅ 6= Argminϕ ∩ int domf ⊂ domϕ ∩ int domf = domϕ ∩
int domfn, Lemma 3.1 asserts that

proxfnγnϕ : int domfn → dom ∂ϕ ∩ int domfn (4.4)
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is well-defined and single-valued. Note that x0 ∈ int domf . Suppose that xn ∈ int domf for some

n ∈ N. Then xn ∈ int domfn, and hence, we deduce from (4.4) that xn+1 ∈ dom ∂ϕ ∩ int domfn ⊂
int domf . By reasoning by induction, we conclude that

(xn)n∈N ∈
(

int domf
)N

is well-defined. (4.5)

(i): We first derive from (4.2) and Lemma 3.1(iii) that

(∀n ∈ N) ∇fn(xn)−∇fn(xn+1) ∈ γn∂ϕ(xn+1). (4.6)

Next, by invoking (1.1) and (4.6), we get

(∀x ∈ domϕ∩dom f)(∀n ∈ N) γ−1
n

〈

x− xn+1,∇fn(xn)−∇fn(xn+1)
〉

+ϕ(xn+1) 6 ϕ(x). (4.7)

It therefore follows from [3, Proposition 2.3(ii)] that

(∀x ∈ domϕ ∩ dom f)(∀n ∈ N) γ−1
n

(

Dfn(x, xn+1) +Dfn(xn+1, xn)−Dfn(x, xn)
)

+ ϕ(xn+1) 6 ϕ(x), (4.8)

and, in particular,

(∀x ∈ Argminϕ ∩ dom f)(∀n ∈ N) Dfn(x, xn+1) 6 Dfn(x, xn)−Dfn(xn+1, xn). (4.9)

Since (4.1) yields

(∀x ∈ Argminϕ ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn+1), (4.10)

it follows from (4.9) that

(∀x ∈ Argminϕ ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn)

− (1 + ηn)D
fn(xn+1, xn). (4.11)

In particular,

(∀x ∈ Argminϕ ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn). (4.12)

This shows that (xn)n∈N is stationarily Bregman monotone with respect to Argminϕ relative to

(fn)n∈N.

(ii): Let x ∈ Argminϕ ∩ int domf . It follows from (i) and Proposition 2.6(i) that

(

Dfn(x, xn)
)

n∈N
converges (4.13)

and, since (4.11) yields

(∀n ∈ N) Dfn(xn+1, xn) 6 (1 + ηn)D
fn(xn+1, xn)

6 (1 + ηn)D
fn(x, xn)−Dfn+1(x, xn+1), (4.14)
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we deduce that

Dfn(xn+1, xn) → 0. (4.15)

On the other hand, since (fn)n∈N is in Pα(f), we obtain

(∀n ∈ N) αDf (xn+1, xn) 6 Dfn(xn+1, xn). (4.16)

Altogether, (4.15) and (4.16) yield

Df (xn+1, xn) → 0. (4.17)

We also deduce from (4.8) that

(∀n ∈ N) ϕ(xn+1) 6 γ−1
n

(

Dfn(xn, xn+1) +Dfn(xn+1, xn)
)

+ ϕ(xn+1) 6 ϕ(xn). (4.18)

This shows that (ϕ(xn))n∈N is decreasing, and hence, since it is bounded from below by inf ϕ(X ), it

converges. We now derive from (4.8) and (4.10) that

(∀n ∈ N)
1

γ

(

1

1 + ηn
Dfn+1(x, xn+1) +Dfn(xn+1, xn)−Dfn(x, xn)

)

+ ϕ(xn+1)

6
1

γn

(

1

1 + ηn
Dfn+1(x, xn+1) +Dfn(xn+1, xn)−Dfn(x, xn)

)

+ ϕ(xn+1)

6 ϕ(x). (4.19)

Hence, by using (4.13) and (4.15) after letting n → +∞ in (4.19), we get

inf ϕ(X ) 6 limϕ(xn) 6 ϕ(x) = inf ϕ(X ). (4.20)

In turn, ϕ(xn) → inf ϕ(X ), i.e., (xn)n∈N is therefore a minimizing sequence of ϕ.

(iii): We show actually that W(xn)n∈N ⊂ Argminϕ. To this end, suppose that x ∈ W(xn)n∈N,

i.e., xkn ⇀ x. Since ϕ is lower semicontinuous and convex, it is weakly lower semicontinuous [19,

Theorem 2.2.1], and hence,

inf ϕ(X ) 6 ϕ(x) 6 limϕ(xkn) = inf ϕ(X ). (4.21)

In turn, ϕ(x) = inf ϕ(X ), i.e., x ∈ Argminϕ.

(iii)(a): Since X is reflexive, we derive from (i) and Proposition 2.6(ii) that W(xn)n∈N 6= ∅. Let

us fix x ∈ W(xn)n∈N. Since (4.5) yields W(xn)n∈N ⊂ Argminϕ ∩ dom f , we get W(xn)n∈N = {x}.

In turn, xn ⇀ x.

(iii)(b): We shall show that W(xn)n∈N ⊂ int domf . To this end, let x ∈ W(xn)n∈N, i.e., xkn ⇀ x.

If Argminϕ ⊂ int domf then x ∈ Argminϕ ⊂ int domf . Now suppose that dom f∗ is open and

∇f∗ is weakly sequentially continuous. Let x ∈ Argminϕ ∩ int domf . Then ∇f(x) ∈ int domf∗

[3, Theorem 5.9] and it follows from [3, Lemma 7.3(v)] that Df∗

(·,∇f(x)) is coercive. Since

(Df (x, xkn))n∈N is bounded and since [3, Lemma 7.3(vii)] asserts that

(∀n ∈ N) Df∗

(∇f(xkn),∇f(x)) = Df (x, xkn), (4.22)
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we deduce that (∇f(xkn))n∈N is bounded. Take x∗ ∈ X ∗ and a strictly increasing sequence (pkn)n∈N
in N such that ∇f(xpkn ) ⇀ x∗. Since [3, Lemma 7.3(ii)] states that Df∗

(·,∇f(x)) is a proper lower

semicontinuous convex function, we derive from (4.22) that

Df∗

(x∗,∇f(x)) 6 limDf∗
(

∇f(xpkn ),∇f(x)
)

6 limDf (x, xpkn ) < +∞, (4.23)

which shows that x∗ ∈ dom f∗ = int domf∗ and thus, by [3, Theorem 5.10], there exists x1 ∈
int domf such that x∗ = ∇f(x1). Since ∇f∗ is weakly sequentially continuous, we get

x ↼ xpkn = ∇f∗
(

∇f(xpkn )
)

⇀ ∇f∗(x∗) = x1. (4.24)

In turn, x = x1 ∈ int domf . Finally, the claim follows from Proposition 2.7.

(iv): Since ϕ ∈ Γ0(X ), Argminϕ is convex and closed, and the assertion therefore follows from

Proposition 2.12.

Remark 4.2 In Theorem 4.1, suppose that (∀n ∈ N) fn = f̂ , γn = γ, and ηn = 0. Then (4.2) reduces

to the Bregman proximal iterations [4]

(∀n ∈ N) xn+1 = proxfγϕxn. (4.25)

4.2 An application to the convex feasibility problem

In this section, we apply the asymptotic analysis of variable Bregman monotone sequences to study

the convex feasibility problem, i.e., the generic problem of finding a point in the intersection of a

family of closed convex sets. We first recall the following results.

Lemma 4.3 [4, Definition 3.1 and Proposition 3.3] Let X be a reflexive real Banach space, let f ∈
Γ0(X ) be Gâteaux differentiable on int domf 6= ∅, set

(∀(x, y) ∈ (int domf)2) Hf (x, y) =
{

z ∈ X
∣

∣

〈

z − y,∇f(x)−∇f(y)
〉

6 0
}

=
{

z ∈ X
∣

∣ Df (z, y) +Df (y, x) 6 Df (z, x)
}

(4.26)

and

B(f) =
{

T : X → 2X
∣

∣

∣
ranT ⊂ dom T = int domf

and (∀(x, y) ∈ graT ) FixT ⊂ Hf (x, y)
}

. (4.27)

Let T ∈ B(f) be such that FixT 6= ∅. Suppose that f |int domf is strictly convex. Then the following

hold:

(i) FixT is convex.

(ii) (∀x ∈ FixT )(∀(y, v) ∈ graT ) Df (x, v) +Df (v, y) 6 Df (x, y).
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The class of operators B includes types of fundamental operators in Bregman optimization (see

[4] for more discussions). We illustrate our result in Section 2 through an application to the problem

of finding a common point of a family of closed convex subsets with nonempty intersection.

Theorem 4.4 Let X be a reflexive real Banach space, let I be a totally ordered at most countable index

set, let (Ci)i∈I be a family of closed convex subsets of X such that C =
⋂

i∈I Ci 6= ∅, let f ∈ Γ0(X )
be Gâteaux differentiable on int domf 6= ∅, let (ηn)n∈N ∈ ℓ1+(N), let α ∈ ]0,+∞[, and let (fn)n∈N be

Legendre functions in Pα(f) such that

(∀n ∈ N) (1 + ηn)fn < fn+1. (4.28)

Let i : N → I be such that

(∀j ∈ I)(∃Mj ∈ N\{0})(∀n ∈ N) j ∈ {i(n), . . . , i(n+Mj − 1)}. (4.29)

For every i ∈ I, let (Ti,n)n∈N be a sequence of operators such that

(∀n ∈ N) Ti,n ∈ B(fn), Ci ∩ FixTi,n 6= ∅, and Ci ⊂ FixTi,n. (4.30)

Let x0 ∈ int domf and iterate

(∀n ∈ N) xn+1 ∈ Ti(n),nxn. (4.31)

Suppose that f satisfies Condition 2.11 and that (∀x ∈ int domf) Df (x, ·) is coercive. Then there exists

x ∈ C such that the following hold:

(i) Suppose that there exists g ∈ F(f) that, for every n ∈ N, g < fn, and, for every x1 ∈ X and every

x2 ∈ X ,











x1 ∈ W(xn)n∈N ∩ C

x2 ∈ W(xn)n∈N ∩ C
(〈

x1 − x2,∇fn(xn)
〉)

n∈N
converges

⇒ x1 = x2, (4.32)

and that, for every strictly increasing sequence (ln)n∈N in N, every x ∈ X , and every j ∈ I,























xln ⇀ x

yln ∈ Tj,lnxln
yln − xln → 0

(∀n ∈ N) j = i(ln)

⇒ x ∈ Cj . (4.33)

In addition, assume that W(xn)n∈N ⊂ int domf . Then xn ⇀ x.

(ii) Suppose that f is Legendre, that limDf
C(xn) = 0, and that there exists β ∈ ]0,+∞[ such that

(∀n ∈ N) βf̂ < fn. Then xn → x.
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Proof. For every n ∈ N and every i ∈ I, we observe that ranTi,n ⊂ domTi,n = int domfn = int domf .

Hence, it follows from (4.30) and (4.31) that (xn)n∈N is a well-define sequence in int domf . We now

derive from (4.26), (4.30), and (4.31) that

(∀x ∈ C ∩ dom f)(∀n ∈ N) Dfn(x, xn+1) +Dfn(xn+1, xn) 6 Dfn(x, xn). (4.34)

Since (4.28) yields

(∀x ∈ C ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn+1), (4.35)

we deduce that

(∀x ∈ C∩dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1+ηn)D
fn(x, xn)−(1+ηn)D

fn(xn+1, xn). (4.36)

In particular,

(∀x ∈ C ∩ dom f)(∀n ∈ N) Dfn+1(x, xn+1) 6 (1 + ηn)D
fn(x, xn), (4.37)

which shows that (xn)n∈N is stationarily Bregman monotone with respect to C relative to (fn)n∈N. In

addition, we derive from (4.30) that (∀i ∈ {1, . . . ,m}) Ci∩ int domf 6= ∅. Hence, C∩ int domf 6= ∅.

(i): In view of Proposition 2.7, it suffices to show that W(xn)n∈N ⊂ C∩ int domf . To this end, let

x ∈ W(xn)n∈N, let (kn)n∈N be a strictly increasing sequence in N such that xkn ⇀ x, let j ∈ I, and

let x ∈ C ∩ int domf . By (4.29), there exists a strictly increasing sequence (ln)n∈N in N such that

(∀n ∈ N)

{

kn 6 ln 6 kn +Mj − 1 < kn+1 6 ln+1,

j = i(ln).
(4.38)

Since Df (x, ·) is coercive, it follows from Proposition 2.6 that (xn)∈N is bounded and (Dfn(xn+1, xn))n∈N
converges. In turn, since (4.36) yields

(∀n ∈ N) Dfn(xn+1, xn) 6 (1 + ηn)D
fn(xn+1, xn)

6 (1 + ηn)D
fn(x, xn)−Dfn+1(x, xn+1), (4.39)

we deduce that

Dfn(xn+1, xn) → 0. (4.40)

However, since

(∀n ∈ N) αDf (xn+1, xn) 6 Dfn(xn+1, xn), (4.41)

it follows from (4.40) that

Df (xn+1, xn) → 0 (4.42)

and hence, since f satisfies Condition 2.11,

xn+1 − xn → 0. (4.43)
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Altogether, (4.38) and (4.43) imply that

‖xln − xkn‖ 6

kn+Mj−2
∑

m=kn

‖xm+1 − xn‖ 6 (Mj − 1) max
kn6m6kn+Mj−2

‖xm+1 − xm‖ → 0, (4.44)

and therefore

xln ⇀ x. (4.45)

Now let (∀n ∈ N) yln ∈ Tj,lnxln . We deduce from (4.38) and (4.43) that

yln − xln → 0. (4.46)

By invoking successively (4.33), (4.45), and (4.46), we get x ∈ Cj, and hence, x ∈ C. Consequently,

W(xn)n∈N ⊂ C ∩ int domf .

(ii): Since C is closed, the assertion follows from Proposition 2.12.

Remark 4.5

(i) In Theorem 4.4, suppose that (∀n ∈ N) fn = f̂ and ηn = 0. Then we recover the framework of

[4, Section 4.2].

(ii) In Theorem 4.4, suppose that X is a Hilbert space, that f = ‖ · ‖2/2, and that (∀n ∈ N)
fn : x 7→ 〈x,Unx〉/2, where (Un)n∈N are operators in Pα(X ) such that supn∈N ‖Un‖ < +∞ and

(∀n ∈ N) (1 + ηn)Un < Un+1. Then we recover the version of [9, Theorem 5.1(i) and (iii)]

without errors and (∀n ∈ N) λn = 1.

Our last result concerns a periodic projection method that uses different Bregman distances at

each iteration.

Corollary 4.6 Let X be a reflexive real Banach space, let m be a strictly positive integer, let (Ci)16i6m

be a family of closed convex subsets of X such that C =
⋂m

i=1Ci 6= ∅, let f ∈ Γ0(X ) be Gâteaux

differentiable on int domf such that C ∩ int domf 6= ∅, let (ηn)n∈N ∈ ℓ1+(N), let α ∈ ]0,+∞[, and let

(fn)n∈N be Legendre functions in Pα(f) such that

(∀n ∈ N) (1 + ηn)fn < fn+1. (4.47)

Let x0 ∈ int domf and iterate

(∀n ∈ N) xn+1 = P fn
C1+rem(n,m)

xn, (4.48)

where rem(·,m) is the remainder of the division by m. Suppose that f satisfies Condition 2.11 and that

(∀x ∈ int domf) Df (x, ·) is coercive. Then there exists x ∈ C such that the following hold:
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(i) Suppose that there exists g ∈ F(f) such that, for every n ∈ N, g < fn, and, for every x1 ∈ X and

every x2 ∈ X ,











x1 ∈ W(xn)n∈N ∩ C

x2 ∈ W(xn)n∈N ∩ C
(〈

x1 − x2,∇fn(xn)
〉)

n∈N
converges

⇒ x1 = x2. (4.49)

In addition, suppose that W(xn)n∈N ⊂ int domf . Then xn ⇀ x.

(ii) Suppose that f is Legendre, that limDf
C(xn) = 0, and that there exists β ∈ ]0,+∞[ such that

(∀n ∈ N) βf̂ < fn. Then xn → x.

Proof. First, we see that the function i : N → {1, . . . ,m} : n 7→ 1 + rem(n,m) satisfies (4.29), where

(∀j ∈ {1, . . . ,m}) Mj = m. Now set

(∀i ∈ {1, . . . ,m})(∀n ∈ N) Ti,n = P fn
Ci

. (4.50)

Then, by [4, Theorem 3.34], for every n ∈ N and every i ∈ {1, . . . ,m}, we have

Ti,n ∈ B(fn) and Ci ∩ dom f ∩ FixTi,n = Ci ∩ int domf ⊃ C ∩ int domf 6= ∅. (4.51)

In addition, it follows from [4, Lemma 3.2] that

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) Ci ∩ dom f = Ci ∩ int domf = Ci ∩ int domfn = FixTi,n. (4.52)

Therefore, (4.48) is a particular case of (4.31). We shall actually apply Proposition 4.4 with the

family (Ci ∩ dom f)16i6m.

(i): Let us fix j ∈ {1, . . . ,m} and suppose that

xln ⇀ x, Tj,lnxln − xln → 0, and (∀n ∈ N) j = i(ln). (4.53)

Then Cj ∋ P
fln
Cj

xln = Tj,lnxln ⇀ x, and hence, x ∈ Cj since Cj is weakly closed [18, Corollary 4.5].

Moreover, since (xn)n∈N is in int domf , x ∈ dom f and hence x ∈ Cj∩dom f . This shows that (4.33)

is satisfied. Consequently, the assertion follows from Proposition 4.4(i).

(ii): We have

(∀n ∈ N) inf
x∈C∩dom f

Df (x, xn) 6 inf
x∈C∩domf

Df (x, xn) = Df
C(xn), (4.54)

and hence, limDC∩dom f (xn) = 0. The claim therefore follows from Proposition 4.4(ii).
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